Linear Models for Classification: Discriminative Learning (Perceptron, SVMs, MaxEnt)

Nathan Schneider
(some slides borrowed from Chris Dyer)
ENLP | 28 September 2016
Outline

• Words, probabilities \rightarrow Features, weights

• Geometric view: decision boundary

• Perceptron

• Generative vs. Discriminative

• More discriminative models: Logistic regression/MaxEnt; SVM

• Loss functions, optimization

• Regularization; sparsity
Perceptron Learner

\[w \leftarrow 0 \]

for i = 1 \ldots I:

\[\text{for } t = 1 \ldots T:\quad \]

\[\text{select } (x, y)_t \]

\[\# \text{run current classifier} \]

\[\hat{y} \leftarrow \arg \max_{y'} w^\top \Phi(x, y') \]

\[\text{if } \hat{y} \neq y \text{ then } \# \text{mistake} \]

\[w \leftarrow w + \Phi(x, y) - \Phi(x, \hat{y}) \]

return \(w \)
Perceptron Learner

\[
\begin{align*}
\mathbf{w} & \leftarrow 0 \\
\text{for } i = 1 \ldots I: & \\
\quad \text{for } t = 1 \ldots T: & \\
\quad \quad \text{select } (x, y)_t & \\
\quad \quad \quad \# \text{ run current classifier} & \\
\quad \quad \quad \hat{y} & \leftarrow \mathbf{C} \leftarrow x \quad \text{decoding is a subroutine of learning} & \\
\quad \quad \text{if } \hat{y} \neq y \text{ then } \# \text{ mistake} & \\
\quad \quad \quad \mathbf{w} & \leftarrow \mathbf{w} + \Phi(x, y) - \Phi(x, \hat{y}) & \\
\text{return } \mathbf{w} & \\
\end{align*}
\]
Perceptron Learner

\[\mathbf{w} \leftarrow 0 \]

for \(i = 1 \ldots I \):

for \(t = 1 \ldots T \):

select \((x, y)_t \)

\[\hat{y} \leftarrow \arg \max_y \mathbf{w}_y^T \Phi(x) \]

if \(\hat{y} \neq y \) then \# mistake

\[\mathbf{w}_y \leftarrow \mathbf{w}_y + \Phi(x) \]

\[\mathbf{w}_{\hat{y}} \leftarrow \mathbf{w}_{\hat{y}} - \Phi(x) \]

return \(\mathbf{w} \)

if all classes have the same percepts
Perceptron Learner

- **The perceptron doesn’t estimate probabilities.** It just adjusts weights up or down until they classify the training data correctly.
 - No assumptions of feature independence necessary! ⇒ Better accuracy than NB

- The perceptron is an example of an online learning algorithm because it potentially updates its parameters (weights) with each training datapoint.

- Classification, a.k.a. decoding, is called with the latest weight vector. Mistakes lead to weight updates.

- One hyperparameter: I, the number of iterations (passes through the training data).

- Often desirable to make several passes over the training data. The number can be tuned. Under certain assumptions, it can be proven that the learner will converge.
Perceptron: Avoiding overfitting

- Like any learning algorithm, the perceptron risks overfitting the training data. Two main techniques to improve generalization:

 - **Averaging**: Keep a copy of each weight vector as it changes, then average all of them to produce the final weight vector. [Daumé chapter](#) has a trick to make this efficient with large numbers of features.

 - **Early stopping**: Tune I by checking held-out accuracy on dev data (or cross-val on train data) after each iteration. If accuracy has ceased to improve, stop training and use the model from iteration $I - 1$.
Generative vs. Discriminative

• Naïve Bayes allows us to classify via the **joint probability** of \(x \) and \(y \):

\[
p(y \mid x) \propto p(y) \prod_{w \in x} p(w \mid y) \\
= p(y) p(x \mid y) \quad \text{(per the independence assumptions of the model)} \\
= p(y, x) \quad \text{(chain rule)}
\]

• This means the model accounts for BOTH \(x \) and \(y \). From the joint distribution \(p(x,y) \) it is possible to compute \(p(x) \) as well as \(p(y) \), \(p(x \mid y) \), and \(p(y \mid x) \).

• NB is called a **generative** model because it assigns probability to linguistic objects (\(x \)). It could be used to generate “likely” language corresponding to some \(y \). (Subject to its naïve modeling assumptions!)

 - (Not to be confused with the “generative” school of linguistics.)

• Some other linear models, including the perceptron, are **discriminative**: they are trained directly to classify given \(x \), and cannot be used to estimate the probability of \(x \) or generate \(x \mid y \).
Many possible decision boundaries

Which one is best?
Max-Margin Methods (e.g., SVM)

Choose a decision boundary that is approximately halfway between the nearest positive and negative examples.
Max-Margin Methods

- **Support Vector Machine (SVM):** most popular max-margin variant

 Closely related to the perceptron; can be optimized (learned) with a slight tweak to the perceptron algorithm.

- Like perceptron, discriminative, non-probabilistic.
Maximum Entropy (MaxEnt) a.k.a. (Multinomial) Logistic Regression

- What if we want a discriminative classifier with **probabilities**?
 - E.g., need confidence of prediction, or want the full distribution over possible classes

- Wrap the linear score computation \((w^T \Phi(x, y'))\) in the **softmax** function:
 - Score can be negative; exp(score) is always positive
 - \[
 \log p(y \mid x) = \log \frac{\exp(w^T \Phi(x, y))}{\sum_{y'} \exp(w^T \Phi(x, y'))} = w^T \Phi(x, y) - \log \sum_{y'} \exp(w^T \Phi(x, y'))
 \]
 - **Binary case:** Sum over all classes ⇒ same for all numerators ⇒ can be ignored at classification time.
 - \[
 \log p(y=1 \mid x) = \log \frac{\exp(w^T \Phi(x, y=1))}{\exp(w^T \Phi(x, y=1)) + \exp(w^T \Phi(x, y=0))}
 = \log \frac{\exp(w^T \Phi(x, y=1))}{\exp(w^T \Phi(x, y=1)) + 1}
 \]
 - Denominator = normalization (makes probabilities sum to 1).

- MaxEnt classifiers are a special case of **MaxEnt a.k.a. log-linear models**.
Objectives

• For all linear models, the classification rule or decoding objective is: $y \leftarrow \arg\max_{y'} w^T \Phi(x, y')$

 ‣ Objective function = function for which we want to find the optimum (in this case, the max)

• There is also a learning objective for which we want to find the optimal parameters. Mathematically, NB, MaxEnt, SVM, and perceptron all optimize different learning objectives.

 ‣ When the learning objective is formulated as a minimization problem, it’s called a loss function.

 ‣ A loss function scores the “badness” of the training data under any possible set of parameters. Learning = choosing the parameters that minimize the badness.
Objectives

• Naïve Bayes learning objective: **joint data likelihood**

 $p^* \leftarrow \arg \max_p \ L_{\text{joint}}(D; p) = \arg \max_p \ \sum_{(x, y) \in D} \log p(x, y) = \arg \max_p \ \sum_{(x, y) \in D} \log (p(y)p(x | y))$

 • It can be shown that relative frequency estimation (i.e., count and divide, no smoothing) is indeed the maximum likelihood estimate.

• MaxEnt learning objective: **conditional log likelihood**

 $p^* \leftarrow \arg \max_p \ L_{\text{cond}}(D; p) = \arg \max_p \ \sum_{(x, y) \in D} \log p(y | x)$

 $w \leftarrow \arg \max_w \ \sum_{(x, y) \in D} w^T \Phi(x, y) - \log \sum_{y'} \exp(w^T \Phi(x, y'))$ [2 slides ago]

 • This has no closed-form solution. Hence, we need an optimization algorithm to try different weight vectors and choose the best one.

 • With thousands or millions of parameters—not uncommon in NLP—it may also overfit.
Objectives

Visualizing different loss functions for binary classification

\[w^T \Phi(x, y') \]

- **worse**
- **better**

- **log loss (MaxEnt)**
- **hinge loss (perceptron)**
- **0–1 loss (error)**

figure from Noah Smith
Objectives

• Why not just penalize error directly if that’s how we’re going to evaluate our classifier (accuracy)?
 ‣ Error is difficult to optimize! Log loss and hinge loss are easier. Why?
 ✴ Because they’re differentiable.
 ✴ Can use stochastic (sub)gradient descent (SGD) and other gradient-based optimization algorithms (L-BFGS, AdaGrad, ...). There are freely available software packages that implement these algorithms.
 ✴ With supervised learning, these loss functions are convex: local optimum = global optimum (so in principle the initialization of weights doesn’t matter).
 ✴ The perceptron algorithm can be understood as a special case of subgradient descent on the hinge loss!

• N.B. I haven’t explained the math for the hinge loss (perceptron) or the SVM. Or the derivation of gradients. See further reading links if you’re interested.
A likelihood surface

Visualizes the likelihood objective (vertical axis) as a function of 2 parameters. Likelihood = maximization problem. Flip upside down for the loss.

Gradient-based optimizers choose a point on the surface, look at its curvature, and then successively move to better points.

figure from Chris Manning
Regularization

- Better MaxEnt learning objective: regularized conditional log likelihood
 \[w^* \leftarrow \text{arg max}_w -\lambda R(w) + \sum_{(x,y) \in D} w^T \Phi(x,y) - \log \sum_{y'} \exp(w^T \Phi(x,y')) \]

- To avoid overfitting, the regularization term ("regularizer") \(-\lambda R(w)\) penalizes complex models (i.e., parameter vectors with many large weights).
 - Close relationship to Bayesian prior (a priori notion of what a "good" model looks like if there is not much training data). Note that the regularizer is a function of the weights only (not the data!)

- In NLP, most popular values of \(R(w) \) are the \(\ell_1 \) norm ("Lasso") and the \(\ell_2 \) norm ("ridge"):
 - \(\ell_2 = \|w\|_2 = (\sum_i w_i^2)^{-1/2} \) encourages most weights to be small in magnitude
 - \(\ell_1 = \|w\|_1 = \sum_i |w_i| \) encourages most weights to be 0
 - \(\lambda \) determines the tradeoff between regularization and data-fitting. Can be tuned on dev data.

- SVM objective also incorporates a regularization term. Perceptron does not (hence, averaging and early stopping).
Sparsity

• ℓ_1 regularization is a way to promote **model sparsity**: many weights are pushed to 0.
 ‣ A vector is sparse if (# *nonzero* parameters) \ll (total # parameters).
 ‣ Intuition: if we define very general feature templates—e.g. one feature per word in the vocabulary—we expect that *most features should not matter* for a particular classification task.

• In NLP, we typically have sparsity in our **feature vectors** as well.
 ‣ E.g., in WSD, all words in the training data but *not* in context of a particular token being classified are effectively 0-valued features.
 ‣ Exception: **dense** word representations popular in recent neural network models (we’ll get to this later in the course).

• Sometimes the word “sparsity” or “sparseness” just means “not very much data.”
Summary: Linear Models

Classifier: \(y \leftarrow \arg \max_{y'} \mathbf{w}^T \Phi(x, y') \)

<table>
<thead>
<tr>
<th></th>
<th>kind of model</th>
<th>loss function</th>
<th>learning algorithm</th>
<th>avoiding overfitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve Bayes</td>
<td>Probabilistic, generative</td>
<td>Likelihood</td>
<td>Closed-form estimation</td>
<td>Smoothing</td>
</tr>
<tr>
<td>Logistic regression (MaxEnt)</td>
<td>Probabilistic, discriminative</td>
<td>Conditional likelihood</td>
<td>Optimization</td>
<td>Regularization penalty</td>
</tr>
<tr>
<td>Perceptron</td>
<td>Non-probabilistic, discriminative</td>
<td>Hinge</td>
<td>Optimization</td>
<td>Averaging; Early stopping</td>
</tr>
<tr>
<td>SVM (linear kernel)</td>
<td>Non-probabilistic, discriminative</td>
<td>Max-margin</td>
<td>Optimization</td>
<td>Regularization penalty</td>
</tr>
</tbody>
</table>
Take-home points

• Feature-based linear classifiers are important to NLP.
 ‣ You define the features, an algorithm chooses the weights. Some classifiers then exponentiate and normalize to give probabilities.
 ‣ More features ⇒ more flexibility, also more risk of overfitting. Because we work with large vocabularies, not uncommon to have millions of features.

• Learning objective/loss functions formalize training as choosing parameters to optimize a function.
 ‣ Some model both the language and the class (generative); some directly model the class conditioned on the language (discriminative).
 ‣ In general: **Generative** ⇒ training is cheaper, but lower accuracy.
 Discriminative ⇒ higher accuracy with sufficient training data and computation (optimization).

• Some models, like naïve Bayes, have a closed-form solution for parameters. Learning is cheap!

• Other models require fancier optimization algorithms that may iterate multiple times over the data, adjusting parameters until convergence (or some other stopping criterion).
 ‣ The advantage: fewer modeling assumptions. Weights can be interdependent.
Which classifier to use?

• Fast and simple: naïve Bayes

• Very accurate, still simple: perceptron

• Very accurate, probabilistic, more complicated to implement: MaxEnt

• Potentially best accuracy, more complicated to implement: SVM

• All of these: watch out for overfitting!

• Check the web for free and fast implementations, e.g. SVM$^{\text{light}}$
Further Reading: Basics & Examples

- **Manning:** features in linear classifiers
 http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-FeatureClassifiers.pdf

- **Goldwater:** naïve Bayes & MaxEnt examples
 http://www.inf.ed.ac.uk/teaching/courses/fnlp/lectures/07_slides.pdf

- **O’Connor:** MaxEnt—incl. step-by-step examples, comparison to naïve Bayes

- **Daumé:** “The Perceptron” (A Course in Machine Learning, ch. 3)
 http://www.ciml.info/dl/v0_8/ciml-v0_8-ch03.pdf

- **Neubig:** “The Perceptron Algorithm”
Further Reading: Advanced

- **Neubig**: “Advanced Discriminative Learning”—MaxEnt w/ derivatives, SGD, SVMs, regularization
 [link](http://www.phontron.com/slides/nlp-programming-en-06-discriminative.pdf)

- **Manning**: generative vs. discriminative, MaxEnt likelihood function and derivatives
 [link](http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-MEMMs-Smoothing.pdf), slides 3–20

- **Daumé**: linear models
 [link](http://www.ciml.info/dl/v0_8/ciml-v0_8-ch06.pdf)

- **Smith**: A variety of loss functions for text classification
 [link](http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-intro-slides.pdf) & [link](http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-advanced-slides.pdf)