
Empirical Methods in Natural Language
Processing
Lecture 18

Dependency Parsing

(some slides from Sharon Goldwater)

9 November 2016

Nathan Schneider ENLP Lecture 18 0



Vanilla PCFGs: no lexical dependencies

Replacing one word with another with the same POS will never

result in a different parsing decision, even though it should!

• kids saw birds with fish vs.

kids saw birds with binoculars

• She stood by the door covered in tears vs.

She stood by the door covered in ivy

• stray cats and dogs vs.

Siamese cats and dogs
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A way to fix PCFGs: lexicalization
Create new categories, this time by adding the lexical head of the

phrase (note: N level under NPs not shown for brevity):
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• Now consider:

VP-saw→ VP-saw PP-fish vs. VP-saw→ VP-saw PP-binoculars
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Practical issues, again

• Leads to huge grammar blowup and very sparse data (bad!)

– There are fancy techniques to address these issues. . .

– But: Do we really need phrase structures in the first place?

Not always!

• Today: Syntax without constituent structure.
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Outline

1. Dependencies: what/why

2. Transforming constituency → dependency parse

3. Direct dependency parsing

• Transition-based (shift-reduce)

• Graph-based
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Lexicalized Constituency Parse
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. . . remove the phrasal categories. . .
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. . . remove the (duplicated) terminals. . .
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. . . and collapse chains of duplicates. . .
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. . . and collapse chains of duplicates. . .
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. . . and collapse chains of duplicates. . .
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. . . and collapse chains of duplicates. . .
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. . . and collapse chains of duplicates. . .
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. . . and collapse chains of duplicates. . .
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Dependency Parse
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Linguists have long observed that the meanings of words within

a sentence depend on one another, mostly in asymmetric, binary

relations.

• Though some constructions don’t cleanly fit this pattern: e.g.,

coordination, relative clauses.
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Dependency Parse
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Equivalently, but showing word order (head → modifier):

kids saw birds with fish

Because it is a tree, every word has exactly one parent.
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Content vs. Functional Heads

Some treebanks prefer content heads:

Little kids were always watching birds with fish

Others prefer functional heads:

Little kids were always watching birds with fish
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Edge Labels

It is often useful to distinguish different kinds of head → modifier

relations, by labeling edges:

kids saw birds with fish

ROOT

SBJ DOBJ

POBJ

PREP

Important relations for English include subject, direct object,

determiner, adjective modifier, adverbial modifier, etc. (Different

treebanks use somewhat different label sets.)

• How would you identify the subject in a constituency parse?
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Dependency Paths

For information extraction tasks involving real-world relationships

between entities, chains of dependencies can provide good features:

British officials in Tehran have been meeting with their Iranian counterparts

amod

nsubj

prep pobj

aux

aux prep

pobj

poss

amod

(example from Brendan O’Connor)
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Projectivity

• A sentence’s dependency parse is said to be projective if every

subtree (node and all its descendants) occupies a contiguous span

of the sentence.

• = The dependency parse can be drawn on top of the sentence

without any crossing edges.

A hearing on the issue is scheduled today

ROOT

ATT ATT

SBJ

VC TMP

PC

ATT
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Nonprojectivity

• Other sentences are nonprojective:

A hearing is scheduled on the issue today

ROOT

ATT

ATT

SBJ VC

TMP

PC

ATT

• Nonprojectivity is rare in English, but quite common in many

languages.
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Outline

1. Dependencies: what/why

2. Transforming constituency → dependency parse

3. Direct dependency parsing

• Transition-based (shift-reduce)

• Graph-based
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Constituency Tree → Dependency Tree
We saw how the lexical head of the phrase can be used to collapse

down to a dependency tree:
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• But how can we find each phrase’s head in the first place?
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Head Rules
The standard solution is to use head rules: for every non-unary

(P)CFG production, designate one RHS nonterminal as containing

the head. S→ NP VP, VP→ VP PP, PP→ P NP (content head), etc.
S

��
��

�
��

��

HH
HH

H
HH

HH

NP

kids

VP

��
��

�
��
�

HH
HH

H
HH

H

VP

�
��
�

H
HH

H

V

saw

NP

birds

PP

��
��
�

H
HH

HH

P

with

NP

binoculars
• Heuristics to scale this to large grammars: e.g., within an NP, last

immediate N child is the head.
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Head Rules
Then, propagate heads up the tree:
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Head Rules
Then, propagate heads up the tree:
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Head Rules
Then, propagate heads up the tree:
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Head Rules
Then, propagate heads up the tree:
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Head Rules
Then, propagate heads up the tree:
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Outline

1. Dependencies: what/why

2. Transforming constituency → dependency parse

3. Direct dependency parsing

• Transition-based (shift-reduce)

• Graph-based

Nathan Schneider ENLP Lecture 18 29



Dependency Parsing

Some of the algorithms you have seen for PCFGs can be adapted to

dependency parsing.

• CKY can be adapted, though efficiency is a concern: obvious

approach is O(Gn5); Eisner algorithm brings it down to O(Gn3)

– N. Smith’s slides explaining the Eisner algorithm: http://

courses.cs.washington.edu/courses/cse517/16wi/slides/

an-dep-slides.pdf

• Shift-reduce: more efficient, doesn’t even require a grammar!
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Transition-based Parsing

• Adapts shift-reduce methods: stack and buffer

• Remember: latent structure is just edges between words.

Train a classifier to predict next action (shift, reduce,

attach-left, or attach-right), and proceed left-to-right

through the sentence. O(n) time complexity!

• Only finds projective trees (without special extensions)

• Pioneering system: Nivre’s MaltParser

• See http://spark-public.s3.amazonaws.com/nlp/slides/

Parsing-Dependency.pdf (Jurafsky & Manning Coursera

slides) for details and examples
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Graph-based Parsing

• Global algorithm: From the fully connected directed graph of all

possible edges, choose the best ones that form a tree.

• Edge-factored models: Classifier assigns a nonnegative score to

each possible edge; maximum spanning tree algorithm finds the

spanning tree with highest total score in O(n2) time.

– Edge-factored assumption can be relaxed (higher-order models

score larger units; more expensive).

– Unlabeled parse → edge-labeling classifier (pipeline).

• Pioneering work: McDonald’s MSTParser

• Can be formulated as constraint-satisfaction with integer linear
programming (Martins’s TurboParser)
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Graph-based vs. Transition-based
vs. Conversion-based

• TB: Features in scoring function can look at any part of the stack;

no optimality guarantees for search; linear-time; (classically)

projective only

• GB: Features in scoring function limited by factorization;

optimal search within that model; quadratic-time; no projectivity

constraint

• CB: In terms of accuracy, sometimes best to first constituency-

parse, then convert to dependencies (e.g., Stanford Parser).

Slower than direct methods.
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Choosing a Parser: Criteria

• Target representation: constituency or dependency?

• Efficiency? In practice, both runtime and memory use.

• Incrementality: parse the whole sentence at once, or obtain partial

left-to-right analyses/expectations?

• Retrainable system?
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Choosing a Parser: Performance

SOTA for English constituency parsing (WSJ §23): 91%–92% F1

4.4 Recovery of Unary Nodes
The last stage is to recover the unary nodes. Given
a unaryless c-tree as input, we predict unaries by
running independent classifiers at each node in the
tree (a simple unstructured task). Each class is
either NULL (in which case no unary node is ap-
pended to the current node) or a concatenation of
unary node labels (e.g., S->ADJP for a node JJ).
We obtained 64 classes by processing the training
sections of the PTB, the fraction of unary nodes
being about 11% of the total number of nodes. To
reduce complexity, for each node symbol we only
consider classes that have been observed with that
symbol in the training data. In PTB §22, this yields
an average of 9.9 candidates per node occurrence.

The classifiers are trained on the original c-
treebank, stripping off unary nodes and trained to
recover those nodes. We used the following fea-
tures (conjoined with the class and with a flag in-
dicating if the node is a pre-terminal):

• The production rules above and beneath the
node (e.g., S->NP VP and NP->DT NN);

• The node’s label, alone and conjoined with the
parent’s label or the left/right sibling’s label;

• The leftmost and rightmost word/lemma/POS
tag/morpho-syntactic tags in the node’s yield;

• If the left/right node is a pre-terminal, the
word/lemma/morpho-syntactic tags beneath.

This is a relatively easy task: when gold unaryless
c-trees are provided as input, we obtain an EVALB
F1-score of 99.43%. This large figure is due to the
small amount of unary nodes, making this mod-
ule have less impact on the final parser than the
d-parser. Being a lightweight unstructured task,
this step took only 0.7 seconds to run on PTB §22,
a tiny fraction (less than 2%) of the total runtime.

Table 1 shows the accuracies obtained with the
d-parser followed by the unary predictor. Since
two-stage TP-Full with delta-encoding is the best
strategy, we use this configuration in the sequel.
To further explore the impact of delta encoding,
we report in Table 2 the scores obtained by direct
and delta encodings on eight other treebanks (see
§5.2 for details on these datasets). With the ex-
ception of German, in all cases the delta encoding
yielded better EVALB F1-scores with fewer labels.

5 Experiments

To evaluate the performance of our reduction-
based parsers, we conduct experiments in a variety

Parser LR LP F1 #Toks/s.
Charniak (2000) 89.5 89.9 89.5 –
Klein and Manning (2003) 85.3 86.5 85.9 143
Petrov and Klein (2007) 90.0 90.3 90.1 169
Carreras et al. (2008) 90.7 91.4 91.1 –
Zhu et al. (2013) 90.3 90.6 90.4 1,290
Stanford Shift-Reduce (2014) 89.1 89.1 89.1 655
Hall et al. (2014) 88.4 88.8 88.6 12
This work 89.9 90.4 90.2 957
Charniak and Johnson (2005)⇤ 91.2 91.8 91.5 84
Socher et al. (2013)⇤ 89.1 89.7 89.4 70
Zhu et al. (2013)⇤ 91.1 91.5 91.3 –

Table 3: Results on the English PTB §23. All systems report-
ing runtimes were run on the same machine. Marked as ⇤ are
reranking and semi-supervised c-parsers.

of treebanks, both continuous and discontinuous.

5.1 Results on the English PTB

Table 3 shows the accuracies and speeds achieved
by our system on the English PTB §23, in compar-
ison to state-of-the-art c-parsers. We can see that
our simple reduction-based c-parser surpasses the
three Stanford parsers (Klein and Manning, 2003;
Socher et al., 2013, and Stanford Shift-Reduce),
and is on par with the Berkeley parser (Petrov and
Klein, 2007), while being more than 5 times faster.

The best supervised competitor is the recent
shift-reduce parser of Zhu et al. (2013), which
achieves similar, but slightly better, accuracy and
speed. Our technique has the advantage of being
flexible: since the time for d-parsing is the domi-
nating factor (see §4.4), plugging a faster d-parser
automatically yields a faster c-parser. While
reranking and semi-supervised systems achieve
higher accuracies, this aspect is orthogonal, since
the same techniques can be applied to our parser.

5.2 Results on the SPMRL Datasets

We experimented with datasets for eight lan-
guages, from the SPMRL14 shared task (Seddah
et al., 2014). We used the official training, de-
velopment and test sets with the provided pre-
dicted POS tags. For French and German, we
used the lexicalization rules detailed in Dybro-
Johansen (2004) and Rehbein (2009), respectively.
For Basque, Hungarian and Korean, we always
took the rightmost modifier as head-child node.
For Hebrew and Polish we used the leftmost mod-
ifier instead. For Swedish we induced head rules
from the provided dependency treebank, as de-
scribed in Versley (2014b). These choices were
based on dev-set experiments.

Table 4 shows the results. For all languages ex-

1529

(Fernández-González and Martins, 2015)
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Choosing a Parser: Performance

Constituency parsing in other languages

Parser Basque French German Hebrew Hungar. Korean Polish Swedish Avg.
Berkeley 70.50 80.38 78.30 86.96 81.62 71.42 79.23 79.19 78.45
Berkeley Tagged 74.74 79.76 78.28 85.42 85.22 78.56 86.75 80.64 81.17
Hall et al. (2014) 83.39 79.70 78.43 87.18 88.25 80.18 90.66 82.00 83.72
Crabbé and Seddah (2014) 85.35 79.68 77.15 86.19 87.51 79.35 91.60 82.72 83.69
This work 85.90 78.75 78.66 88.97 88.16 79.28 91.20 82.80 84.22
Björkelund et al. (2014) 88.24 82.53 81.66 89.80 91.72 83.81 90.50 85.50 86.72

Table 4: F1-scores on eight treebanks of the SPMRL14 shared task, computed with the provided EVALB SPMRL tool, which
takes into account all tokens except root nodes. Berkeley Tagged is a version of Petrov and Klein (2007) using the predicted POS
tags provided by the organizers. Crabbé and Seddah (2014) is the best non-reranking system in the shared task, and Björkelund
et al. (2014) the ensemble and reranking-based system which won the official task. We report their published scores.

sistent with the predicted d-structure. Our work
differs in which we do not need to run a c-parser
in the second stage—instead, the d-parser already
stores constituent information in the arc labels,
and the only necessary post-processing is to re-
cover unary nodes. Another advantage of our
method is that it can be readily used for discon-
tinuous parsing, while their constrained CKY al-
gorithm can only produce continuous parses.

7 Conclusion

We proposed a reduction technique that allows
to implement a c-parser when only a d-parser is
given. The technique is applicable to any d-parser,
regardless of its nature or kind. This reduction was
accomplished by endowing d-trees with a weak or-
der relation, and showing that the resulting class of
head-ordered d-trees is isomorphic to constituent
trees. We showed empirically that the our re-
duction leads to highly-competitive c-parsers for
English and for eight morphologically rich lan-
guages; and that it outperforms the current state
of the art in discontinuous parsing of German.
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Choosing a Parser: Performance
SOTA for English dependency parsing (WSJ §23): 93%–94% UAS,

91%–92% LAS
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Figure 2: Parsing performance with different
training batch sizes.

ear model, the best results are achieved by using
the same beam sizes during training and testing.
We find that this observation does not apply to our
neural parser. In our case, a large training beam al-
ways leads to better results. This is likely because
a large beam improves contrastive learning. As a
result, our training beam size is set to 100 for the
final test.

Batch size. Parsing performance using neural
networks is highly sensitive to the batch size of
training. In greedy neural parsing (Chen and Man-
ning, 2014), the accuracy on the development data
improves from 85% to 91% by setting the batch
size to 10 and 100000, respectively. In structured
neural parsing, we fix the beam size as 100 and
draw the accuracies on the development set by the
training iteration.

As shown in Figure 2, in 5000 training itera-
tions, the parsing accuracies improve as the itera-
tion grows, yet different batch sizes result in dif-
ferent convergence accuracies. With a batch size
of 5000, the parsing accuracy is about 25% higher
than with a batch size of 1 (i.e. SGD). For the re-
maining experiments, we set batch size to 5000,
which achieves the best accuracies on develop-
ment testing.

4.2.2 Sentence-level maximum likelihood vs.
ranking model

We compare parsing accuracies of the sentence-
level log-likelihood + beam contrastive learning
(Section 3.2), and the structured neural parser with
probabilistic ranking (Section 3.1). As shown
in Table 4, performance of global learning with
ranking model is weaker than the baseline greedy

System UAS LAS Speed
baseline greedy parser 91.47 90.43 0.001
Huang and Sagae (2010) 92.10 0.04
Zhang and Nivre (2011) 92.90 91.80 0.03
Choi and McCallum (2013) 92.96 91.93 0.009
Ma et al. (2014) 93.06
Bohnet and Nivre (2012)†‡ 93.67 92.68 0.4
Suzuki et al. (2009)† 93.79
Koo et al. (2008)† 93.16
Chen et al. (2014)† 93.77

beam size
training decoding

100 100 93.28 92.35 0.07
100 64 93.20 92.27 0.04
100 16 92.40 91.95 0.01

Table 5: Results on WSJ. Speed: sentences per
second. †: semi-supervised learning. ‡: joint
POS-tagging and dependency parsing models.

parser. In contrast, structured neural parsing
with sentence-level log-likelihood and contrastive
learning gives a 1.8% accuracy improvement upon
the baseline greedy parser.

As mentioned in Section 3.1, a likely reason
for the poor performance of the structured neu-
ral ranking model may be that, the likelihoods of
action sequences are highly influenced by each
other, due to the dense parameter space of neural
networks. To maximize likelihood of gold action
sequence, we need to decrease the likelihoods of
more than one incorrect action sequences.

4.2.3 Final Results

Table 5 shows the results of our final parser and
a line of transition-based parsers on the test set.
Our structured neural parser achieves an accu-
racy of 93.28%, 0.38% higher than Zhang and
Nivre (2011), which employees millions of high-
order binary indicator features in parsing. The
model size of ZPar (Zhang and Nivre, 2011) is
over 250 MB on disk. In contrast, the model size
of our structured neural parser is only 25 MB. To
our knowledge, the result is the best reported re-
sult achieved by shift-reduce parsers on this data
set.

Bohnet and Nivre (2012) obtain an accuracy of
93.67%, which is higher than our parser. How-
ever, their parser is a joint model of parsing and
POS-tagging, and they use external data in pars-
ing. We also list the result of Chen et al. (2014),
Koo et al. (2008) and Suzuki et al. (2009) in
Table 5, which make use of large-scale unanno-
tated text to improve parsing accuracies. The
input embeddings of our parser are also trained
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Summary

• While constituency parses give hierarchically nested phrases,

dependency parses represent syntax with trees whose edges

connect words in the sentence. (No abstract phrase categories

like NP.) Edges often labeled with relations like subject.

• Head rules govern how a lexicalized constituency grammar can be

extracted from a treebank, and how a constituency parse can be

coverted to a dependency parse.

• For English, it is often fastest and most convenient to parse

directly to dependencies. Two main paradigms, graph-based

and transition-based, with different kinds of models and search

algorithms.
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