Basic Text Processing

Regular Expressions

SLP3 slides (Jurafsky & Martin)

Regular expressions

- A formal language for specifying text strings
- How can we search for any of these?
 - woodchuck
 - woodchucks
 - Woodchuck
 - Woodchucks

Regular Expressions: Disjunctions

• Letters inside square brackets []

Pattern	Matches
[wW]oodchuck	Woodchuck, woodchuck
[1234567890]	Any digit

• Ranges [A-Z]

Pattern	Matches	
[A-Z]	An upper case letter	Drenched Blossoms
[a-z]	A lower case letter	my beans were impatient
[0-9]	A single digit	Chapter 1: Down the Rabbit Hole

Regular Expressions: Negation in Disjunction

- Negations [[^]Ss]
 - Carat means negation only when first in []

Pattern	Matches	
[^A-Z]	Not an upper case letter	O <mark>y</mark> fn pripetchik
[^Ss]	Neither 'S' nor 's'	<pre>I have no exquisite reason"</pre>
[^e^]	Neither e nor ^	Look h <u>e</u> re
a^b	The pattern a carat b	Look up <u>a^b</u> now

Regular Expressions: More Disjunction

- Woodchucks is another name for groundhog!
- The pipe | for disjunction

Pattern	Matches
groundhog woodchuck	
yours mine	yours mine
a b c	= [abc]
[gG]roundhog [Ww]oodchuck	

Regular Expressions: ? * + .

Pattern	Matches	
colou?r	Optional previous char	<u>color</u> <u>colour</u>
oo*h!	0 or more of previous char	<u>oh!</u> <u>ooh!</u> <u>oooh!</u> <u>ooooh!</u>
o+h!	1 or more of previous char	<u>oh!</u> <u>ooh!</u> <u>oooh!</u> <u>ooooh!</u>
baa+		<u>baa baaa</u> <u>baaaa</u> <u>baaaaa</u>
beg.n		begin begun begun beg3n

Stephen C Kleene

Kleene *, Kleene +

Regular Expressions: Anchors ^ \$

Pattern	Matches
^[A-Z]	Palo Alto
^[^A-Za-z]	<u>1</u> <u>"Hello"</u>
\.\$	The end.
.\$	The end? The end!

Example

Find me all instances of the word "the" in a text.
the

Misses capitalized examples

[tT]he

Incorrectly returns other or theology

 $[^a-zA-Z][tT]he[^a-zA-Z]$

Refer to <u>http://people.cs.georgetown.edu/nschneid/cosc572/s18/02_py-notes.html</u> and links on that page for further regex notation, and advice for using regexes in Python 3.

Errors

- The process we just went through was based on fixing two kinds of errors
 - Matching strings that we should not have matched (there, then, other)
 - False positives (Type I)
 - Not matching things that we should have matched (The)
 - False negatives (Type II)

Errors cont.

- In NLP we are always dealing with these kinds of errors.
- Reducing the error rate for an application often involves two antagonistic efforts:
 - Increasing accuracy or precision (minimizing false positives)
 - Increasing coverage or recall (minimizing false negatives).

Summary

- Regular expressions play a surprisingly large role
 - Sophisticated sequences of regular expressions are often the first model for any text processing text
- For many hard tasks, we use machine learning classifiers
 - But regular expressions are used as features in the classifiers
 - Can be very useful in capturing generalizations

Basic Text Processing

Word Normalization and Stemming

Normalization

- Need to "normalize" terms
 - Information Retrieval: indexed text & query terms must have same form.
 - We want to match **U.S.A.** and **USA**
- We implicitly define equivalence classes of terms
 - e.g., deleting periods in a term
- Alternative: asymmetric expansion:
 - Enter: *window* Search: *window, windows*
 - Enter: *windows* Search: *Windows, windows, window*
 - Enter: *Windows* Search: *Windows*
- Potentially more powerful, but less efficient

Case folding

- Applications like IR: reduce all letters to lower case
 - Since users tend to use lower case
 - Possible exception: upper case in mid-sentence?
 - e.g., General Motors
 - *Fed* vs. *fed*
 - SAIL vs. sail
- For sentiment analysis, MT, Information extraction
 - Case is helpful (US versus us is important)

Lemmatization

- Reduce inflections or variant forms to base form
 - am, are, is \rightarrow be
 - car, cars, car's, cars' \rightarrow car
- the boy's cars are different colors \rightarrow the boy car be different color
- Lemmatization: have to find correct dictionary headword form
- Machine translation
 - Spanish quiero ('I want'), quieres ('you want') same lemma as querer 'want'

Morphology

• Morphemes:

- The small meaningful units that make up words
- Stems: The core meaning-bearing units
- Affixes: Bits and pieces that adhere to stems
 - Often with grammatical functions

Stemming

- Reduce terms to their stems in information retrieval
- *Stemming* is crude chopping of affixes
 - language dependent
 - e.g., *automate(s), automatic, automation* all reduced to *automat*.

for example compressed and compression are both accepted as equivalent to compress.

for exampl compress and compress ar both accept as equival to compress