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Outline
• Words, probabilities → Features, weights 

• Geometric view: decision boundary 

• Perceptron 

• Generative vs. Discriminative 

• More discriminative models: Logistic regression/MaxEnt; 
SVM 

• Loss functions, optimization 

• Regularization; sparsity
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Word Sense Disambiguation 
(WSD)

• Given a word in context, predict which sense is 
being used. 

‣ Evaluated on corpora such as SemCor, which is fully 
annotated for WordNet synsets. 

• For example: consider joint POS & WSD 
classification for ‘interest’, with 3 senses: 

‣ N:financial (I repaid the loan with interest) 

‣ N:nonfinancial (I read the news with interest) 

‣ V:nonfinancial (Can I interest you in a dessert?)
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Beyond BoW
• Neighboring words are relevant to this decision. 

• More generally, we can define features of  the input that may 
help identify the correct class. 

‣ Individual words 

‣ Bigrams (pairs of  consecutive words: Wall Street) 

‣ Capitalization (interest vs. Interest vs. INTEREST) 

‣ Metadata: document genre, author, … 

• These can be used in naïve Bayes: “bag of  features” 

‣ With overlapping features, independence assumption is even more 
naïve: p(y | x) ∝ p(y) ··· p(Wall | y) p(Street | y) p(Wall Street | y)
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Choosing Features
• Supervision means that we don’t have to pre-specify the precise 

relationship between each feature and the classification 
outcomes. 

• But domain expertise helps in choosing which kinds of  features to 
include in the model. (words, subword units, metadata, …) 

‣ And sometimes, highly task-specific features are helpful. 

• The decision about what features to include in a model is called 
feature engineering. 

‣ (There are some algorithmic techniques, such as feature selection, that 
can assist in this process.) 

‣ More features = more flexibility, but also more expensive to train, more 
opportunity for overfitting.
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Feature Extraction
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φ(x) φ(x′)

bias 1 1
capitalized? 0 0

#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

…

bias feature (≈class prior): value of 
1 for every x so the learned weight 
will reflect prevalence of the class

x = Wall Street vets raise concerns 
about interest rates , politics

• Turns the input into a table of  
features with real values (often 
binary: 0 or 1). 

• In practice: define feature templates 
like “leftWord=•” from which specific 
features are instantiated



Feature Extraction
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φ(x) φ(x′)

bias 1 1
capitalized? 0 0

#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x = Wall Street vets raise concerns 
about interest rates , politics

…

spelling feature

• Turns the input into a table of  
features with real values (often 
binary: 0 or 1). 

• In practice: define feature templates 
like “leftWord=•” from which specific 
features are instantiated



Feature Extraction
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φ(x) φ(x′)

bias 1 1
capitalized? 0 0

#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x = Wall Street vets raise concerns 
about interest rates , politics

…

token positional features

• Turns the input into a table of  
features with real values (often 
binary: 0 or 1). 

• In practice: define feature templates 
like “leftWord=•” from which specific 
features are instantiated



Feature Extraction
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φ(x) φ(x′)

bias 1 1
capitalized? 0 0

#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x = Wall Street vets raise concerns 
about interest rates , politics

…

immediately neighboring words

• Turns the input into a table of  
features with real values (often 
binary: 0 or 1). 

• In practice: define feature templates 
like “leftWord=•” from which specific 
features are instantiated



Feature Extraction
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φ(x) φ(x′)

bias 1 1
capitalized? 0 0

#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x = Wall Street vets raise concerns 
about interest rates , politics

…

unigrams
• Turns the input into a table of  

features with real values (often 
binary: 0 or 1). 

• In practice: define feature templates 
like “leftWord=•” from which specific 
features are instantiated



Feature Extraction
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φ(x) φ(x′)

bias 1 1
capitalized? 0 0

#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x = Wall Street vets raise concerns 
about interest rates , politics

…
bigrams

• Turns the input into a table of  
features with real values (often 
binary: 0 or 1). 

• In practice: define feature templates 
like “leftWord=•” from which specific 
features are instantiated



Feature Extraction
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φ(x) φ(x′)

bias 1 1
capitalized? 0 0

#wordsBefore 6 3
#wordsAfter 3 8
relativeOffset 0.66

6
0.27

leftWord=about 1 0
leftWord=best 0 1

rightWord=rates 1 0
rightWord=in 0 1

Wall 1 0
Street 1 0
vets 1 1
best 0 1

in 0 1
Wall Street 1 0
Street vets 1 0
vets raise 1 0

x′ = Pet 's best interest in mind , but 
vets must follow law

…

• Turns the input into a table of  
features with real values (often 
binary: 0 or 1). 

• In practice: define feature templates 
like “leftWord=•” from which specific 
features are instantiated

x = Wall Street vets raise concerns 
about interest rates , politics



Linear Model
• For each input x (e.g., a document or word token), let φ(x) be 

a function that extracts a vector of  its features. 

‣ Features may be binary (e.g., capitalized?) or real-valued (e.g., 
#word=debt). 

• Each feature receives a real-valued weight parameter w . Each 

candidate label y′ is scored for the token by summing the 

weights for the active features: 

   wy′
Tφ(x)  

= Σj wy′,j · φj(x) 

• For binary classification, equivalent to: sign(wTφ(x)) — +1 or −1
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φ(x) w φ(x′)

bias 1 −3.00 1
capitalized? 0 .22 0

#wordsBefore 6 −.01 3
#wordsAfter 3 .01 8
relativeOffset 0.6

66
1.00 0.2

7leftWord=about 1 .00 0
leftWord=best 0 −2.00 1

rightWord=rates 1 5.00 0
rightWord=in 0 −1.00 1

Wall 1 1.00 0
Street 1 −1.00 0
vets 1 −.05 1
best 0 −1.00 1

in 0 −.01 1
Wall Street 1 4.00 0
Street vets 1 .00 0
vets raise 1 .00 0

x′ = Pet 's best interest in mind , but 
vets must follow law

…

• Weights are learned from data 

• For the moment, assume 
binary classification: financial 
or nonfinancial 

‣ More positive weights more 
indicative of  financial. 

‣ wTφ(x) = 6.59, wTφ(x′) = −6.74

x = Wall Street vets raise concerns 
about interest rates , politics



More then 2 classes

• Simply keep a separate weight vector for each 
class: wy 

• The class whose weight vector gives the highest 
score wins!
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Learning the weights
• Weights depend on the choice of  model and learning algorithm. 

• Naïve Bayes fits into this framework, under the following estimation procedure for w: 

‣ w
bias

 = log p(y) 

‣ ∀ features f: wf = log p(f | y) 

‣ Σj wj · φj(x) = w
bias

       + Σf ∈ φ(x)
 wf  

                    = log p(y) + Σf ∈ φ(x)
 log p(f | y)  

                    = log (p(y) · Πf ∈ φ(x)
 p(f | y)) 

• However, the naïve independence assumption—that all features are conditionally 
independent given the class—can be harmful. 

‣ Could the weights shown on the previous slide be naïve Bayes estimates? 

✴ No, because some are positive (thus not log-probabilities). Other kinds of  learning 
procedures can give arbitrary real-valued weights. 

✴ If  using log probabilities as weights, then the classification threshold should be 
equivalent to probability of  .5, i.e. log .5.
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Linear Classifiers: Geometric View
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Linear Classifiers: Geometric View

x y
decision boundary
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Linear Classifiers: Geometric View
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Linear Classifiers (> 2 Classes)
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return  
arg maxy wyᵀ Φ(x)

x y



The term “feature”
• The term “feature” is overloaded in NLP/ML. Here are 

three different concepts: 

‣ Linguistic feature: in some formalisms, a symbolic property 
that applies to a unit to categorize it, e.g. [−voice] for a 
sound in phonology or [+past] for a verb in morphology. 

‣ Percept (or input feature): captures some aspect of an  
input x; binary- or real-valued. [The term “percept” is 
nonstandard but I think it is useful!] 

‣ Parameter (or model feature): an association between some 
percept and an output class (or structure) y for which a real-
valued weight or score is learned.
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