Linear Models for Classification: Features & Weights

Nathan Schneider (some slides borrowed from Chris Dyer) ENLP | 26 September 2016

Outline

Words, probabilities → Features, weights

this lecture

- Geometric view: decision boundary
- Perceptron next lecture
- Generative vs. Discriminative
- More discriminative models: Logistic regression/MaxEnt;
 SVM
- Loss functions, optimization
- Regularization/averaging; vector sparsity

Word Sense Disambiguation (WSD)

- Given a word in context, predict which sense is being used.
 - Evaluated on corpora such as SemCor, which is fully annotated for WordNet synsets.
- For example: consider joint POS & WSD classification for 'interest', with 3 senses:
 - N:financial (I repaid the loan with interest)
 - N:nonfinancial (I read the news with interest)
 - V:nonfinancial (Can I interest you in a dessert?)

Beyond BoW

- Neighboring words are relevant to this decision.
- More generally, we can define features of the input that may help identify the correct class.
 - Individual words
 - Bigrams (pairs of consecutive words: Wall Street)
 - Capitalization (interest vs. Interest vs. INTEREST)
 - Metadata: document genre, author, ...
- These can be used in naïve Bayes: "bag of features"
 - With overlapping features, independence assumption is even more naïve: p(y | x) ∝ p(y) ··· p(Wall | y) p(Street | y) p(Wall Street | y)

Linear Model

- For each input x (e.g., a document or word token), let $\phi(x,y)$ be a function that extracts a vector of its features for a possible label y.
 - Features may be binary (e.g., capitalized?) or real-valued (e.g., #word=debt).
- Each feature receives a real-valued **weight** parameter w such that the best label according to the model is:

$$\arg \max_{y'} \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}, y')$$

$$= \arg \max_{y'} \Sigma_{j} w_{j} \cdot \phi_{j}(\mathbf{x}, y')$$

- For binary classification, equivalent to: $sign(\mathbf{w}^{\mathsf{T}}\varphi(\mathbf{x})) = +1$ or -1
- For multiclass classification, most often simplified to: $\mathbf{W} = [\mathbf{w}_{y1}; \mathbf{w}_{y2}; \dots]$

$$\arg \max_{y'} \mathbf{w}_{y'}^{\mathsf{T}} \mathbf{\phi}(\mathbf{x})$$

$$= \arg \max_{y'} \sum_{j} w_{y',j} \cdot \phi_{j}(\mathbf{x})$$

Choosing Features

- Supervision means that we don't have to pre-specify the precise relationship between each feature and the classification outcomes.
- But domain expertise helps in choosing which kinds of features to include in the model. (words, subword units, metadata, ...)
 - And sometimes, highly task-specific features are helpful.
- The decision about what features to include in a model is called feature engineering.
 - (There are some algorithmic techniques, such as *feature selection*, that can assist in this process.)
 - More features = more flexibility, but also more expensive to train, more opportunity for overfitting.

 $\phi(x)$

	$\Psi(X)$
bias	1
capitalized?	0
#wordsBefore	6
#wordsAfter	3
relativeOffset	0.66
leftWord=about	1
leftWord=best	0
rightWord=rates	1
rightWord=in	0
Wall	1
Street	1
vets	1
best	0
in	0
Wall Street	1
Street vets	1
vets raise	1

x = Wall Street vets raise concerns about interest rates, politics

bias feature (≈class prior): value of 1 for every **x** so the learned weight will reflect prevalence of the class

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

φ	(\mathbf{x})
•	` '

	1 \ /
bias	1
capitalized?	0
#wordsBefore	6
#wordsAfter	3
relativeOffset	0.66
leftWord=about	1
leftWord=best	0
rightWord=rates	1
rightWord=in	0
Wall	1
Street	1
vets	1
best	0
in	0
Wall Street	1
Street vets	1
vets raise	1

x = Wall Street vets raise concerns about interest rates, politics

spelling feature

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

	$\phi(x)$
bias	1
capitalized?	0
#wordsBefore	6
#wordsAfter	3
relativeOffset	0.66
leftWord=about	1

leftWord=best rightWord=rates rightWord=in Wall Street

vets

best

Wall Street

Street vets

vets raise

x = Wall Street vets raise concernsabout interest rates, politics

token positional features

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

	$\varphi(\mathbf{x})$
bias	1
capitalized?	0
#wordsBefore	6
#wordsAfter	3
relativeOffset	0.66
leftWord=about	1
leftWord=best	0
rightWord=rates	1
rightWord=in	0

 $A(\mathbf{v})$

Wall	1
Street	1
vets	1
best	0
in	0
Wall Street	1
Street vets	1
vets raise	1

x = Wall Street vets raise concerns about interest rates, politics

immediately neighboring words

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

	4(24)
	$\phi(x)$
bias	1
capitalized?	0
#wordsBefore	6
#wordsAfter	3
relativeOffset	0.66
leftWord=about	1
leftWord=best	0
rightWord=rates	1
rightWord=in	0
Wall	1
Street	1
vets	1
best	0
in	0
Wall Street	1
Street vets	1
vets raise	1

x = Wall Street vets raise concerns about interest rates, politics

unigrams

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

	$\phi(\mathbf{x})$
	Ψ(λ)
bias	1
capitalized?	0
#wordsBefore	6
#wordsAfter	3
relativeOffset	0.66
leftWord=about	1
leftWord=best	0
rightWord=rates	1
rightWord=in	0
Wall	1
Street	1
vets	1
best	0
in	0
Wall Street	1
Street vets	1
vets raise	1

x = Wall Street vets raise concerns about interest rates, politics

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

bigrams

	$\phi(x)$	$\phi(x')$
bias	1	1
capitalized?	0	0
#wordsBefore	6	3
#wordsAfter	3	8
relativeOffset	0.66	0.27
leftWord=about	1	0
leftWord=best	0	1
rightWord=rates	1	0
rightWord=in	0	1
Wall	1	0
Street	1	0
vets	1	1
best	0	1
in	0	1
Wall Street	1	0
Street vets	1	0
vets raise	1	0

- x = Wall Street vets raise concerns about interest rates, politics
- x' = Pet 's best interest in mind , but vets must follow law

- Turns the input into a table of features with real values (often binary: 0 or 1).
- In practice: define feature templates like "leftWord=•" from which specific features are instantiated

Feature Weights

	$\phi(x)$	W	$\phi(x')$
bias	1	-3.00	1
capitalized?	0	.22	0
#wordsBefore	6	01	3
#wordsAfter	3	.01	8
relativeOffset	0.6	1.00	0.2
leftWord=about	1	.00	0
leftWord=best	0	-2.00	1
rightWord=rates	1	5.00	0
rightWord=in	0	-1.00	1
Wall	1	1.00	0
Street	1	-1.00	0
vets	1	05	1
best	0	-1.00	1
in	0	01	1
Wall Street	1	4.00	0
Street vets	1	.00	0
vets raise	1	.00	0

x = Wall Street vets raise concerns about interest rates, politics

x' = Pet 's best interest in mind , but vets must follow law

- Weights are learned from data
- For the moment, assume binary classification: financial or nonfinancial
 - More positive weights more indicative of financial.
 - $\mathbf{w}^{\mathsf{T}} \mathbf{\phi}(\mathbf{x}) = 6.59, \ \mathbf{w}^{\mathsf{T}} \mathbf{\phi}(\mathbf{x}') = -6.74$

More then 2 classes

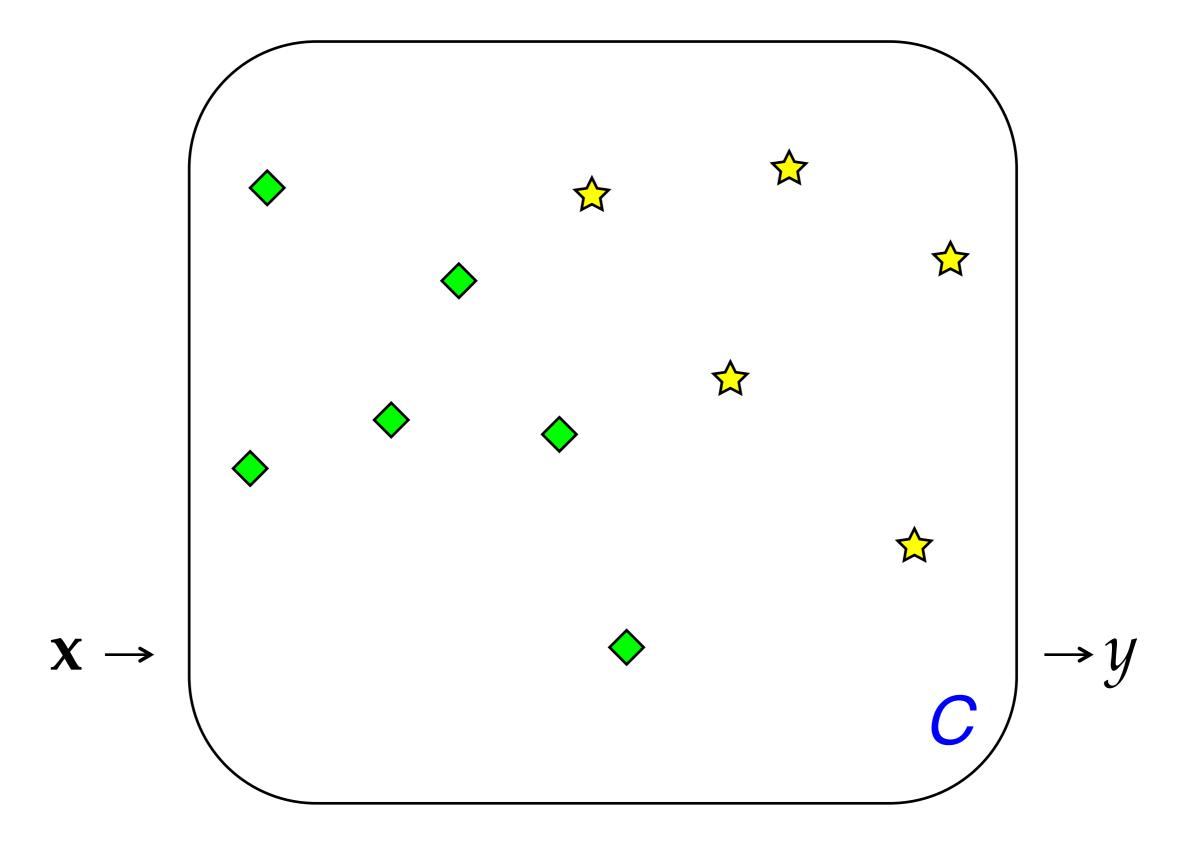
- Simply keep a separate weight vector for each class: \mathbf{w}_y
- The class whose weight vector gives the highest score wins!

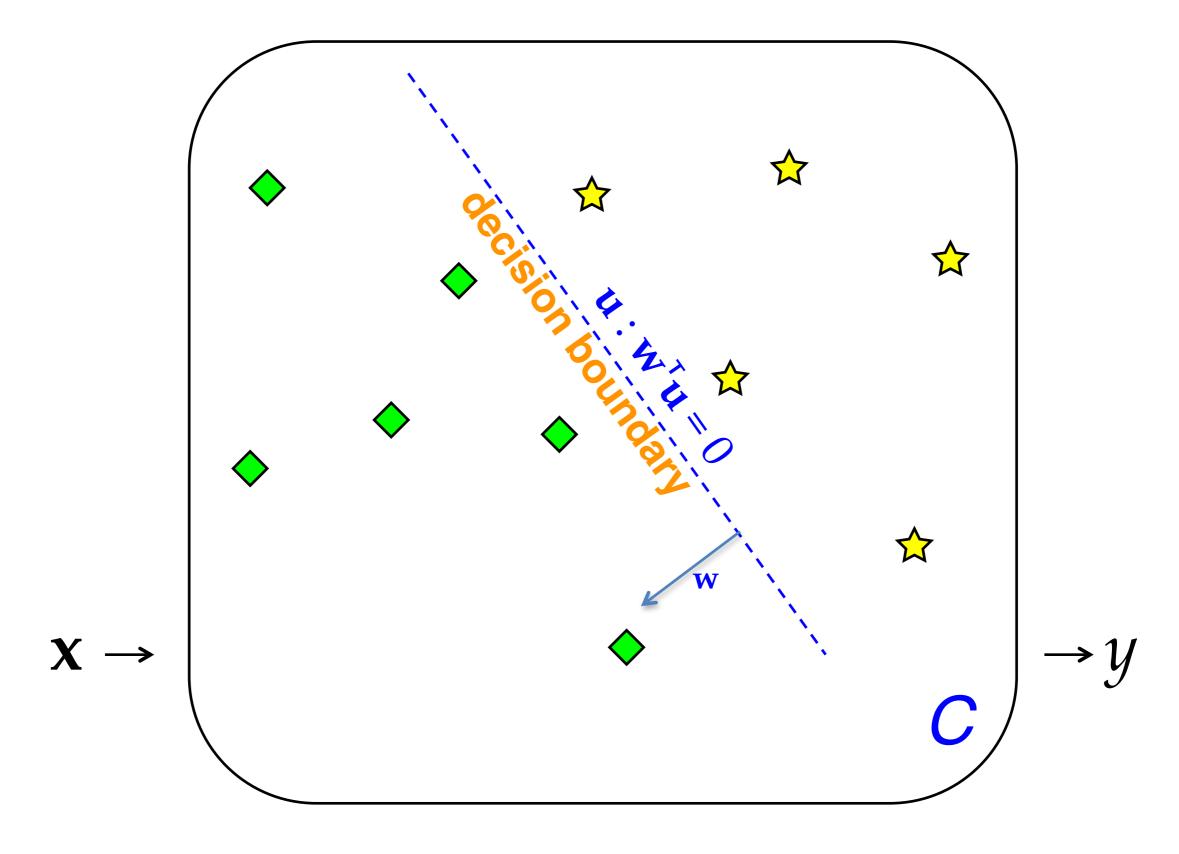
Learning the weights

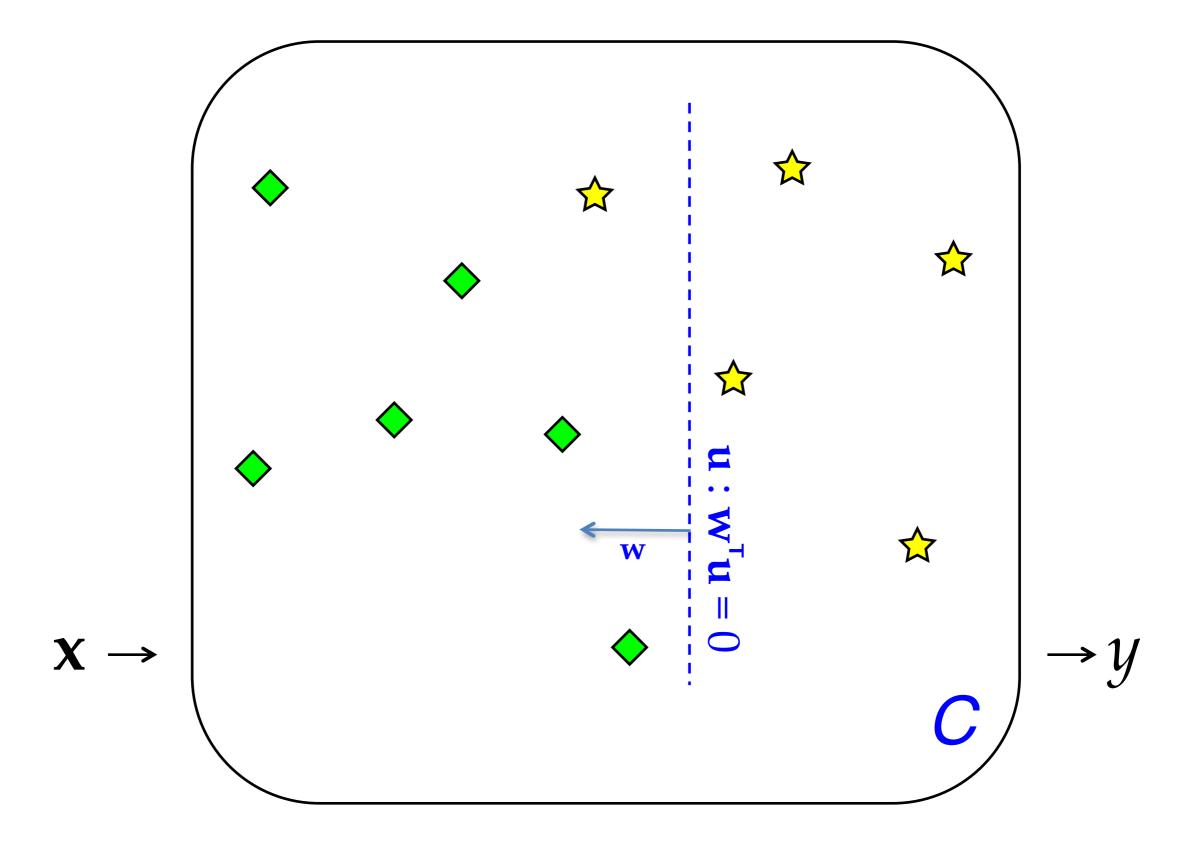
- Weights depend on the choice of model and learning algorithm.
- · Naïve Bayes fits into this framework, under the following estimation procedure for w:
 - $w_{\text{bias}} = \log p(y)$
 - \forall features $f: w_f = \log p(f \mid y)$

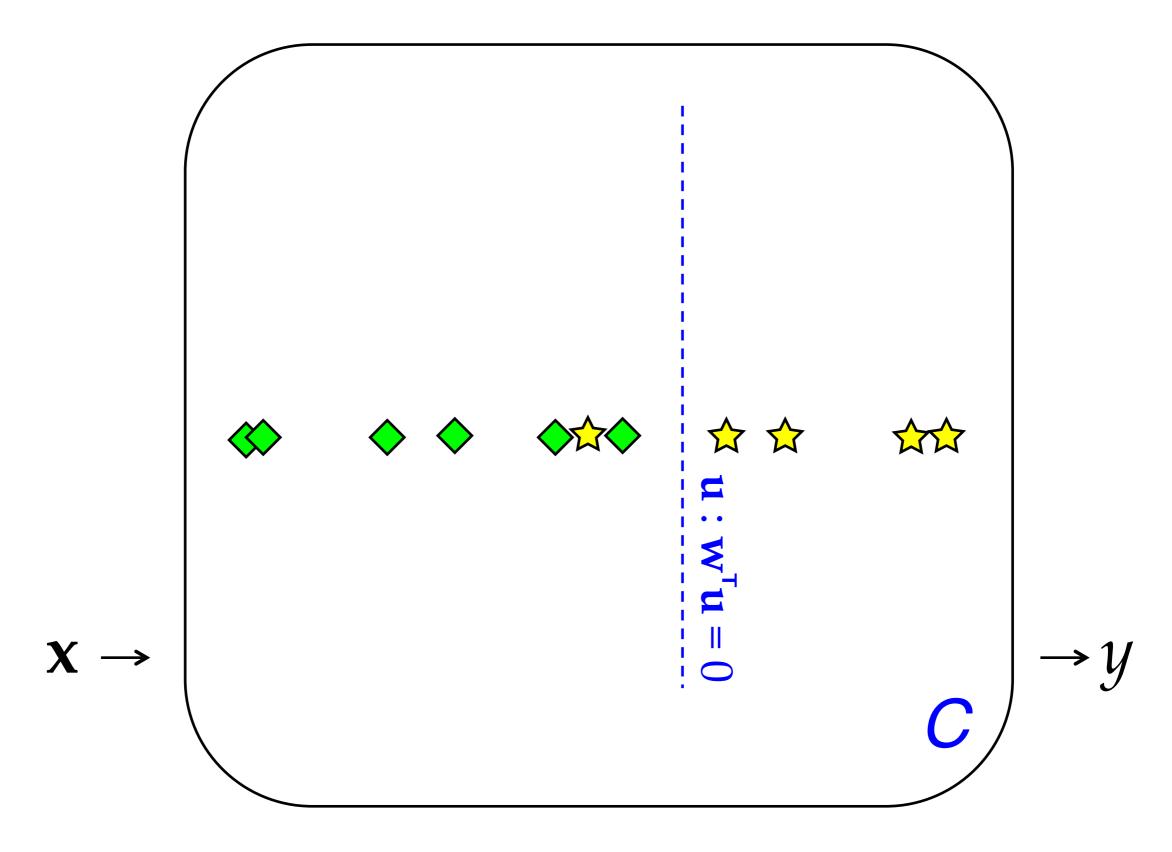
$$\begin{split} & \Sigma_{j} \, w_{j} \cdot \phi_{j}(\mathbf{x}) = w_{\text{bias}} + \Sigma_{f \in \phi(\mathbf{x})} \, w_{f} \\ & = \log \, \mathrm{p}(y) + \Sigma_{f \in \phi(\mathbf{x})} \log \, \mathrm{p}(f \mid y) \\ & = \log \, (\mathrm{p}(y) \cdot \Pi_{f \in \phi(\mathbf{x})} \, \mathrm{p}(f \mid y)) \end{split}$$

- However, the naïve independence assumption—that all features are conditionally independent given the class—can be harmful.
 - Could the weights shown on the previous slide be naïve Bayes estimates?
 - * No, because some are positive (thus not log-probabilities). Other kinds of learning procedures can give arbitrary real-valued weights.
 - * If using log probabilities as weights, then the classification threshold should be equivalent to probability of .5, i.e. **log .5**.

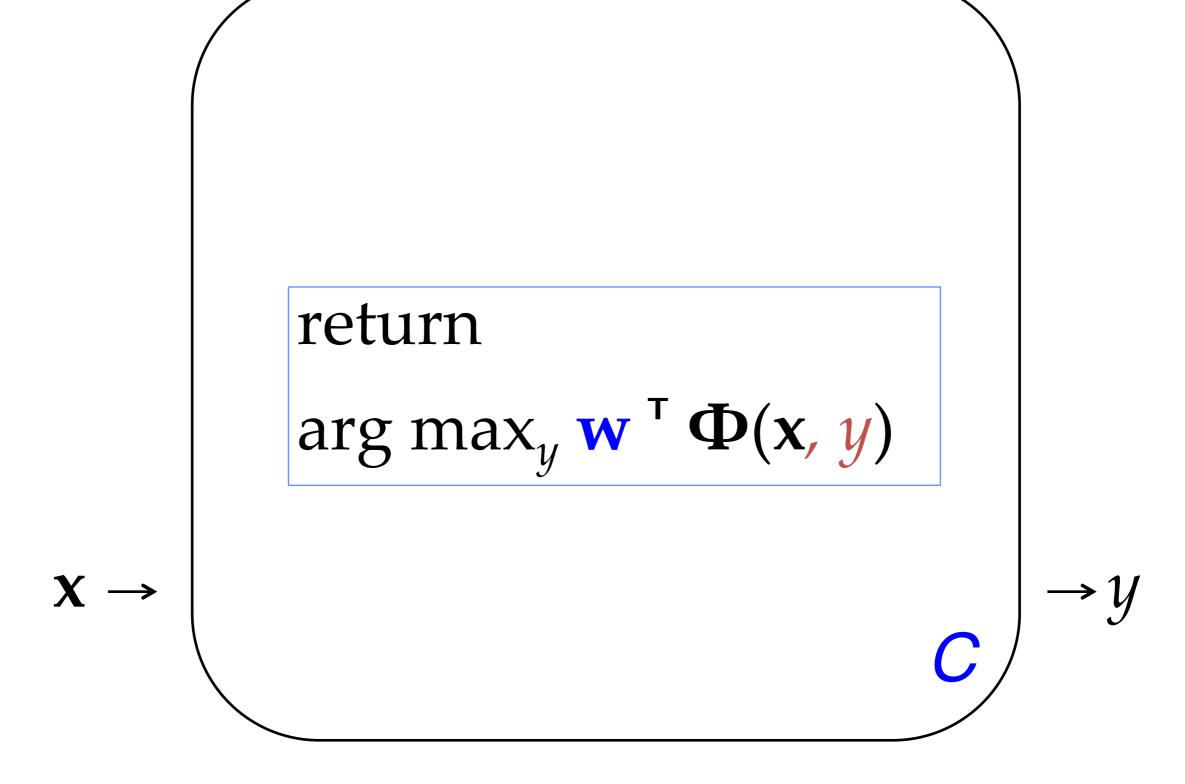








Linear Classifiers (> 2 Classes)



The term "feature"

- The term "feature" is overloaded in NLP/ML. Here are three different concepts:
 - Linguistic feature: in some formalisms, a symbolic property that applies to a unit to categorize it, e.g. [-voice] for a sound in phonology or [+past] for a verb in morphology.
 - Percept (or input feature): captures some aspect of an input x; binary- or real-valued. [The term "percept" is nonstandard but I think it is useful!]
 - Parameter (or model feature): an association between some percept and an output class (or structure) y for which a real-valued weight or score is learned. ends in $-ing \land y = VERB$

Further Reading: Basics & Examples

- Manning: features in linear classifiers
 http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-FeatureClassifiers.pdf
- Goldwater: naïve Bayes & MaxEnt examples <u>http://www.inf.ed.ac.uk/teaching/courses/fnlp/lectures/07_slides.pdf</u>
- O'Connor: MaxEnt—incl. step-by-step examples, comparison to naïve Bayes http://people.cs.umass.edu/~brenocon/inlp2015/04-logreg.pdf
- Daumé: "The Perceptron" (A Course in Machine Learning, ch. 3) http://www.ciml.info/dl/v0_8/ciml-v0_8-ch03.pdf
- Neubig: "The Perceptron Algorithm" <u>http://www.phontron.com/slides/nlp-programming-en-05-perceptron.pdf</u>

Further Reading: Advanced

- Neubig: "Advanced Discriminative Learning"—MaxEnt w/ derivatives, SGD, SVMs, regularization http://www.phontron.com/slides/nlp-programming-en-06-discriminative.pdf
- Manning: generative vs. discriminative, MaxEnt likelihood function and derivatives http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-MEMMs-Smoothing.pdf, slides 3–20
- Daumé: linear models
 http://www.ciml.info/dl/v0_8/ciml-v0_8-ch06.pdf
- Smith: A variety of loss functions for text classification <u>http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-intro-slides.pdf</u> & http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-advanced-slides.pdf