
Lecture 13:
Discriminative Sequence

Tagging
Nathan Schneider

ENLP | 17 October 2016

1

HMM + features
• There are variants of the generative HMM that

emit features instead of just words.

• However, these suffer from similar problems as
features in naïve Bayes (too strong
independence assumptions).

• Can we be discriminative instead?

‣ Yes! In fact, we can reuse the same machinery for
discriminative learning with linear models.

2

Recasting HMM as a Linear Model
• Recall that a linear model is one that scores candidate

outputs y with wTφ(x,y). Decoding = arg maxy′ w
Tφ(x,y′).

• Not just classification: we can be predicting a
structured output y. Thus arg maxy′ w

Tφ(x,y′).

• How can we express an HMM in this framework?

‣ transitions = features over tag n-grams

‣ emissions = tag + word features

‣ weights = log probabilities

‣ arg maxy′ = Viterbi decoding

3

Viterbi for Linear Models

• Essentially, the Viterbi algorithm stays the
same:

‣ transition probabilities replaced by linear score of
transition (multi-tag) features

‣ emission probabilities replaced by linear score of
non-transition (single-tag) features

4

D

Generative → Discriminative
• If we want to estimate the weights without making

independence assumptions about the features…

• …we can use a discriminative learning algorithm!

• However, the algorithm has to take the structure of
the output into account. Tag n-gram features mean
the prediction of one tag influences what the model
thinks about other tags.

• Machine learning with models where the outputs are
interrelated is called structured prediction.

5

Review: Perceptron Learner

6

X
Y

L

w

w ← 0
for i = 1 … I:
 for t = 1 … T:
 select (x, y)t

 # run current classifier
 ŷ ← arg maxy′ wᵀ Φ(x, y′)

 if ŷ ≠ y then # mistake
 w ← w + Φ(x, y) − Φ(x, ŷ)
return w

Review: Perceptron Learner

7

X
Y

L

w

w ← 0
for i = 1 … I:
 for t = 1 … T:
 select (x, y)t

 # run current classifier
 ŷ ← ← xᵀ

 if ŷ ≠ y then # mistake
 w ← w + Φ(x, y) − Φ(x, ŷ)
return w

C decoding is a
subroutine of learning

Structured Perceptron Learner

8

X
Y

L

w

w ← 0
for i = 1 … I:
 for t = 1 … T:
 select (x, y)t

 # run structured decoding

 ŷ ← ← xᵀ

 if ŷ ≠ y then # mistake
 w ← w + Φ(x, y) − Φ(x, ŷ)
return w

D decoding is a
subroutine of learning

Structured Perceptron Learner

9

X
Y

L

w

w ← 0
for i = 1 … I:
 for t = 1 … T:
 select (x, y)t

 # run structured decoding

 ŷ ← ← xᵀ

 if ŷ ≠ y then # mistake: incorrect tag(s)
 w ← w + Φ(x, y) − Φ(x, ŷ)
return w

D For sequence tagging,
decoder = Viterbi!

update affects weights of features
that fire for mistagged tokens

Structured Perceptron
• What are the constraints on the kinds of features we can use? (tag

bigrams? trigrams? word bigrams? trigrams?)

‣ Remember that discriminative = we don’t care about modeling the
probability of the language. Thus, every model feature should involve at
least one tag.

‣ As a sequence model, Markov order is still relevant: if we want to use the
bigram Viterbi algorithm, which is O(T²N), we can have features over tag
bigrams, but not trigrams.

‣ local feature = feature which respects the independence assumptions of
the decoding algorithm (e.g., tag bigram Viterbi). Using nonlocal features
would require fancier algorithms.

‣ Unlike the generative HMM, no constraint on which words can be in a
feature. E.g., there could be a feature that relates the first tag to the last
token! (In POS tagging, perhaps ending with “?” correlates with certain
kinds of initial words.)

10

Discriminative Classifiers:  
Non-probabilistic

• The structured counterpart of the perceptron
classifier is called…the structured perceptron.

‣ Also: structural SVM (max-margin).

12

Discriminative Classifiers:  
Probabilistic

• The structured counterpart of the logistic regression classifier:
conditional random field (CRF).

‣ Most common: linear-chain structure, i.e., sequence

‣ Probabilistic—linear score is exponentiated & normalized

‣ Training requires forward-backward algorithm (expensive!)

‣ Generally state-of-the-art

‣ Downloadable implementations include CRF++

‣ If you want the gory details: Sutton & McCallum, http://
homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf

• There is also the Maximum Entropy Markov Model (MEMM), which
makes simplifying assumptions to reduce computation and is nearly
as accurate in practice.

13

http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf

Final Projects
• See how NLP components fit together in a system

‣ off-the-shelf tools such as spaCy, Stanford CoreNLP

‣ + substantial new code

• Work in an interdisciplinary team of 3–4 people

‣ Each team should have at least 2 departments/programs represented

‣ Design the project to suit the team’s strengths! (programming, data collection,
analysis)

• Build something cool!

‣ artistic, scientific, or practical

‣ using data (existing or new) & concepts from this course

‣ start simple, then iterate

• Instructor & TA will help you scope the project, find relevant literature, design
evaluation, etc.

14

