Lecture 12: Algorithms for HMMs

Nathan Schneider
(some slides from Sharon Goldwater; thanks to Jonathan May for bug fixes)

ENLP | 17 October 2016 updated 9 September 2017

Recap: tagging

- POS tagging is a sequence labelling task.
- We can tackle it with a model (HMM) that uses two sources of information:
- The word itself
- The tags assigned to surrounding words
- The second source of information means we can't just tag each word independently.

Local Tagging

Words:
Possible tags: (ordered by frequency for each word)

<s>	one	dog	bit	$</ s>$
<s>	CD	NN	NN	$</ s>$
	NN	VB	VBD	
	PRP			

- Choosing the best tag for each word independently, i.e. not considering tag context, gives the wrong answer (<s> CD NN NN </s>).
- Though NN is more frequent for 'bit', tagging it as

VBD may yield a better sequence (<s> CD NN VB </s>)

- because $\mathrm{P}(\mathrm{VBD} \mid \mathrm{NN})$ and $\mathrm{P}(</ \mathrm{s}>\mid \mathrm{VBD})$ are high.

Recap: HMM

- Elements of HMM:
- Set of states (tags)
- Output alphabet (word types)
- Start state (beginning of sentence)
- State transition probabilities $P\left(t_{i} \mid t_{i-1}\right)$
- Output probabilities from each state $P\left(w_{i} \mid t_{i}\right)$

Recap: HMM

- Given a sentence $\mathrm{W}=\mathrm{w}_{1} \ldots \mathrm{~W}_{\mathrm{n}}$ with tags $\mathrm{T}=\mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{n}}$, compute $\mathrm{P}(\mathrm{W}, \mathrm{T})$ as:

$$
P(\mathbf{W}, \mathbf{T})=\prod_{i=1}^{n} P\left(w_{i} \mid t_{i}\right) P\left(t_{i} \mid t_{i-1}\right)
$$

- But we want to find $\operatorname{argmax}_{\mathrm{T}} P(\mathrm{~T} \mid \mathbf{W})$ without enumerating all possible tag sequences T
- Use a greedy approximation, or
- Use Viterbi algorithm to store partial computations.

Greedy Tagging

Words:

	<s>	one	dog	bit	$</ s>$
Possible tags: (ordered by frequency for	$<s>$	CD	NN	NN	$</ s>$
each word)		NN	VB	VBD	

- For $\mathrm{i}=1$ to N : choose the tag that maximizes
- transition probability $P\left(t_{i} \mid t_{i-1}\right) \times$
- emission probability $P\left(w_{i} \mid t_{i}\right)$
- This uses tag context but is still suboptimal. Why?
- It commits to a tag before seeing subsequent tags.
- It could be the case that ALL possible next tags have low transition probabilities. E.g., if a tag is unlikely to occur at the end of the sentence, that is disregarded when going left to right.

Greedy vs. Dynamic Programming

- The greedy algorithm is fast: we just have to make one decision per token, and we're done.
- Runtime complexity?
- $O(T N)$ with T tags, length $-N$ sentence
- But subsequent words have no effect on each decision, so the result is likely to be suboptimal.
- Dynamic programming search gives an optimal global solution, but requires some bookkeeping (= more computation). Postpones decision about any tag until we can be sure it's optimal.

Viterbi Tagging: intuition

Words:
Possible tags:
(ordered by
frequency for each word)

<s>	one	dog	bit	</s $>$
<s>	CD	NN	NN	</s>
	NN	VB	VBD	
	PRP			

- Suppose we have already computed
a) The best tag sequence for \langle s $>\ldots$ bit that ends in NN.
b) The best tag sequence for $<$ s $>\ldots$ bit that ends in VBD.
- Then, the best full sequence would be either
- sequence (a) extended to include $</ s>$, or
- sequence (b) extended to include </s>.

Viterbi Tagging: intuition

Words:
Possible tags:
(ordered by
frequency for each word)

<s>	one	dog	bit	$</ s>$
<s>	CD	NN	NN	$</ s>$
	NN	VB	VBD	
	PRP			

- But similarly, to get
a) The best tag sequence for $<\mathrm{s}\rangle \ldots$ bit that ends in NN.
- We could extend one of:
- The best tag sequence for $<$ s $>\ldots$ dog that ends in NN.
- The best tag sequence for $<\mathrm{s}>\ldots$ dog that ends in VB.
- And so on...

Viterbi: high-level picture

- Intuition: the best path of length i ending in state t must include the best path of length $i-1$ to the previous state. So,
- Find the best path of length $i-1$ to each state.
- Consider extending each of those by 1 step, to state t.
- Take the best of those options as the best path to state t.

Viterbi: high-level picture

- Want to find $\operatorname{argmax}_{\mathrm{T}} P(\mathbf{T} \mid \mathbf{W})$
- Intuition: the best path of length i ending in state t must include the best path of length i-1 to the previous state. So,
- Find the best path of length i-1 to each state.
- Consider extending each of those by 1 step, to state t.
- Take the best of those options as the best path to state t.

Viterbi algorithm

- Use a chart to store partial results as we go
- $\mathrm{T} \times \mathrm{N}$ table, where $v(t, i)$ is the probability* of the best state sequence for $\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{i}}$ that ends in state t.
*Specifically, v(t,i) stores the max of the joint probability $P\left(w_{1} \ldots w_{i}, t_{1} \ldots \mathrm{t}_{\mathrm{i}-1}, \mathrm{t}_{\mathrm{i}}=\mathrm{t} \mid \lambda\right)$

Viterbi algorithm

- Use a chart to store partial results as we go
$-\mathrm{T} \times \mathrm{N}$ table, where $v(t, i)$ is the probability* of the best state sequence for $\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{i}}$ that ends in state t.
- Fill in columns from left to right, with

$$
v(t, i)=\max _{t^{\prime}} v\left(t^{\prime}, i-1\right) \cdot P\left(t \mid t^{\prime}\right) \cdot P\left(w_{i} \mid t_{i}\right)
$$

- The max is over each possible previous tag t^{\prime}
- Store a backtrace to show, for each cell, which state at $i-1$ we came from.
*Specifically, v(t,i) stores the max of the joint probability $\mathrm{P}\left(\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{i}}, \mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{i}-1}, \mathrm{t}_{\mathrm{i}}=\mathrm{t} \mid \lambda\right)$

Transition and Output Probabilities

Transition matrix: $P\left(\mathrm{t}_{\mathrm{i}} \mid \mathrm{t}_{\mathrm{i}-1}\right)$:

	Noun	Verb	Det	Prep	Adv	$\langle/ s\rangle$
$\langle\mathrm{s}>$.3	.1	.3	.2	.1	0
Noun	.2	.4	.01	.3	.04	.05
Verb	.3	.05	.3	.2	.1	.05
Det	.9	.01	.01	.01	.07	0
Prep	.4	.05	.4	.1	.05	0
Adv	.1	.5	.1	.1	.1	.1

Emission matrix: $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{t}_{\mathrm{i}}\right)$:

	a	cat	doctor	in	is	the	very
Noun	0	.5	.4	0	0.1	0	0
Verb	0	0	.1	0	.9	0	0
Det	.3	0	0	0	0	.7	0
Prep	0	0	0	1.0	0	0	0
Adv	0	0	0	.1	0	0	.9

Example

Suppose $W=$ the doctor is in. Our initially empty table:

\boldsymbol{v}	$\mathrm{w}_{1}=$ the	$\mathrm{w}_{2}=$ doctor	$\mathrm{w}_{3}=\mathrm{is}$	$\mathrm{w}_{4}=\mathrm{in}$	$</ \mathrm{s}\rangle$
Noun					
Verb					
Det					
Prep					
Adv					

Filling in the first column

Suppose $W=$ the doctor is in. Our initially empty table:

\boldsymbol{v}	$\mathrm{w}_{1}=$ the	$\mathrm{w}_{2}=$ doctor	$\mathrm{w}_{3}=$ is	$\mathrm{w}_{4}=\mathrm{in}$	$</ \mathrm{s}\rangle$
Noun	0				
Verb	0				
Det	.21				
Prep	0				
Adv	0				

$v($ Noun, the $)=P($ Noun $|<\mathrm{s}\rangle) P($ the \mid Noun $)=.3(0)$
$v($ Det, the $)=P($ Det $|<\dddot{s}\rangle) P($ the \mid Det $)=.3(.7)$

The second column

v (Noun, doctor)
$=\max _{t^{\prime}} v\left(t^{\prime}\right.$, the $) \cdot P\left(\right.$ Noun $\left.\mid t^{\prime}\right) \cdot P($ doctor \mid Noun $)$

\boldsymbol{v}	$\mathrm{w}_{1}=$ the	$\mathrm{w}_{2}=$ doctor	$\mathrm{w}_{3}=\mathrm{is}$	$\mathrm{w}_{4}=\mathrm{in}$	$</ \mathrm{s}\rangle$
Noun	0	$?$			
Verb	0				
Det	.21				
Prep	0				
Adv	0				

$P($ Noun \mid Det $) P($ doctor \mid Noun $)=.3(.4)$

The second column

v (Noun, doctor)

$$
\begin{aligned}
& =\max _{t^{\prime}} v\left(t^{\prime}, \text { the }\right) \cdot P\left(\text { Noun } \mid t^{\prime}\right) \cdot P(\text { doctor } \mid \text { Noun }) \\
& =\max \{0,0, .21(.36), 0,0\}=.0756
\end{aligned}
$$

\boldsymbol{v}	$\mathrm{w}_{1}=$ the	$\mathrm{w}_{2}=$ doctor	$\mathrm{w}_{3}=$ is	$\mathrm{w}_{4}=\mathrm{in}$	$</ \mathrm{s}\rangle$
Noun	0	.0756			
Verb	0				
Det	.21				
Prep	0				
Adv	0				

$P($ Noun \mid Det $) P($ doctor \mid Noun $)=.9(.4)$

The second column

v (Verb, doctor)

$$
\begin{aligned}
& =\max _{t^{\prime}} v\left(t^{\prime}, \text { the }\right) \cdot P\left(\text { Verb } \mid t^{\prime}\right) \cdot P(\text { doctor } \mid \text { Verb }) \\
& =\max \{0,0, .21(.001), 0,0\}=.00021
\end{aligned}
$$

\boldsymbol{v}	$\mathrm{w}_{1}=$ the	$\mathrm{w}_{2}=$ doctor	$\mathrm{w}_{3}=$ is	$\mathrm{w}_{4}=\mathrm{in}$	$</ \mathrm{s}\rangle$
Noun	0	.0756			
Verb	0	.00021			
Det	.21				
Prep	0				
Adv	0				

$P($ Verb \mid Det $) P($ doctor \mid Verb $)=.01(.1)$

The second column

v (Verb, doctor)

$$
\begin{aligned}
& =\max _{t^{\prime}} v\left(t^{\prime}, \text { the }\right) \cdot P\left(\text { Verb } \mid t^{\prime}\right) \cdot P(\text { doctor } \mid \text { Verb }) \\
& =\max \{0,0, .21(.001), 0,0\}=.00021
\end{aligned}
$$

\boldsymbol{v}	$\mathrm{w}_{1}=$ the	$\mathrm{w}_{2}=$ doctor	$\mathrm{w}_{3}=$ is	$\mathrm{w}_{4}=\mathrm{in}$	$</ \mathrm{s}\rangle$
Noun	0	.0756			
Verb	0	.00021			
Det	.21	0			
Prep	0	0			
Adv	0	0			

$P($ Verb \mid Det $) P($ doctor \mid Verb $)=.01(.1)$

The third column

v (Noun, is)
$=\max _{t^{\prime}} v\left(t^{\prime}\right.$, doctor $) \cdot P\left(\right.$ Noun $\left.\mid t^{\prime}\right) \cdot P$ (is \mid Noun $)$
$=\max \{.0756(.02), .00021(.03), 0,0,0\}=.001512$

\boldsymbol{v}	$\mathrm{w}_{1}=$ the	$\mathrm{w}_{2}=$ doctor	$\mathrm{w}_{3}=$ is	$\mathrm{w}_{4}=$ in	$</ \mathrm{s}\rangle$
Noun	0	.0756	.001512		
Verb	0	.00021			
Det	.21	0			
Prep	0	0			
		0	0		

$P($ Noun \mid Noun $) P($ is \mid Noun $)=.2(.1)=.02$
$P($ Noun \mid Verb $) P($ is \mid Noun $)=.3(.1)=.03$

The third column

v (Verb, is)
$=\max _{t^{\prime}} v\left(t^{\prime}\right.$, doctor $) \cdot P\left(\right.$ Verb $\left.\mid t^{\prime}\right) \cdot P($ is \mid Verb $)$
$=\max \{.0756(.36), .00021(.045), 0,0,0\}=.027216$

\boldsymbol{v}	$\mathrm{w}_{1}=$ the	$\mathrm{w}_{2}=$ doctor	$\mathrm{w}_{3}=$ is	$\mathrm{w}_{4}=$ in	$</ \mathrm{s}\rangle$
Noun	0	.0756	.001512		
Verb	0	.00021			
Det	.21	0			
Prep	0	0			
Adv	0	0			

$P($ Verb \mid Noun $) P($ is \mid Verb $)=.4(.9)=.36$
$P($ Verb \mid Verb $) P($ is \mid Verb $)=.05(.9)=.045$

The fourth column

v (Prep, in)					
$=\max _{t^{\prime}} v\left(t^{\prime}, \text { is }\right) \cdot P\left(\operatorname{Prep} \mid t^{\prime}\right) \cdot P(\text { in } \mid \text { Prep })$					
v	$\mathrm{w}_{1}=$ the	$\mathrm{w}_{2}=$ doctor	$\mathrm{w}_{3}=$ is	$\mathrm{w}_{4}=\mathrm{in}$	</s>
Noun	0	. 0756	. 001512	0	
Verb	0	. 00021	. 027216	0	
Det	. 21	0	0	0	
Prep	0	0	0	. 005443	
Adv	0	0	0		

$P($ Prep \mid Noun $) P($ in \mid Prep $)=.3(1.0)$
$P($ Prep \mid Verb $) P($ in \mid Prep $)=.2(1.0)$

The fourth column

v (Prep, in)					
$=\max _{t^{\prime}} v\left(t^{\prime}, \text { is }\right) \cdot P\left(\text { Prep } \mid t^{\prime}\right) \cdot P(\text { in } \mid \text { Prep })$					
v	$\mathrm{w}_{1}=$ the	$\mathrm{w}_{2}=$ doctor	$\mathrm{w}_{3}=$ is	$\mathrm{w}_{4}=\mathrm{in}$	</s>
Noun	0	. $0756 \leftrightarrows$. 001512	0	
Verb	0	$00021 .$. 027216	0	
Det	21	0	0	0	
Prep	0	0	0	. 005443	
Adv	0	0	0	. 000272	

$P($ Adv \mid Noun $) P($ in $\mid \mathrm{Adv})=.04(.1)$
$P(\mathrm{Adv} \mid$ Verb $) P(\mathrm{in} \mid \mathrm{Adv})=.1(.1)$

End of sentence

$$
\begin{aligned}
& P(</ \mathrm{s}>\mid \text { Prep })=0 \\
& P(</ \mathrm{s}\rangle \mid \text { Adv })=.1
\end{aligned}
$$

Completed Viterbi Chart

\boldsymbol{v}	$\mathrm{w}_{1}=$ the	$\mathrm{w}_{2}=$ doctor	$\mathrm{w}_{3}=$ is	$\mathrm{w}_{4}=$ in	$</ \mathrm{s}\rangle$
Noun	0	.0756	$\boxed{ } .001512$	0	
Verb	0	.00021	.027216	0	00027
Det	.21	0	0	0	
Prep	0	0	0	.005443	2
Adv	0	0	0	$.000272^{4}$	

Following the Backtraces

\boldsymbol{v}	$\mathrm{w}_{1}=$ the	$\mathrm{w}_{2}=$ doctor	$\mathrm{w}_{3}=$ is	$\mathrm{w}_{4}=$ in	$\langle/ \mathrm{s}\rangle$
Noun	0	.0756	.001512	0	
Verb	0	.00021	.027216	0	00027
Det	.21	0	0	0	
Prep	0	0	0	.005443	2
Adv	0	0	0	$.000272^{4}$	

Following the Backtraces

\boldsymbol{v}	$\mathrm{w}_{1}=$ the	$\mathrm{w}_{2}=$ doctor	$\mathrm{w}_{3}=$ is	$\mathrm{w}_{4}=$ in	$\langle/ \mathrm{s}\rangle$
Noun	0	.0756	.001512	0	
Verb	0	.00021	.027216	0	00027
Det	.21	0	0	0	
Prep	0	0	0	.005443	2
Adv	0	0	0	$.000272^{4}$	

Following the Backtraces

\boldsymbol{v}	$\mathrm{w}_{1}=$ the	$\mathrm{w}_{2}=$ doctor	$\mathrm{w}_{3}=$ is	$\mathrm{w}_{4}=$ in	$\langle/ \mathrm{s}\rangle$
Noun	0	.0756	.001512	0	
Verb	0	.00021	.027216	0	00027
Det	.21	0	0	0	
Prep	0	0	0	.005443	2
Adv	0	0	0	$.000272^{4}$	

Following the Backtraces

v	$\mathrm{w}_{1}=$ the	$\mathrm{W}_{2}=$ doctor	$\mathrm{w}_{3}=$ is	$\mathrm{w}_{4}=$ in	</s>
Noun	0	. $0756 \longleftarrow$. 001512	0	000027 2
Verb	0	. 00021	. 027216	0	
Det	. 21	0	0	0	
Prep	0	0	0	. 005443	
Adv	0	0	0	. 000272	
	Det	Noun	Verb	Prep	

Implementation and efficiency

- For sequence length N with T possible tags,
- Enumeration takes $\mathrm{O}\left(\mathrm{T}^{\mathrm{N}}\right)$ time and $\mathrm{O}(\mathrm{N})$ space.
- Bigram Viterbi takes $\mathrm{O}\left(\mathrm{T}^{2} \mathrm{~N}\right)$ time and $\mathrm{O}(\mathrm{TN})$ space.
- Viterbi is exhaustive: further speedups might be had using methods that prune the search space.
- As with N -gram models, chart probs get really tiny really fast, causing underflow.
- So, we use costs (neg log probs) instead.
- Take minimum over sum of costs, instead of maximum over product of probs.

Higher-order Viterbi

- For a tag trigram model with T possible tags, we effectively need T^{2} states
- n-gram Viterbi requires $\mathrm{T}^{\mathrm{n}-1}$ states, takes $\mathrm{O}\left(\mathrm{T}^{\mathrm{n}} \mathrm{N}\right)$ time and $\mathrm{O}\left(\mathrm{T}^{\mathrm{n}-1} \mathrm{~N}\right)$ space.

HMMs: what else?

- Using Viterbi, we can find the best tags for a sentence (decoding), and get $P(\mathbf{W}, \mathbf{T})$.
- We might also want to
- Compute the likelihood $P(\mathbf{W})$, i.e., the probability of a sentence regardless of its tags (a language model!)
- learn the best set of parameters (transition \& emission probs.) given only an unannotated corpus of sentences.

Computing the likelihood

- From probability theory, we know that

$$
P(\mathbf{W})=\sum_{\mathbf{T}} P(\mathbf{W}, \mathbf{T})
$$

- There are an exponential number of Ts.
- Again, by computing and storing partial results, we can solve efficiently.
- (Advanced slides show the algorithm for those who are interested!)

Summary

- HMM: a generative model of sentences using hidden state sequence
- Greedy tagging: fast but suboptimal
- Dynamic programming algorithms to compute
- Best tag sequence given words (Viterbi algorithm)
- Likelihood (forward algorithm—see advanced slides)
- Best parameters from unannotated corpus (forward-backward algorithm, an instance of EMsee advanced slides)

Advanced Topics

(the following slides are just for people who are interested)

Notation

- Sequence of observations over time $\mathrm{o}_{1}, \mathrm{o}_{2}, \ldots, \mathrm{o}_{\mathrm{N}}$
- here, words in sentence
- Vocabulary size V of possible observations
- Set of possible states $q^{1}, q^{2}, \ldots, q^{T}$ (see note next slide)
- here, tags
- A , an $\mathrm{T} \times \mathrm{T}$ matrix of transition probabilities
$-a_{i j}$: the prob of transitioning from state i to j.
- B, an $T \times V$ matrix of output probabilities
$-b_{i}\left(o_{t}\right)$: the prob of emitting o_{t} from state i.

Note on notation

- J\&M use $q_{1}, q_{2}, \ldots, q_{N}$ for set of states, but also use $\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots, \mathrm{q}_{\mathrm{N}}$ for state sequence over time.
- So, just seeing q_{1} is ambiguous (though usually disambiguated from context).
- l'll instead use q^{i} for state names, and q_{n} for state at time n .
- So we could have $\mathrm{q}_{\mathrm{n}}=\mathrm{q}^{\mathrm{i}}$, meaning: the state we're in at time n is q^{i}.

HMM example w/ new notation

- States $\left\{\mathrm{q}^{1}, \mathrm{q}^{2}\right\}$ (or $\left\{<\mathrm{s}>, \mathrm{q}^{1}, \mathrm{q}^{2}\right\}$): think $N N, V B$
- Output symbols $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$: think chair, dog, help

HMM example w/ new notation

- A possible sequence of outputs for this HMM:
z y y x y z x z z
- A possible sequence of states for this HMM:

$$
q^{1} q^{2} q^{2} q^{1} q^{1} q^{2} q^{1} q^{1} q^{1}
$$

- For these examples, $N=9, \mathrm{q}_{3}=\mathrm{q}^{2}$ and $\mathrm{o}_{3}=\mathrm{y}$

Transition and Output Probabilities

- Transition matrix A:

$$
a_{i j}=P\left(q^{j} \mid q^{i}\right)
$$

Ex: $P\left(q_{n}=q^{2} \mid q_{n-1}=q^{1}\right)=.3$

	q^{1}	q^{2}
$<\mathrm{s}>$	1	0
q^{1}	.7	.3
q^{2}	.5	.5

- Output matrix B:
$b_{i}(\mathrm{o})=\mathrm{P}\left(\mathrm{o} \mid \mathrm{q}^{\mathrm{i}}\right)$

	x	y	z
q^{1}	.6	.1	.3
q^{2}	.1	.7	.2

Ex: $P\left(o_{n}=y \mid q_{n}=q^{1}\right)=.1$

Forward algorithm

- Use a table with cells $\alpha(\mathrm{j}, \mathrm{t})$: the probability of being in state j after seeing $\mathrm{o}_{1} \ldots \mathrm{o}_{\mathrm{t}}$ (forward probability).

$$
\alpha(j, t)=P\left(o_{1}, o_{2}, \ldots o t, q t=j \mid \lambda\right)
$$

- Fill in columns from left to right, with

$$
\alpha(j, t)=\sum_{i=1}^{N} \alpha(i, t-1) \cdot a_{i j} \cdot b_{j}\left(o_{t}\right)
$$

- Same as Viterbi, but sum instead of max (and no backtrace).

Note: because there's a sum, we can't use the trick that replaces probs with costs. For implementation info, see http://digital.cs.usu.edu/~cyan/CS7960/hmm-tutorial.pdf and http://stackoverflow.com/questions/13391625/underflow-in-forward-algorithm-for-hmms .

Example

- Suppose $0=x z y$. Our initially empty table:

	$\mathrm{o}_{1}=\mathrm{x}$	$\mathrm{o}_{2}=\mathrm{z}$	$\mathrm{o}_{3}=\mathrm{y}$
q^{1}			
q^{2}			

Filling the first column

	$\mathrm{o}_{1}=\mathrm{x}$	$\mathrm{o}_{2}=\mathrm{Z}$	$\mathrm{o}_{3}=\mathrm{y}$
q^{1}	.6		
q^{2}	0		

$$
\begin{aligned}
& \alpha(1,1)=a_{<s>1} \cdot b_{1}(x)=(1)(.6) \\
& \alpha(2,1)=a_{<s>2} \cdot b_{2}(x)=(0)(.1)
\end{aligned}
$$

Starting the second column

$$
\begin{array}{l|c|c|c|}
& \mathrm{o}_{1}=\mathrm{x} & \mathrm{o}_{2}=\mathrm{z} & \mathrm{o}_{3}=\mathrm{y} \\
\hline \mathrm{q}^{1} & .6 & .126 & \\
\hline \mathrm{q}^{2} & 0 & & \\
\hline & \begin{aligned}
\alpha(1,2) & =\sum_{i=1}^{N} \alpha(i, 1) \cdot a_{i 1} \cdot b_{1(z)} \\
& =\alpha(1,1) \cdot a_{11} \cdot b_{1}(z)+\alpha(2,1) \cdot a_{21} \cdot b_{1}(z) \\
& =(.6)(.7)(.3)+(0)(.5)(.3) \\
& =.126
\end{aligned}
\end{array}
$$

Finishing the second column

	$\mathrm{o}_{1}=\mathrm{x}$	$\mathrm{o}_{2}=\mathrm{Z}$	$\mathrm{o}_{3}=\mathrm{y}$
q^{1}	.6	.126	
q^{2}	0	.036	

$$
\begin{aligned}
\alpha(2,2) & =\sum_{i=1}^{N} \alpha(i, 1) \cdot a_{i 2} \cdot b_{2(z)} \\
& =\alpha(1,1) \cdot a_{12} \cdot b_{2}(z)+\alpha(2,1) \cdot a_{22} \cdot b_{2}(z) \\
& =(.6)(.3)(.2)+(0)(.5)(.2) \\
& =.036
\end{aligned}
$$

Third column and finish

	$\mathrm{o}_{1}=\mathrm{x}$	$\mathrm{o}_{2}=\mathrm{Z}$	$\mathrm{o}_{3}=\mathrm{y}$
q^{1}	.6	.126	.01062
q^{2}	0	.036	.03906

- Add up all probabilities in last column to get the probability of the entire sequence:

$$
P(O \mid \lambda)=\sum_{i=1}^{N} \alpha(i, T)
$$

Learning

- Given only the output sequence, learn the best set of parameters $\lambda=(\mathrm{A}, \mathrm{B})$.
- Assume 'best' = maximum-likelihood.
- Other definitions are possible, won't discuss here.

Unsupervised learning

- Training an HMM from an annotated corpus is simple.
- Supervised learning: we have examples labelled with the right 'answers' (here, tags): no hidden variables in training.
- Training from unannotated corpus is trickier.
- Unsupervised learning: we have no examples labelled with the right 'answers': all we see are outputs, state sequence is hidden.

Circularity

- If we know the state sequence, we can find the best λ.
- E.g., use MLE: $P\left(q^{j} \mid q i\right)=\frac{C(q i \rightarrow q j)}{C(q i)}$
- If we know λ, we can find the best state sequence.
- use Viterbi
- But we don't know either!

Expectation-maximization (EM)

As in spelling correction, we can use EM to bootstrap, iteratively updating the parameters and hidden variables.

- Initialize parameters $\lambda^{(0)}$
- At each iteration k ,
- E-step: Compute expected counts using $\lambda^{(k-1)}$
- M-step: Set $\lambda^{(k)}$ using MLE on the expected counts
- Repeat until λ doesn't change (or other stopping criterion).

Expected counts??

Counting transitions from $\mathrm{q}^{\mathrm{i}} \rightarrow \mathrm{q}^{\mathrm{j}}$:

- Real counts:
- count 1 each time we see $q^{i} \rightarrow q^{j}$ in true tag sequence.
- Expected counts:
- With current λ, compute probs of all possible tag sequences.
- If sequence Q has probability p, count p for each $q^{i} \rightarrow q^{i}$ in Q.
- Add up these fractional counts across all possible sequences.

Example

- Notionally, we compute expected counts as follows:

Possible sequence			Probability of sequence	
$\mathrm{Q}_{1}=$	q^{1}	q^{1}	q^{1}	p_{1}
$\mathrm{Q}_{2}=$	q^{1}	q^{2}	q^{1}	p_{2}
$\mathrm{Q}_{3}=$	q^{1}	q^{1}	q^{2}	p_{3}
$\mathrm{Q}_{4}=$	q^{1}	q^{2}	q^{2}	p_{4}
Observs:	x	z	y	

Example

- Notionally, we compute expected counts as follows:

Possible sequence			Probability of sequence	
$\mathrm{Q}_{1}=$	q^{1}	q^{1}	q^{1}	p_{1}
$\mathrm{Q}_{2}=$	q^{1}	q^{2}	q^{1}	p_{2}
$\mathrm{Q}_{3}=$	q^{1}	q^{1}	q^{2}	p_{3}
$\mathrm{Q}_{4}=$	q^{1}	q^{2}	q^{2}	p_{4}
Observs:	x	z	y	
	$\hat{C}\left(q^{1} \rightarrow q^{1}\right)=2 p_{1}+p_{3}$			

Forward-Backward algorithm

- As usual, avoid enumerating all possible sequences.
- Forward-Backward (Baum-Welch) algorithm computes expected counts using forward probabilities and backward probabilities:

$$
\beta(j, t)=P\left(q t=j, o_{t+1}, o_{t+2}, \ldots o T \mid \lambda\right)
$$

- Details, see J\&M 6.5
- EM idea is much more general: can use for many latent variable models.

Guarantees

- EM is guaranteed to find a local maximum of the likelihood.

- Not guaranteed to find global maximum.
- Practical issues: initialization, random restarts, early stopping. Fact is, it doesn't work well for learning POS taggers!

