
Basic	Text	
Processing

Regular	Expressions

SLP3	slides	
(Jurafsky &	Martin)

Regular	expressions
• A	formal	language	for	specifying	text	strings
• How	can	we	search	for	any	of	these?

• woodchuck
• woodchucks
• Woodchuck
• Woodchucks

Regular	Expressions:	Disjunctions
• Letters	inside	square	brackets	[]

• Ranges [A-Z]

Pattern Matches
[wW]oodchuck Woodchuck, woodchuck

[1234567890] Any	digit

Pattern Matches
[A-Z] An	upper	case	letter Drenched Blossoms

[a-z] A	lower	case	letter my beans were impatient

[0-9] A	single digit Chapter 1: Down the Rabbit Hole

Regular	Expressions:	Negation	in	Disjunction

• Negations [^Ss]
• Carat	means	negation	only	when	first	in	[]

Pattern Matches

[^A-Z] Not an	upper	case	letter Oyfn pripetchik

[^Ss] Neither	‘S’	nor	‘s’ I have no exquisite reason”

[^e^] Neither	e	nor	^ Look here

a^b The	pattern a carat b Look up a^b now

Regular	Expressions:	More	Disjunction

• Woodchucks	is	another	name	for	groundhog!
• The	pipe	|	for	disjunction

Pattern Matches

groundhog|woodchuck
yours|mine yours

mine

a|b|c =	[abc]

[gG]roundhog|[Ww]oodchuck

Regular	Expressions:	? * + .

Stephen	C	Kleene

Pattern Matches

colou?r Optional
previous	char

color colour

oo*h! 0	or	more	of
previous	char

oh! ooh! oooh! ooooh!

o+h! 1	or	more	of	
previous	char

oh! ooh! oooh! ooooh!

baa+ baa baaa baaaa baaaaa

beg.n begin begun begun beg3n Kleene *,			Kleene +			

Regular	Expressions:	Anchors		^			$

Pattern Matches

^[A-Z] Palo Alto

^[^A-Za-z] 1 “Hello”

\.$ The end.

.$ The end? The end!

Example

• Find	me	all	instances	of	the	word	“the”	in	a	text.
the

Misses	capitalized	examples
[tT]he

Incorrectly	returns	other or	theology
[^a-zA-Z][tT]he[^a-zA-Z]

9

Refer	to	http://people.cs.georgetown.edu/nschneid/cosc572/s18/02_py-notes.html
and	links	on	that	page	for	further	regex	notation,	and	advice	for	using	regexes	in	
Python	3.

Errors

• The	process	we	just	went	through	was	based	on	fixing	
two	kinds	of	errors
• Matching	strings	that	we	should	not	have	matched	(there,	
then,	other)
• False	positives	(Type	I)

• Not	matching	things	that	we	should	have	matched	(The)
• False	negatives	(Type	II)

Errors	cont.

• In	NLP	we	are	always	dealing	with	these	kinds	of	
errors.

• Reducing	the	error	rate	for	an	application	often	
involves	two	antagonistic	efforts:	
• Increasing	accuracy	or	precision	(minimizing	false	positives)
• Increasing	coverage	or	recall	(minimizing	false	negatives).

Summary

• Regular	expressions	play	a	surprisingly	large	role
• Sophisticated	sequences	of	regular	expressions	are	often	the	first	model	
for	any	text	processing	text

• For	many	hard	tasks,	we	use	machine	learning	classifiers
• But	regular	expressions	are	used	as	features	in	the	classifiers
• Can	be	very	useful	in	capturing	generalizations

12

Basic	Text	
Processing

Word	Normalization	and	
Stemming

Normalization

• Need	to	“normalize”	terms	
• Information	Retrieval:	indexed	text	&	query	terms	must	have	same	form.

• We	want	to	match	U.S.A. and	USA

• We	implicitly	define	equivalence	classes	of	terms
• e.g.,	deleting	periods	in	a	term

• Alternative:	asymmetric	expansion:
• Enter:	window Search:	window,	windows
• Enter:	windows Search:	Windows,	windows,	window
• Enter:	Windows Search:	Windows

• Potentially	more	powerful,	but	less	efficient

Case	folding

• Applications	like	IR:	reduce	all	letters	to	lower	case
• Since	users	tend	to	use	lower	case
• Possible	exception:	upper	case	in	mid-sentence?
• e.g.,	General	Motors
• Fed vs.	fed
• SAIL vs.	sail

• For	sentiment	analysis,	MT,	Information	extraction
• Case	is	helpful	(US versus	us	is	important)

Lemmatization

• Reduce	inflections	or	variant	forms	to	base	form
• am,	are, is	® be
• car,	cars,	car's,	cars'® car

• the	boy's	cars	are	different	colors® the	boy	car	be	different	color
• Lemmatization:	have	to	find	correct	dictionary	headword	form

• Machine	translation
• Spanish	quiero (‘I	want’),	quieres (‘you	want’)	same	lemma	as	querer
‘want’

Morphology

• Morphemes:
• The	small	meaningful	units	that	make	up	words
• Stems:	The	core	meaning-bearing	units
• Affixes:	Bits	and	pieces	that	adhere	to	stems
• Often	with	grammatical	functions

Stemming

• Reduce	terms	to	their	stems	in	information	retrieval
• Stemming is	crude	chopping	of	affixes

• language	dependent
• e.g.,	automate(s),	automatic,	automation all	reduced	to	automat.

for	example	compressed	
and	compression	are	both	
accepted	as	equivalent	to	
compress.

for	exampl compress	and
compress	ar both	accept
as	equival to	compress

