
Linear Models for
Classification:  

Features & Weights
Nathan Schneider 

(some slides borrowed from Chris Dyer)
ENLP | 7 February 2018

1

Outline
• Words, probabilities → Features, weights

• Geometric view: decision boundary

• Perceptron

• Generative vs. Discriminative

• More discriminative models: Logistic regression/MaxEnt;
SVM

• Loss functions, optimization

• Regularization; sparsity

2

this lecture

next lecture

Word Sense Disambiguation
(WSD)

• Given a word in context, predict which sense is
being used.

‣ Evaluated on corpora such as SemCor, which is fully
annotated for WordNet synsets.

• For example: consider joint POS & WSD
classification for ‘interest’, with 3 senses:

‣ N:financial (I repaid the loan with interest)

‣ N:nonfinancial (I read the news with interest)

‣ V:nonfinancial (Can I interest you in a dessert?)

3

Beyond BoW
• Neighboring words are relevant to this decision.

• More generally, we can define features of the input that may
help identify the correct class.

‣ Individual words

‣ Bigrams (pairs of consecutive words: Wall Street)

‣ Capitalization (interest vs. Interest vs. INTEREST)

‣ Metadata: document genre, author, …

• These can be used in naïve Bayes: “bag of features”

‣ With overlapping features, independence assumption is even more
naïve: p(y | x) ∝ p(y) ··· p(Wall | y) p(Street | y) p(Wall Street | y)

4

Choosing Features
• Supervision means that we don’t have to pre-specify the precise

relationship between each feature and the classification
outcomes.

• But domain expertise helps in choosing which kinds of features to
include in the model. (words, subword units, metadata, …)

‣ And sometimes, highly task-specific features are helpful.

• The decision about what features to include in a model is called
feature engineering.

‣ (There are some algorithmic techniques, such as feature selection, that
can assist in this process.)

‣ More features = more flexibility, but also more expensive to train, more
opportunity for overfitting.

5

Feature Extraction

6

φ(x) φ(x′)

bias 1 1
capitalized? 0 0

#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

…

bias feature (≈class prior): value of
1 for every x so the learned weight
will reflect prevalence of the class

x = Wall Street vets raise concerns
about interest rates , politics

• Turns the input into a table of
features with real values (often
binary: 0 or 1).

• In practice: define feature templates
like “leftWord=•” from which specific
features are instantiated

Feature Extraction

7

φ(x) φ(x′)

bias 1 1
capitalized? 0 0

#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x = Wall Street vets raise concerns
about interest rates , politics

…

spelling feature

• Turns the input into a table of
features with real values (often
binary: 0 or 1).

• In practice: define feature templates
like “leftWord=•” from which specific
features are instantiated

Feature Extraction

8

φ(x) φ(x′)

bias 1 1
capitalized? 0 0

#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x = Wall Street vets raise concerns
about interest rates , politics

…

token positional features

• Turns the input into a table of
features with real values (often
binary: 0 or 1).

• In practice: define feature templates
like “leftWord=•” from which specific
features are instantiated

Feature Extraction

9

φ(x) φ(x′)

bias 1 1
capitalized? 0 0

#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x = Wall Street vets raise concerns
about interest rates , politics

…

immediately neighboring words

• Turns the input into a table of
features with real values (often
binary: 0 or 1).

• In practice: define feature templates
like “leftWord=•” from which specific
features are instantiated

Feature Extraction

10

φ(x) φ(x′)

bias 1 1
capitalized? 0 0

#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x = Wall Street vets raise concerns
about interest rates , politics

…

unigrams
• Turns the input into a table of

features with real values (often
binary: 0 or 1).

• In practice: define feature templates
like “leftWord=•” from which specific
features are instantiated

Feature Extraction

11

φ(x) φ(x′)

bias 1 1
capitalized? 0 0

#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x = Wall Street vets raise concerns
about interest rates , politics

…
bigrams

• Turns the input into a table of
features with real values (often
binary: 0 or 1).

• In practice: define feature templates
like “leftWord=•” from which specific
features are instantiated

Feature Extraction

12

φ(x) φ(x′)

bias 1 1
capitalized? 0 0

#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x′ = Pet 's best interest in mind , but
vets must follow law

…

• Turns the input into a table of
features with real values (often
binary: 0 or 1).

• In practice: define feature templates
like “leftWord=•” from which specific
features are instantiated

x = Wall Street vets raise concerns
about interest rates , politics

Linear Model
• For each input x (e.g., a document or word token), let φ(x) be

a function that extracts a vector of its features.

‣ Features may be binary (e.g., capitalized?) or real-valued (e.g.,
#word=debt).

• Each feature receives a real-valued weight parameter w . Each

candidate label y′ is scored for the token by summing the

weights for the active features:

 wy′
Tφ(x)  

= Σj wy′,j · φj(x)

• For binary classification, equivalent to: sign(wTφ(x)) — +1 or −1

13

14

φ(x) w φ(x′)

bias 1 −3.00 1
capitalized? 0 .22 0

#wordsBefore 6 −.01 3
#wordsAfter 3 .01 8
relativeOffset 0.6

66
1.00 0.2

7leftWord=about 1 .00 0
leftWord=best 0 −2.00 1

rightWord=rates 1 5.00 0
rightWord=in 0 −1.00 1

Wall 1 1.00 0
Street 1 −1.00 0
vets 1 −.05 1
best 0 −1.00 1

in 0 −.01 1
Wall Street 1 4.00 0
Street vets 1 .00 0
vets raise 1 .00 0

x′ = Pet 's best interest in mind , but
vets must follow law

…

• Weights are learned from data

• For the moment, assume
binary classification: financial
or nonfinancial

‣ More positive weights more
indicative of financial.

‣ wTφ(x) = 6.59, wTφ(x′) = −6.74

x = Wall Street vets raise concerns
about interest rates , politics

More then 2 classes

• Simply keep a separate weight vector for each
class: wy

• The class whose weight vector gives the highest
score wins!

15

Learning the weights
• Weights depend on the choice of model and learning algorithm.

• Naïve Bayes fits into this framework, under the following estimation procedure for w:

‣ w
bias

 = log p(y)

‣ ∀ features f: wf = log p(f | y)

‣ Σj wj · φj(x) = w
bias

 + Σf ∈ φ(x)
 wf  

 = log p(y) + Σf ∈ φ(x)
 log p(f | y)  

 = log (p(y) · Πf ∈ φ(x)
 p(f | y))

• However, the naïve independence assumption—that all features are conditionally
independent given the class—can be harmful.

‣ Could the weights shown on the previous slide be naïve Bayes estimates?

✴ No, because some are positive (thus not log-probabilities). Other kinds of learning
procedures can give arbitrary real-valued weights.

✴ If using log probabilities as weights, then the classification threshold should be
equivalent to probability of .5, i.e. log .5.

16

Linear Classifiers: Geometric View

17

C
x y

C

u : wᵀu
 =

 0

w

18

Linear Classifiers: Geometric View

x y
decision boundary

19

C

u : wᵀu
 =

 0

w

Linear Classifiers: Geometric View

x y

20

C

u : wᵀu
 =

 0

Linear Classifiers: Geometric View

x y

Linear Classifiers (> 2 Classes)

21

C

return  
arg maxy wyᵀ Φ(x)

x y

The term “feature”
• The term “feature” is overloaded in NLP/ML. Here are

three different concepts:

‣ Linguistic feature: in some formalisms, a symbolic property
that applies to a unit to categorize it, e.g. [−voice] for a
sound in phonology or [+past] for a verb in morphology.

‣ Percept (or input feature): captures some aspect of an
input x; binary- or real-valued. [The term “percept” is
nonstandard but I think it is useful!]

‣ Parameter (or model feature): an association between some
percept and an output class (or structure) y for which a real-
valued weight or score is learned.

22

ends in -ing

ends in -ing ʌ y=VERB

