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HMM + features
• There are variants of  the generative HMM that 

emit features instead of  just words. 

• However, these suffer from similar problems as 
features in naïve Bayes (too strong 
independence assumptions). 

• Can we be discriminative instead? 

‣ Yes! In fact, we can reuse the same machinery for 
discriminative learning with linear models.
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Recasting HMM as a Linear Model
• Recall that a linear model is one that scores candidate 

outputs y with wTφ(x,y). Decoding = arg maxy′ w
Tφ(x,y′). 

• Not just classification: we can be predicting a 
structured output y. Thus arg maxy′ w

Tφ(x,y′). 

• How can we express an HMM in this framework? 

‣ transitions = features over tag n-grams 

‣ emissions = tag + word features 

‣ weights = log probabilities 

‣ arg maxy′ = Viterbi decoding
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Viterbi for Linear Models

• Essentially, the Viterbi algorithm stays the 
same: 

‣ transition probabilities replaced by linear score of  
transition (multi-tag) features 

‣ emission probabilities replaced by linear score of  
non-transition (single-tag) features
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Generative → Discriminative
• If  we want to estimate the weights without making 

independence assumptions about the features… 

• …we can use a discriminative learning algorithm! 

• However, the algorithm has to take the structure of  
the output into account. Tag n-gram features mean 
the prediction of  one tag influences what the model 
thinks about other tags. 

• Machine learning with models where the outputs are 
interrelated is called structured prediction.
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Review: Perceptron Learner
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w ← 0 
for i = 1 … I: 
   for t = 1 … T: 
 select (x, y)t 

 # run current classifier 
 ŷ ← arg maxy′ wᵀ Φ(x, y′) 
  
 if ŷ ≠ y then # mistake 
  w ← w + Φ(x, y) − Φ(x, ŷ) 
return w



Review: Perceptron Learner
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 # run current classifier 
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  w ← w + Φ(x, y) − Φ(x, ŷ) 
return w

C decoding is a 
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Structured Perceptron Learner
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w ← 0 
for i = 1 … I: 
   for t = 1 … T: 
 select (x, y)t 

 # run structured decoding 

 ŷ ←              ← xᵀ 
  
 if ŷ ≠ y then # mistake 
  w ← w + Φ(x, y) − Φ(x, ŷ) 
return w

D decoding is a 
subroutine of learning



Structured Perceptron Learner
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w ← 0 
for i = 1 … I: 
   for t = 1 … T: 
 select (x, y)t 

 # run structured decoding 

 ŷ ←              ← xᵀ 
  
 if ŷ ≠ y then # mistake: incorrect tag(s) 
  w ← w + Φ(x, y) − Φ(x, ŷ) 
return w

D For sequence tagging, 
decoder = Viterbi!

update affects weights of features 
that fire for mistagged tokens



Structured Perceptron
• What are the constraints on the kinds of  features we can use? (tag 

bigrams? trigrams? word bigrams? trigrams?) 

‣ Remember that discriminative = we don’t care about modeling the 
probability of  the language. Thus, every model feature should involve at 
least one tag. 

‣ As a sequence model, Markov order is still relevant: if  we want to use the 
bigram Viterbi algorithm, which is O(T²N), we can have features over tag 
bigrams, but not trigrams. 

‣ local feature = feature which respects the independence assumptions of  
the decoding algorithm (e.g., tag bigram Viterbi). Using nonlocal features 
would require fancier algorithms. 

‣ Unlike the generative HMM, no constraint on which words can be in a 
feature. E.g., there could be a feature that relates the first tag to the last 
token! (In POS tagging, perhaps ending with “?” correlates with certain 
kinds of  initial words.)
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Unlike the generative HMM, each connection can 
involve multiple weighted features.
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Discriminative Classifiers:  
Non-probabilistic

• The structured counterpart of  the perceptron 
classifier is called…the structured perceptron. 

‣ Also: structural SVM (max-margin).
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Discriminative Classifiers:  
Probabilistic

• The structured counterpart of  the logistic regression classifier: 
conditional random field (CRF). 

‣ Most common: linear-chain structure, i.e., sequence 

‣ Probabilistic—linear score is exponentiated & normalized 

‣ Training requires forward-backward algorithm (expensive!) 

‣ Generally state-of-the-art 

‣ Downloadable implementations include CRF++ 

‣ If  you want the gory details: Sutton & McCallum, http://
homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf  

• There is also the Maximum Entropy Markov Model (MEMM), which 
makes simplifying assumptions to reduce computation and is nearly 
as accurate in practice.
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Final Projects
• See how NLP components fit together in a system 

‣ off-the-shelf  tools such as spaCy, Stanford CoreNLP 

‣ + new code 

• Work in an interdisciplinary team of  3 people 

‣ Each team should have at least 2 departments/programs represented 

‣ Design the project to suit the team’s strengths! (programming, data collection, 
analysis) 

• Build something cool! 

‣ artistic, scientific, or practical 

‣ using data (existing or new) & concepts from this course 

‣ start simple, then iterate 

• Instructor & TAs will help you scope the project, find relevant literature, design 
evaluation, etc.
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