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Word Alignment

house

the

in

stay

will

he

that

assumes

michael

m
ic

ha
el

ge
ht

da
vo

n

au
s

da
ss

er im ha
us

bl
ei

bt

,

Philipp Koehn Machine Translation 28 January 2016



EM
• Procedure for optimizing generative models without 

supervision 

‣ Randomly initialize parameters, then 

‣ E: predict hidden structure y (hard or soft) 
 
M: estimate new parameters P̂(y | x) by MLE

• Likelihood function is non-convex. Consider trying 
several random initializations to avoid getting stuck in 
local optima.
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Phrase-Based Model

• Foreign input is segmented in phrases

• Each phrase is translated into English

• Phrases are reordered

• Workhorse of today’s statistical machine translation
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You as the Computer
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Syntax-Based Translation
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Semantic Translation

• Abstract meaning representation [Knight et al., ongoing]

(w / want-01

:agent (b / boy)

:theme (l / love

:agent (g / girl)

:patient b))

• Generalizes over equivalent syntactic constructs
(e.g., active and passive)

• Defines semantic relationships

– semantic roles
– co-reference
– discourse relations

• In a very preliminary stage
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A Clear Plan
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Neural MT

• Current research on neural network architectures, 
with state-of-the-art scores for some language pairs
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Problem: No Single Right Answer

Israeli officials are responsible for airport security.
Israel is in charge of the security at this airport.
The security work for this airport is the responsibility of the Israel government.
Israeli side was in charge of the security of this airport.
Israel is responsible for the airport’s security.
Israel is responsible for safety work at this airport.
Israel presides over the security of the airport.
Israel took charge of the airport security.
The safety of this airport is taken charge of by Israel.
This airport’s security is the responsibility of the Israeli security officials.
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Evaluation



Human Evaluation
• Manually score or rank candidate translations 

‣ e.g., for fluency (target language grammaticality/
naturalness) and adequacy (respecting the meaning of the 
source sentence)

• Manually edit the system output until it is an acceptable 
reference translation (HTER = Human Translation Edit Rate) 

‣ insertions, substitutions, deletions, shifts (moving a word or 
phrase) 

‣ then measure # edits / # words in reference (i.e., 1 − recall)
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Automatic evaluation

• Why automatic evaluation metrics?

– Manual evaluation is too slow
– Evaluation on large test sets reveals minor improvements
– Automatic tuning to improve machine translation performance

• History

– Word Error Rate
– BLEU since 2002

• BLEU in short: Overlap with reference translations

Philipp Koehn EMNLP Lecture 14 21 February 2008
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Automatic evaluation
• Reference Translation

– the gunman was shot to death by the police .
• System Translations

– the gunman was police kill .
– wounded police jaya of
– the gunman was shot dead by the police .
– the gunman arrested by police kill .
– the gunmen were killed .
– the gunman was shot to death by the police .
– gunmen were killed by police ?SUB>0 ?SUB>0
– al by the police .
– the ringer is killed by the police .
– police killed the gunman .

• Matches
– green = 4 gram match (good!)
– red = word not matched (bad!)
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Automatic evaluation

[from George Doddington, NIST]

• BLEU correlates with human judgement

– multiple reference translations may be used
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what is it good for?
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what is it good enough for?
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Quality

HTER assessment

0%
publishable

10%
editable

20%

30% gistable

40% triagable

50%

(scale developed in preparation of DARPA GALE programme)
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Applications

HTER assessment application examples

0% Seamless bridging of language divide
publishable Automatic publication of official announcements

10%
editable Increased productivity of human translators

20% Access to official publications
Multi-lingual communication (chat, social networks)

30% gistable Information gathering
Trend spotting

40% triagable Identifying relevant documents

50%
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Current State of the Art

HTER assessment language pairs and domains

0%
publishable French-English restricted domain

10% French-English technical document localization
editable French-English news stories

20%
English-German news stories

30% gistable English-Czech open domain

40% triagable

50%

(informal rough estimates by presenter)
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Want to become an MT pro?

• MT course planned for Spring 2018; will focus on 
statistical approaches, building MT systems with 
Moses



MT: Summary
• Human-quality machine translation is an AI-complete problem. 

‣ All the challenges of NL: ambiguity, flexibility (difficult to evaluate!), 
vocabulary & grammar divergences between languages, context 

‣ State-of-the-art now good enough to be useful/commercially successful for 
some language pairs and purposes.

• Tension: simplistic models + huge data, or linguistically savvy models + less 
data? MT systems can be word-level, phrase-based, syntax-based, semantics-
based/interlingua (Vauquois triangle)

• Statistical methods, enabled by large parallel corpora and automatic 
evaluations (such as BLEU), are essential for broad coverage 

‣ Automatic word alignment on parallel data via EM (IBM models) 

‣ Noisy channel model: n-gram language model for target language + 
translation model that uses probabilities from word alignments 

‣ Open-source toolkits like Moses make it relatively easy to build your own MT 
system from data


