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What is Sign-Rank?

The sign-rank of a matrix A = [Aij ] with entries in {+1,−1}
is the least rank of a real matrix B = [Bij ] with Aij ·Bij > 0
for all i, j.



Motivation and Prior Work



Why Study Sign-Rank?

Learning Theory. Sign-rank upper bounds underly the fastest
known PAC learning algorithms.

E.g., Fastest known algorithm for PAC learning DNF formulae
(Klivans and Servedio, 2003).

Circuit Complexity. Sign-rank lower bounds on a matrix
A = [f(x, y)]x,y∈{−1,1}n imply lower bounds on
Threshold-of-Majority circuits computing f .

Communication Complexity. Sign-rank characterizes the
communication model UPPcc (Paturi and Simon, 1984).

UPPcc is the most powerful communication model against
which we know how to prove lower bounds.

It is a “communication complexity analogue” of the Turing
Machine complexity class PP, which is the decisional variant of
the “counting” class #P.
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Alice& Bob&

x& y&

0&or&1&

Protocol is said to compute F if on every input (x, y), the
output is correct with probability greater than 1/2.
The cost of a protocol is the worst-case number of bits
exchanged on any input (x, y).
UPPcc(F ) is the least cost of a protocol that computes F .
UPPcc is the class of all F computed by UPPcc protocols of
polylogarithmic cost.
Paturi and Simon showed that UPPcc(F )≈ log(sign-rank(F )).
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A Brief History of Sign-Rank Lower Bounds

Alon et al. (1985) proved optimal lower bounds on the sign
rank of random matrices.

Forster (2001) nearly-optimal lower bounds on the sign-rank
of Hadamard matrices.

More generally, for any Boolean matrix with exponentially
small spectral norm.
Implies optimal UPPcc and circuit lower bounds on the
“inner-product mod 2” function.

Sherstov (2008) proved tight sign-rank lower bounds on
symmetric predicates, i.e., matrices of the form
[D(

∑
i xi ∧ yi)]x,y∈{−1,1}n .

Razborov and Sherstov (2008) proved exponential sign-rank
lower bound for a function in AC0 (more context to follow).



A Motivating Question for This Work

An important question in complexity theory is to determine
the relative power of alternation (as captured by the
polynomial-hierarchy PH), and counting (as captured by #P
and its decisional variant PP).

Both PH and PP generalize NP in natural ways.

Toda famously showed that their power is related: PH ⊆ PPP.

But it is open how much of PH is contained in PP itself.

Babai, Frankl, and Simon (1986) introduced the
communication analogues of Turing Machine complexity
classes.

Main question they left open was the relationship between
PHcc and UPPcc.

Is PHcc ⊆ UPPcc?
Is UPPcc ⊆ PHcc?
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Prior Work By Razborov and Sherstov (2008)

Razborov and Sherstov (2008) resolved the first question left
open by Babai, Frankl, and Simon!

They gave a function F in PHcc (actually, in Σcc
2 ) such that F

has sign-rank exp(Ω(n1/3)).

Their proof is heavily tailored to this specific F .



Our Results



Summary of our Results

We generalize Razborov and Sherstov’s result, giving
exponential sign-rank lower bounds for a broad class of
functions in AC0 and PHcc.

Our class includes the function used by Razborov and Sherstov.

As a corollary of our general result, we improve their lower
bound on the sign-rank of Σcc

2 , from exp(Ω(n1/3)) to

exp(Ω(n2/5)).

Upcoming work with Bun and Chen: Applies our methods to
exhibit a problem in AMcc that is not in UPPcc.
This answers a question of Göös, Pitassi, and Watson (ICALP
2016).
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Techniques



Outline for the Remainder of the Talk

Background:

Threshold degree and its relation to sign rank.
The Pattern Matrix Method (PMM).
Combining PMM with “smooth dual witnesses” to prove
sign-rank lower bounds.

Our results: new construction of smooth dual witnesses, to
give stronger and more general sign-rank lower bounds.



Threshold Degree

A real polynomial p sign-represents f : {−1, 1}n → {−1, 1} if

p(x) · f(x) > 0 ∀x ∈ {−1, 1}n

deg±(f) = minimum degree needed to sign-represent f



Communication Upper Bounds from Threshold Degree Upper Bounds

Let F : {−1, 1}n × {−1, 1}n → {−1, 1}.
Claim: Let d = deg±(F ). There is a UPPcc protocol of cost
O(d log n) computing F (x, y).

Proof: Let p(x, y) =
∑
|T |≤d cT · χT (x, y) sign-represent F .

Alice chooses a parity T with probability proportional to |cT |,
and sends to Bob T and sgn(cT ) · χT∩[n](y).

From this, Bob can compute and output sgn(cT ) · χT (x, y).

Since p sign-represents F , the output is correct with
probability strictly greater than 1/2.

Communication cost is clearly O(d log n).
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Communication Lower Bounds from Threshold Degree
Lower Bounds

The previous slide showed that threshold degree upper bounds
for F (x, y) imply communication upper bounds for F (x, y).

Can we use threshold degree lower bounds for F (x, y) to
establish communication lower bounds for F (x, y)?

Answer: No. Bad Example: The parity function has linear
threshold degree, but constant communication complexity.

Next Slide: Something almost as good.

A way to turn threshold degree lower bounds for f into
communication lower bounds for a related function F (x, y).
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The Pattern Matrix Method (Sherstov, 2008)

Goal: Take a function f : {−1, 1}n → {−1, 1} with threshold
degree (at least) d, and turn it into a 22n × 22n matrix F of
sign-rank at least 2d.

(Sherstov, 2008) comes close to this, but falls a little short.
Sherstov turns f into a matrix F , called the “pattern matrix”
of f , satisfying the following property:

Any randomized communication protocol that computes F
correctly with probability p = 1/2 + 2−d has cost at least d.
Note: to get a sign-rank/UPPcc lower bound, we would need
the above to hold for any p > 1/2.

Specifically, F (x, y) is set to f evaluated at an input derived
from (x, y) in a simple way.
y “selects” n bits of x, flips some of them, and feeds the result
into f .
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Proof Sketch for the Pattern Matrix Method: Dual Witnesses

By linear programming duality: f : {−1, 1}n → {−1, 1} has
threshold degree at least d⇐⇒ ∃ a distribution µ on
{−1, 1}n under which f is uncorrelated with any polynomial
of degree at most d.

Think of µ as a dual “witness” to the fact that the threshold
degree of f is large.

Sherstov shows that µ can be “lifted” into a distribution over
{−1, 1}2n × {−1, 1}2n under which F (x, y) cannot be
computed with probability 1/2 + 2−d, unless the
communication cost is at least d.
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Smooth Dual Witnesses Imply Sign-Rank Lower Bounds

Let f : {−1, 1}n → {−1, 1} satisfy deg±(f) ≥ d.

Razborov and Sherstov showed that if there is a dual witness
µ for f that additionally satisfies a smoothness condition, then
the pattern matrix F of f actually has sign-rank at least 2d.

Specifically, µ is said to be smooth if µ(x) > 2−O(d) · 2−n for
all but a 2−d fraction of inputs x.

The bulk of Razborov-Sherstov is showing that there is a DNF
formula f with large threshold degree and smooth dual
witness to this fact.

Since f is computed by a DNF formula, its pattern matrix is
easily seen to be in Σcc

2 .
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A DNF With a Smooth Dual Witness

Minsky and Papert (1969) famously exhibited a DNF formula
f = ORn1/3 ◦ANDn2/3 with threshold degree Ω(n1/3).

Razborov and Sherstov show that f has a smooth dual
witness to this fact.

They did not explicitly construct the smooth dual witness; they
just showed that one exists.



Our Results: New Construction of Smooth Duals



Our Results and Methods

Let ORd denote the OR function on d bits.
We identify a class of functions Cd, so that if h ∈ Cd, then
there is a smooth dual witness for the fact that
deg±(ORd ◦h) ≥ d.

Roughly, Cd corresponds to the set of functions h that cannot
be uniformly approximated to error 1/3 by degree d
polynomials.
Examples:

ANDk is in Cd for d =
√
k.

By setting k = n2/3, we recover Razborov and Sherstov’s
result for the function ORn1/3 ◦ANDn2/3 .
The function EDk is in Cd for d = k2/3.
EDk is computed by a CNF with logarithmic bottom fan-in
=⇒ its pattern matrix is in Σcc

2 .
Let f = ORn2/5 ◦EDn3/5 . Our result implies that there is
smooth dual witness for the fact that deg±(f)≥ n2/5.

Hence, the pattern matrix of f has sign-rank exp(Ω(n2/5)).
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Smooth Witness Construction

(Sherstov, STOC 2014) gave a dual witness showing that
deg±(ORd ◦h) ≥ d for any h ∈ Cd.

But his dual witness isn’t smooth.

We substantially modify his construction to give a smooth
dual witness.
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