Linear Models for Classification: Features & Weights

Nathan Schneider (some slides borrowed from Chris Dyer) ENLP | 7 February 2018

Outline

- Words, probabilities → Features, weights
- Geometric view: decision boundary
- Perceptron

next lecture

this lecture

- Generative vs. Discriminative
- More discriminative models: Logistic regression/MaxEnt; SVM
- Loss functions, optimization
- Regularization; sparsity

Word Sense Disambiguation (WSD)

- Given a word in context, predict which sense is being used.
 - Evaluated on corpora such as SemCor, which is fully annotated for WordNet synsets.
- For example: consider joint POS & WSD classification for 'interest', with 3 senses:
 - N:financial (I repaid the loan with interest)
 - N:nonfinancial (I read the news with interest)
 - V:nonfinancial (Can I interest you in a dessert?)

Beyond BoW

- Neighboring words are relevant to this decision.
- More generally, we can define **features** of the input that may help identify the correct class.
 - Individual words
 - Bigrams (pairs of consecutive words: Wall Street)
 - Capitalization (interest vs. Interest vs. INTEREST)
 - Metadata: document genre, author, ...
- These can be used in naïve Bayes: "bag of features"
 - With overlapping features, independence assumption is even more naïve: p(y | x) ∝ p(y) … p(Wall | y) p(Street | y) p(Wall Street | y)

Choosing Features

- Supervision means that we don't have to pre-specify the precise relationship between each feature and the classification outcomes.
- But domain expertise helps in choosing which kinds of features to include in the model. (words, subword units, metadata, ...)
 - And sometimes, highly task-specific features are helpful.
- The decision about what features to include in a model is called feature engineering.
 - (There are some algorithmic techniques, such as *feature selection*, that can assist in this process.)
 - More features = more flexibility, but also more expensive to train, more opportunity for overfitting.

	$\Psi(\mathbf{x})$
bias	1
capitalized?	0
#wordsBefore	6
#wordsAfter	3
relativeOffset	0.66
leftWord=about	1
leftWord=best	0
rightWord=rates	1
rightWord=in	0
Wall	1
Street	1
vets	1
best	0
in	0
Wall Street	1
Street vets	1
vets raise	1

. . .

 $h(\mathbf{v})$

x = Wall Street vets raise concerns about interest rates, politics

bias feature (≈class prior): value of 1 for every **x** so the learned weight will reflect prevalence of the class

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

	$\Psi(\Lambda)$
bias	1
capitalized?	0
#wordsBefore	6
#wordsAfter	3
relativeOffset	0.66
leftWord=about	1
leftWord=best	0
rightWord=rates	1
rightWord=in	0
Wall	1
Street	1
vets	1
best	0
in	0
Wall Street	1
Street vets	1
vets raise	1

. . .

 $\phi(\mathbf{x})$

x = Wall Street vets raise concerns about interest rates, politics

spelling feature

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

x = Wall Street vets raise concerns
about interest rates , politics

token positional features

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

	$\phi(\mathbf{x})$
bias	1
capitalized?	0
#wordsBefore	6
#wordsAfter	3
relativeOffset	0.66
leftWord=about	1
leftWord=best	0
rightWord=rates	1
rightWord=in	0
Wall	1
Street	1
vets	1
best	0
in	0
Wall Street	1
Street vets	1
vets raise	1

. . .

 $\phi(\mathbf{x})$ bias 1 capitalized? ()6 #wordsBefore #wordsAfter З 0.66 relativeOffset leftWord=about 1 leftWord=best $\left(\right)$ rightWord=rates 1 rightWord=in 0 Wall Street vets best 0 ()in Wall Street Street vets vets raise

. . .

x = Wall Street vets raise concerns
about interest rates , politics

immediately neighboring words

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

 $\phi(\mathbf{x})$ bias 1 capitalized? $\left(\right)$ 6 #wordsBefore #wordsAfter 3 0.66 relativeOffset leftWord=about 1 leftWord=best (rightWord=rates 1 rightWord=in 0 Wall Street unigrams vets best $\left(\right)$ ()in Wall Street Street vets vets raise

. . .

x = Wall Street vets raise concerns
about interest rates , politics

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

 $\phi(\mathbf{x})$ bias 1 capitalized? $\left(\right)$ 6 #wordsBefore #wordsAfter 3 0.66 relativeOffset leftWord=about 1 leftWord=best (rightWord=rates 1 rightWord=in ()Wall Street vets best 0 0 in Wall Street bigrams Street vets vets raise

. . .

x = Wall Street vets raise concerns
about interest rates , politics

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

$\phi(\mathbf{x})$	$\phi(\mathbf{x}')$
1	1
0	0
6	3
3	8
0.66	0.27
1	0
0	1
1	0
0	1
1	0
1	0
1	1
0	1
0	1
1	0
1	0
1	0
	φ(x) 1 0 6 3 0.66 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

x = Wall Street vets raise concerns
about interest rates , politics

x' = Pet 's best interest in mind , but
vets must follow law

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

Linear Model

- For each input x (e.g., a document or word token), let $\phi(x)$ be a function that extracts a vector of its features.
 - Features may be binary (e.g., capitalized?) or real-valued (e.g., #word=debt).
- Each feature receives a real-valued weight parameter w. Each candidate label y' is scored for the token by summing the weights for the active features:

 $\mathbf{w}_{y'}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}) = \sum_{j} w_{y',j} \cdot \phi_{j}(\mathbf{x})$

- For binary classification, equivalent to: $\text{sign}(w^{\scriptscriptstyle \mathsf{T}}\varphi(x)) - \texttt{+}1$ or -1

	$\phi(\mathbf{x})$	W	$\phi(\mathbf{x}')$
bias	1	-3.00	1
capitalized?	0	.22	0
#wordsBefore	6	01	3
#wordsAfter	3	.01	8
relativeOffset	0.6	1.00	0.2
leftWord=about	1	.00	0
leftWord=best	0	-2.00	1
rightWord=rates	1	5.00	0
rightWord=in	0	-1.00	1
Wall	1	1.00	0
Street	1	-1.00	0
vets	1	05	1
best	0	-1.00	1
in	0	01	1
Wall Street	1	4.00	0
Street vets	1	.00	0
vets raise	1	.00	0

. . .

x = Wall Street vets raise concerns
about interest rates , politics

x' = Pet 's best interest in mind , but
vets must follow law

- Weights are learned from data
- For the moment, assume binary classification: financial or nonfinancial
 - More positive weights more indicative of financial.
 - $\mathbf{w}^{\mathsf{T}} \mathbf{\phi}(\mathbf{x}) = \mathbf{6.59}, \ \mathbf{w}^{\mathsf{T}} \mathbf{\phi}(\mathbf{x}') = -6.74$

More then 2 classes

- Simply keep a separate weight vector for each class: w_y
- The class whose weight vector gives the highest score wins!

Learning the weights

- · Weights depend on the choice of model and learning algorithm.
- Naïve Bayes fits into this framework, under the following estimation procedure for w:
 - $w_{\text{bias}} = \log p(y)$
 - \forall features $f: w_f = \log p(f \mid y)$
 - $\Sigma_j w_j \cdot \phi_j(\mathbf{x}) = w_{\text{bias}} + \Sigma_{f \in \phi(\mathbf{x})} w_f$ = $\log p(y) + \Sigma_{f \in \phi(\mathbf{x})} \log p(f \mid y)$ = $\log (p(y) \cdot \Pi_{f \in \phi(\mathbf{x})} p(f \mid y))$
- However, the naïve independence assumption—that all features are conditionally independent given the class—can be harmful.
 - Could the weights shown on the previous slide be naïve Bayes estimates?
 - * No, because some are positive (thus not log-probabilities). Other kinds of learning procedures can give arbitrary real-valued weights.
 - * If using log probabilities as weights, then the classification threshold should be equivalent to probability of .5, i.e. **log .5**.

The term "feature"

- The term "feature" is overloaded in NLP/ML. Here are three different concepts:
 - Linguistic feature: in some formalisms, a symbolic property that applies to a unit to categorize it, e.g. [-voice] for a sound in phonology or [+past] for a verb in morphology.
 - Percept (or input feature): captures some aspect of an input x; binary- or real-valued. [The term "percept" is nonstandard but I think it is useful!]
 - **Parameter** (or **model feature**): an association between some percept and an output class (or structure) y for which a realvalued weight or score is learned. ends in -ing $\wedge y = VERB$

