
Lecture 12:
Algorithms for HMMs

Nathan Schneider
(some slides from Sharon Goldwater;
thanks to Jonathan May for bug fixes)

ENLP | 26 February 2018

Recap: tagging
• POS tagging is a sequence labelling task.

• We can tackle it with a model (HMM) that
uses two sources of information:
– The word itself
– The tags assigned to surrounding words

• The second source of information means we
can’t just tag each word independently.

Local Tagging

<s> one dog bit </s>
<s> CD NN NN </s>

NN VB VBD
PRP

Possible tags:
(ordered by
frequency for
each word)

Words:

• Choosing the best tag for each word independently,
i.e. not considering tag context, gives the wrong
answer (<s> CD NN NN </s>).

• Though NN is more frequent for ‘bit’, tagging it as
VBD may yield a better sequence
(<s> CD NN VB </s>)
– because P(VBD|NN) and P(</s>|VBD) are high.

Recap: HMM
• Elements of HMM:
– Set of states (tags)
– Output alphabet (word types)
– Start state (beginning of sentence)
– State transition probabilities P(ti | ti-1)
– Output probabilities from each state P(wi | ti)

Recap: HMM
• Given a sentence W=w1…wn with tags T=t1…tn,

compute P(W,T) as:

• But we want to find without
enumerating all possible tag sequences T
– Use a greedy approximation, or
– Use Viterbi algorithm to store partial computations.

-(.,/) =0
123

4
- 51 61 - 61 6173

argmax/ -(/|.)

Greedy Tagging

<s> one dog bit </s>
<s> CD NN NN </s>

NN VB VBD

PRP

Possible tags:
(ordered by
frequency for
each word)

Words:

• For i = 1 to N: choose the tag that maximizes
– transition probability ! "# "#$% ×
– emission probability ! '# "#

• This uses tag context but is still suboptimal. Why?
– It commits to a tag before seeing subsequent tags.
– It could be the case that ALL possible next tags have low

transition probabilities. E.g., if a tag is unlikely to occur at the
end of the sentence, that is disregarded when going left to right.

Greedy vs. Dynamic Programming

• The greedy algorithm is fast: we just have to
make one decision per token, and we’re done.
– Runtime complexity?

– !(#$) with # tags, length-$ sentence

• But subsequent words have no effect on each
decision, so the result is likely to be suboptimal.

• Dynamic programming search gives an optimal
global solution, but requires some bookkeeping
(= more computation). Postpones decision about
any tag until we can be sure it’s optimal.

Viterbi Tagging: intuition

<s> one dog bit </s>
<s> CD NN NN </s>

NN VB VBD

PRP

Possible tags:

(ordered by

frequency for

each word)

Words:

• Suppose we have already computed
a) The best tag sequence for <s> … bit that ends in NN.

b) The best tag sequence for <s> … bit that ends in VBD.

• Then, the best full sequence would be either

– sequence (a) extended to include </s>, or

– sequence (b) extended to include </s>.

Viterbi Tagging: intuition

<s> one dog bit </s>
<s> CD NN NN </s>

NN VB VBD
PRP

Possible tags:
(ordered by
frequency for
each word)

Words:

• But similarly, to get
a) The best tag sequence for <s> … bit that ends in NN.

• We could extend one of:
– The best tag sequence for <s> … dog that ends in NN.
– The best tag sequence for <s> … dog that ends in VB.

• And so on…

Viterbi: high-level picture
• Want to find

• Intuition: the best path of length i ending in state t
must include the best path of length i-1 to the
previous state. So,
– Find the best path of length i-1 to each state.
– Consider extending each of those by 1 step, to state t.
– Take the best of those options as the best path to state t.

argmax* +(*|.)

Viterbi algorithm
• Use a chart to store partial results as we go
– T	× N	table, where % &, (is the probability* of the best

state sequence for w1…wi that ends in state t.

*Specifically, v(t,i) stores the max of the joint probability P(w1…wi,t1…ti-1,ti=t|λ)

Viterbi algorithm

• Use a chart to store partial results as we go
– T	× N	table, where % &, (is the probability* of the best

state sequence for w1…wi that ends in state t.

• Fill in columns from left to right, with

– The max is over each possible previous tag &.

• Store a backtrace to show, for each cell, which state
at (− 1 we came from.

% &, (= max45 % &′, (− 1 7 8(&|&′) 7 8 <=|&=

*Specifically, v(t,i) stores the max of the joint probability P(w1…wi,t1…ti-1,ti=t|λ)

Transition and Output Probabilities
Transition matrix: P(ti |	ti-1):

Emission matrix: P(wi |	ti):

Noun Verb Det Prep Adv </s>
<s> .3 .1 .3 .2 .1 0
Noun .2 .4 .01 .3 .04 .05
Verb .3 .05 .3 .2 .1 .05
Det .9 .01 .01 .01 .07 0
Prep .4 .05 .4 .1 .05 0
Adv .1 .5 .1 .1 .1 .1

a cat doctor in is the very
Noun 0 .5 .4 0 .1 0 0
Verb 0 0 .1 0 .9 0 0
Det .3 0 0 0 0 .7 0
Prep 0 0 0 1.0 0 0 0
Adv 0 0 0 .1 0 0 .9

Example
Suppose W=the	doctor	is	in. Our initially empty
table:

v w1=the w2=doctor w3=is w4=in </s>
Noun
Verb
Det
Prep
Adv

Filling in the first column
Suppose W=the	doctor	is	in. Our initially empty
table:

. Noun, the = 2 Noun <s> 2(the|Noun)=.3(0)
…

v w1=the w2=doctor w3=is w4=in </s>
Noun 0

Verb 0

Det .21

Prep 0

Adv 0

. Det, the = 2 Det <s>) 2(the|Det =.3(.7)

The second column

! Noun Det) !(doctor|Noun =.3(.4)

/ Noun, doctor
= max56 / 78, the : !(Noun|7′) : !(doctor|Noun)

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 ?

Verb 0

Det .21

Prep 0

Adv 0

The second column

! Noun Det) !(doctor|Noun =.9(.4)

/ Noun, doctor
= max56 / 78, the : !(Noun|7′) : !(doctor|Noun)
= max { 0, 0, .21(.36), 0, 0 } = .0756

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756

Verb 0

Det .21

Prep 0

Adv 0

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756

Verb 0 .00021

Det .21

Prep 0

Adv 0

The second column

= Verb Det) =(doctor|Verb =.01(.1)

A Verb, doctor
= maxFG A HI, the J =(Verb|H′) J =(doctor|Verb)
= max { 0, 0, .21(.001), 0, 0 } = .00021

The second column

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756

Verb 0 .00021

Det .21 0

Prep 0 0

Adv 0 0

= Verb Det) =(doctor|Verb =.01(.1)

A Verb, doctor
= maxFG A HI, the J =(Verb|H′) J =(doctor|Verb)
= max { 0, 0, .21(.001), 0, 0 } = .00021

The third column

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512

Verb 0 .00021

Det .21 0

Prep 0 0

Adv 0 0

= Noun Noun) =(is|Noun =.2(.1)=.02

A Noun, is
= maxFG A HI, doctor J =(Noun|H′) J =(is|Noun)
= max { .0756(.02), .00021(.03), 0, 0, 0 } = .001512

= Noun Verb) =(is|Noun =.3(.1)=.03

The third column

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512

Verb 0 .00021 .027216

Det .21 0 0

Prep 0 0 0

Adv 0 0 0

= Verb Noun) =(is|Verb =.4(.9)=.36

A Verb, is
= maxFG A HI, doctor J =(Verb|H′) J =(is|Verb)
= max { .0756(.36), .00021(.045), 0, 0, 0 } = .027216

= Verb Verb) =(is|Verb =.05(.9)=.045

The fourth column

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512 0

Verb 0 .00021 .027216 0

Det .21 0 0 0

Prep 0 0 0 .005443

Adv 0 0 0

= Prep Noun) =(in|Prep =.3(1.0)

A Prep, in
= maxFG A HI, is J =(Prep|H′) J =(in|Prep)
= max { .001512(.3), .027216(.2), 0, 0, 0 } = .005443

= Prep Verb) =(in|Prep =.2(1.0)

The fourth column

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512 0

Verb 0 .00021 .027216 0

Det .21 0 0 0

Prep 0 0 0 .005443

Adv 0 0 0 .000272

= Adv Noun) =(in|Adv =.04(.1)

A Prep, in
= maxFG A HI, is J =(Prep|H′) J =(in|Prep)
= max { .000504(.004), .027216(.01), 0, 0, 0 } = .000272

= Adv Verb) =(in|Adv =.1(.1)

End of sentence

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512 0

.000027
2

Verb 0 .00021 .027216 0

Det .21 0 0 0

Prep 0 0 0 .005443

Adv 0 0 0 .000272

= </s> Prep =0

> </s>
= maxBC > DE, in G =(</s>|D′)
= max { 0, 0, 0, .005443(0), .000272(.1) } = .0000272

= </s> Adv =.1

Completed Viterbi Chart

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512 0

.000027
2

Verb 0 .00021 .027216 0

Det .21 0 0 0

Prep 0 0 0 .005443

Adv 0 0 0 .000272

Following the Backtraces

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512 0

.000027
2

Verb 0 .00021 .027216 0

Det .21 0 0 0

Prep 0 0 0 .005443

Adv 0 0 0 .000272

Following the Backtraces

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512 0

.000027
2

Verb 0 .00021 .027216 0

Det .21 0 0 0

Prep 0 0 0 .005443

Adv 0 0 0 .000272

Following the Backtraces

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512 0

.000027
2

Verb 0 .00021 .027216 0

Det .21 0 0 0

Prep 0 0 0 .005443

Adv 0 0 0 .000272

Following the Backtraces

v w1=the w2=doctor w3=is w4=in </s>
Noun 0 .0756 .001512 0

.000027
2

Verb 0 .00021 .027216 0

Det .21 0 0 0

Prep 0 0 0 .005443

Adv 0 0 0 .000272

Det Noun Verb Prep

Implementation and efficiency
• For sequence length N with T possible tags,
– Enumeration takes O(TN) time and O(N) space.
– Bigram Viterbi takes O(T2N) time and O(TN) space.
– Viterbi is exhaustive: further speedups might be had

using methods that prune the search space.

• As with N-gram models, chart probs get really
tiny really fast, causing underflow.
– So, we use costs (neg log probs) instead.
– Take minimum over sum of costs, instead of maximum

over product of probs.

Higher-order Viterbi
• For a tag trigram model with T possible tags,

we effectively need T2 states
– n-gram Viterbi requires Tn-1 states, takes O(TnN)

time and O(Tn-1N) space.

Noun Verb

Verb PrepVerb Noun

Verb Verb

Verb </s>

HMMs: what else?
• Using Viterbi, we can find the best tags for a

sentence (decoding), and get !(#,%).
• We might also want to
– Compute the likelihood !(#), i.e., the probability of a

sentence regardless of its tags (a language model!)
– learn the best set of parameters (transition & emission

probs.) given only an unannotated corpus of sentences.

Computing the likelihood
• From probability theory, we know that

• There are an exponential number of Ts.

• Again, by computing and storing partial results, we
can solve efficiently.

• (Advanced slides show the algorithm for those who
are interested!)

"($) ='
(
"($,()

Summary
• HMM: a generative model of sentences using

hidden state sequence
• Greedy tagging: fast but suboptimal
• Dynamic programming algorithms to compute
– Best tag sequence given words (Viterbi algorithm)
– Likelihood (forward algorithm—see advanced

slides)
– Best parameters from unannotated corpus

(forward-backward algorithm, an instance of EM—
see advanced slides)

Advanced Topics

(the following slides are just for people who are
interested)

Notation
• Sequence of observations over time o1, o2, …, oN
– here, words in sentence

• Vocabulary size V of possible observations

• Set of possible states q1, q2, …, qT (see note next slide)
– here, tags

• A, an T×T matrix of transition probabilities
– aij: the prob of transitioning from state i to j.

• B, an T×V matrix of output probabilities
– bi(ot): the prob of emitting ot from state i.

Note on notation
• J&M use q1, q2, …, qN for set of states, but also use

q1, q2, …, qN for state sequence over time.
– So, just seeing q1 is ambiguous (though usually

disambiguated from context).
– I’ll instead use qi for state names, and qn for state at time n.
– So we could have qn = qi, meaning: the state we’re in at

time n is qi.

HMM example w/ new notation

• States {q1,	q2}	(or {<s>,	q1,	q2}): think NN, VB

• Output symbols {x,	y,	z}: think chair, dog, help

q1 q2

x y z

.6 .1 .3

x y z

.1 .7 .2

.5

.3

.5

.7

Start

Adapted from Manning & Schuetze, Fig 9.2

HMM example w/ new notation
• A possible sequence of outputs for this HMM:

• A possible sequence of states for this HMM:

• For these examples, N = 9, q3= q2 and o3= y

z y y x y z x z z

q1 q2 q2 q1 q1 q2 q1 q1 q1

Transition and Output Probabilities
• Transition matrix A:
aij =	P(qj |	qi)

Ex: P(qn=	q2	|	qn-1=	q1)	=	.3

• Output matrix B:
bi(o)	=	P(o	|	qi)

Ex: P(on=	y |	qn=	q1)	=	.1

q1 q2
<s> 1 0
q1 .7 .3
q2 .5 .5

x y z
q1 .6 .1 .3
q2 .1 .7 .2

Forward algorithm
• Use a table with cells α(j,t): the probability of being in

state j after seeing o1…ot (forward probability).

• Fill in columns from left to right, with

– Same as Viterbi, but sum instead of max (and no backtrace).

* +, , =.
/01

2
* 3, , − 1 5 6/75 87 9:

*(+, ,) = ;(91, 92, … 9,, =, = +|?)

Note: because there’s a sum, we can’t use the trick that replaces probs with costs. For
implementation info, see http://digital.cs.usu.edu/~cyan/CS7960/hmm-tutorial.pdf and
http://stackoverflow.com/questions/13391625/underflow-in-forward-algorithm-for-hmms .

http://digital.cs.usu.edu/~cyan/CS7960/hmm-tutorial.pdf
http://stackoverflow.com/questions/13391625/underflow-in-forward-algorithm-for-hmms

Example
• Suppose O=xzy. Our initially empty table:

o1=x o2=z o3=y
q1
q2

Filling the first column

o1=x o2=z o3=y
q1 .6

q2 0

* 1,1 = ,-./0 1 21 3) = 1 (.6
* 2,1 = ,-./8 1 22 3) = 0 (.1

Starting the second column

o1=x o2=z o3=y
q1 .6 .126

q2 0

* 1,2 =,
-./

0
* 1, 1 2 3-/ 2 41 5

= .6 .7 .3 + 0 .5 .3
= * 1,1 2 3//2 4/ 5 + * 2,1 2 3</2 41(5)

= .126

Finishing the second column

o1=x o2=z o3=y
q1 .6 .126

q2 0 .036

* 2,2 =,
-./

0
* 1, 1 2 3-4 2 52 6

= .6 .3 .2 + 0 .5 .2
= * 1,1 2 3/42 54 6 + * 2,1 2 3442 52(6)

= .036

Third column and finish

• Add up all probabilities in last column to get the
probability of the entire sequence:

o1=x o2=z o3=y
q1 .6 .126 .01062

q2 0 .036 .03906

* +|- =.
/01

2
3 4, 6

Learning
• Given only the output sequence, learn the best set of

parameters λ =	(A,	B).
• Assume ‘best’ = maximum-likelihood.

• Other definitions are possible, won’t discuss here.

Unsupervised learning
• Training an HMM from an annotated corpus is

simple.
– Supervised learning: we have examples labelled with the

right ‘answers’ (here, tags): no hidden variables in training.

• Training from unannotated corpus is trickier.
– Unsupervised learning: we have no examples labelled with

the right ‘answers’: all we see are outputs, state sequence
is hidden.

Circularity
• If we know the state sequence, we can find the best λ.
– E.g., use MLE:

• If we know λ, we can find the best state sequence.
– use Viterbi

• But we don't know either!

$%|$' =)(+,→+.)
)(+,)

Expectation-maximization (EM)
As in spelling correction, we can use EM to bootstrap,
iteratively updating the parameters and hidden variables.

• Initialize parameters λ(0)

• At each iteration k,
– E-step: Compute expected counts using λ(k-1)
– M-step: Set λ(k) using MLE on the expected counts

• Repeat until λ	doesn't change (or other stopping
criterion).

Expected counts??
Counting transitions from qi→qj:
• Real counts:

– count 1 each time we see qi→qj in true tag sequence.

• Expected counts:
– With current λ, compute probs of all possible tag sequences.
– If sequence Q has probability p, count p for each qi→qj in Q.
– Add up these fractional counts across all possible sequences.

Example
• Notionally, we compute expected counts as follows:

Possible
sequence

Probability of
sequence

Q1= q1 q1 q1 p1
Q2= q1 q2 q1 p2
Q3= q1 q1 q2 p3
Q4= q1 q2 q2 p4
Observs: x z y

Example
• Notionally, we compute expected counts as follows:

!" #1 → #1 = 2(1 + (3

Possible
sequence

Probability of
sequence

Q1= q1 q1 q1 p1
Q2= q1 q2 q1 p2
Q3= q1 q1 q2 p3
Q4= q1 q2 q2 p4
Observs: x z y

Forward-Backward algorithm
• As usual, avoid enumerating all possible sequences.

• Forward-Backward (Baum-Welch) algorithm computes
expected counts using forward probabilities and
backward probabilities:

– Details, see J&M 6.5

• EM idea is much more general: can use for many latent
variable models.

!(#, %) = (()% = #, *+,-, *+,., … *0|2)

Guarantees
• EM is guaranteed to find a local maximum of the likelihood.

• Not guaranteed to find global maximum.

• Practical issues: initialization, random restarts, early stopping.
Fact is, it doesn’t work well for learning POS taggers!

values of λ

P(O| λ)

