Improved Bounds on the Sign-Rank of AC^0

Mark Bun1 Justin Thaler2

1Harvard University \rightarrow Princeton University 2Yahoo Labs
What is Sign-Rank?

- The sign-rank of a matrix $A = [A_{ij}]$ with entries in $\{+1, -1\}$ is the least rank of a real matrix $B = [B_{ij}]$ with $A_{ij} \cdot B_{ij} > 0$ for all i, j.

Motivation and Prior Work
Why Study Sign-Rank?

- **Learning Theory.** Sign-rank upper bounds underly the fastest known PAC learning algorithms.
 - E.g., Fastest known algorithm for PAC learning DNF formulae (Klivans and Servedio, 2003).

- **Circuit Complexity.** Sign-rank lower bounds on a matrix $A = [f(x, y)]_{x,y \in \{-1,1\}^n}$ imply lower bounds on Threshold-of-Majority circuits computing f.

- **Communication Complexity.** Sign-rank characterizes the communication model UPP^{cc} (Paturi and Simon, 1984).
 - UPP^{cc} is the most powerful communication model against which we know how to prove lower bounds.
Why Study Sign-Rank?

- **Learning Theory.** Sign-rank upper bounds underly the fastest known PAC learning algorithms.
 - E.g., Fastest known algorithm for PAC learning DNF formulae (Klivans and Servedio, 2003).

- **Circuit Complexity.** Sign-rank lower bounds on a matrix \(A = [f(x, y)]_{x,y\in\{-1,1\}^n} \) imply lower bounds on Threshold-of-Majority circuits computing \(f \).

- **Communication Complexity.** Sign-rank characterizes the communication model UPP\(^{cc} \) (Paturi and Simon, 1984).
 - UPP\(^{cc} \) is the most powerful communication model against which we know how to prove lower bounds.
 - It is a “communication complexity analogue” of the Turing Machine complexity class PP, which is the decisional variant of the “counting” class \(\#P \).
Definition of the UPPcc Communication Model

Alice

x

Goal: Compute $F(x,y)$

Bob

y
Definition of the UPPcc Communication Model

Alice

Bob

Goal: Compute $F(x,y)$

x

y
Definition of the UPP^{cc} Communication Model
Definition of the UPPcc Communication Model

A protocol is said to compute F if on every input (x, y), the output is correct with probability greater than $1/2$. The cost of a protocol is the worst-case number of bits exchanged on any input (x, y). UPP$^{cc}(F)$ is the least cost of a protocol that computes F. UPPcc is the class of all F computed by UPPcc protocols of polylogarithmic cost.

Paturi and Simon showed that $\text{UPP}^{cc}(F) \approx \log(\text{sign-rank}(F))$.

Diagram: Alice and Bob exchange messages x and y with arrows indicating the flow of information.
Definition of the UPPcc Communication Model

- Protocol is said to compute F if on every input (x, y), the output is correct with probability greater than $1/2$.
- The cost of a protocol is the worst-case number of bits exchanged on any input (x, y).
Definition of the UPP^{cc} Communication Model

- Protocol is said to compute F if on every input (x, y), the output is correct with probability greater than $1/2$.
- The cost of a protocol is the worst-case number of bits exchanged on any input (x, y).
- $\text{UPP}^{cc}(F)$ is the least cost of a protocol that computes F.
- UPP^{cc} is the class of all F computed by UPP^{cc} protocols of polylogarithmic cost.
Definition of the UPP^{cc} Communication Model

- Protocol is said to compute F if on every input (x, y), the output is correct with probability greater than $1/2$.
- The cost of a protocol is the worst-case number of bits exchanged on any input (x, y).
- $\text{UPP}^{cc}(F)$ is the least cost of a protocol that computes F.
- UPP^{cc} is the class of all F computed by UPP^{cc} protocols of polylogarithmic cost.
- Paturi and Simon showed that $\text{UPP}^{cc}(F) \approx \log(\text{sign-rank}(F))$.
A Brief History of Sign-Rank Lower Bounds

- Alon et al. (1985) proved optimal lower bounds on the sign rank of random matrices.
 - More generally, for any Boolean matrix with exponentially small spectral norm.
 - Implies optimal UPPcc and circuit lower bounds on the “inner-product mod 2” function.
- Sherstov (2008) proved tight sign-rank lower bounds on symmetric predicates, i.e., matrices of the form
 \[D(\sum_i x_i \land y_i) \] \(x, y \in \{-1, 1\}^n\).
- Razborov and Sherstov (2008) proved exponential sign-rank lower bound for a function in AC0 (more context to follow).
A Motivating Question for This Work

- An important question in complexity theory is to determine the relative power of alternation (as captured by the polynomial-hierarchy PH), and counting (as captured by \(#P\) and its decisional variant PP).
- Both PH and PP generalize NP in natural ways.
- Toda famously showed that their power is related: \(PH \subseteq P^{PP}\).
- But it is open how much of PH is contained in PP itself.
An important question in complexity theory is to determine the relative power of alternation (as captured by the polynomial-hierarchy PH), and counting (as captured by \#P and its decisional variant PP).

Both PH and PP generalize NP in natural ways.

Toda famously showed that their power is related: \(\text{PH} \subseteq \text{P}^{\text{PP}} \).

But it is open how much of PH is contained in PP itself.

Babai, Frankl, and Simon (1986) introduced the communication analogues of Turing Machine complexity classes.

Main question they left open was the relationship between \(\text{PH}^{cc} \) and \(\text{UPP}^{cc} \).

- Is \(\text{PH}^{cc} \subseteq \text{UPP}^{cc} \)?
- Is \(\text{UPP}^{cc} \subseteq \text{PH}^{cc} \)?
Razborov and Sherstov (2008) resolved the first question left open by Babai, Frankl, and Simon!

They gave a function F in PH^{cc} (actually, in Σ_2^{cc}) such that F has sign-rank $\exp(\Omega(n^{1/3}))$.

Their proof is heavily tailored to this specific F.
Our Results
Summary of our Results

- We generalize Razborov and Sherstov’s result, giving exponential sign-rank lower bounds for a broad class of functions in AC^0 and PH^{cc}.
 - Our class includes the function used by Razborov and Sherstov.
- As a corollary of our general result, we improve their lower bound on the sign-rank of Σ_2^{cc}, from $\exp(\Omega(n^{1/3}))$ to $\exp(\Omega(n^{2/5}))$.

Upcoming work with Bun and Chen: Applies our methods to exhibit a problem in AM^{cc} that is not in UPP^{cc}. This answers a question of G"{o}"{o}s, Pitassi, and Watson (ICALP 2016).
We generalize Razborov and Sherstov’s result, giving exponential sign-rank lower bounds for a broad class of functions in AC^0 and PH^{cc}.

- Our class includes the function used by Razborov and Sherstov.

As a corollary of our general result, we improve their lower bound on the sign-rank of Σ_2^{cc}, from $\exp(\Omega(n^{1/3}))$ to $\exp(\Omega(n^{2/5}))$.

- Upcoming work with Bun and Chen: Applies our methods to exhibit a problem in AM^{cc} that is not in UPP^{cc}.
- This answers a question of Göös, Pitassi, and Watson (ICALP 2016).
Techniques
Outline for the Remainder of the Talk

- Background:
 - Threshold degree and its relation to sign rank.
 - The Pattern Matrix Method (PMM).
 - Combining PMM with “smooth dual witnesses” to prove sign-rank lower bounds.
- Our results: new construction of smooth dual witnesses, to give stronger and more general sign-rank lower bounds.
A real polynomial p sign-represents $f : \{-1, 1\}^n \to \{-1, 1\}$ if

$$p(x) \cdot f(x) > 0 \quad \forall x \in \{-1, 1\}^n$$

$\deg_{\pm}(f) =$ minimum degree needed to sign-represent f
Let $F: \{-1, 1\}^n \times \{-1, 1\}^n \to \{-1, 1\}$.

Claim: Let $d = \deg_{\pm}(F)$. There is a UPPcc protocol of cost $O(d \log n)$ computing $F(x, y)$.
Let $F : \{-1, 1\}^n \times \{-1, 1\}^n \to \{-1, 1\}$.

Claim: Let $d = \deg_{\pm}(F)$. There is a UPP^{cc} protocol of cost $O(d \log n)$ computing $F(x, y)$.

Proof: Let $p(x, y) = \sum_{|T| \leq d} c_T \cdot \chi_T(x, y)$ sign-represent F.

Alice chooses a parity T with probability proportional to $|c_T|$, and sends to Bob T and $\text{sgn}(c_T) \cdot \chi_T \cap [n](y)$.

From this, Bob can compute and output $\text{sgn}(c_T) \cdot \chi_T(x, y)$.
Let $F : \{-1, 1\}^n \times \{-1, 1\}^n \to \{-1, 1\}$.

Claim: Let $d = \deg_{\pm}(F)$. There is a UPPcc protocol of cost $O(d \log n)$ computing $F(x, y)$.

Proof: Let $p(x, y) = \sum_{|T| \leq d} c_T \cdot \chi_T(x, y)$ sign-represent F.

Alice chooses a parity T with probability proportional to $|c_T|$, and sends to Bob T and $\text{sgn}(c_T) \cdot \chi_T \cap [n](y)$.

From this, Bob can compute and output $\text{sgn}(c_T) \cdot \chi_T(x, y)$.

Since p sign-represents F, the output is correct with probability strictly greater than $1/2$.

Communication cost is clearly $O(d \log n)$.
The previous slide showed that threshold degree upper bounds for $F(x, y)$ imply communication upper bounds for $F(x, y)$.

Can we use threshold degree lower bounds for $F(x, y)$ to establish communication lower bounds for $F(x, y)$?
The previous slide showed that threshold degree upper bounds for $F(x, y)$ imply communication upper bounds for $F(x, y)$.

Can we use threshold degree lower bounds for $F(x, y)$ to establish communication lower bounds for $F(x, y)$?

Answer: No. Bad Example: The parity function has linear threshold degree, but constant communication complexity.
The previous slide showed that threshold degree upper bounds for $F(x, y)$ imply communication upper bounds for $F(x, y)$.

Can we use threshold degree lower bounds for $F(x, y)$ to establish communication lower bounds for $F(x, y)$?

Answer: No. Bad Example: The parity function has linear threshold degree, but constant communication complexity.

Next Slide: Something almost as good.

A way to turn threshold degree lower bounds for f into communication lower bounds for a related function $F(x, y)$.
Goal: Take a function \(f : \{-1, 1\}^n \rightarrow \{-1, 1\} \) with threshold degree (at least) \(d \), and turn it into a \(2^{2n} \times 2^{2n} \) matrix \(F \) of sign-rank at least \(2^d \).
The Pattern Matrix Method (Sherstov, 2008)

- Goal: Take a function $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ with threshold degree (at least) d, and turn it into a $2^{2n} \times 2^{2n}$ matrix F of sign-rank at least 2^d.
- (Sherstov, 2008) comes close to this, but falls a little short.
 - Sherstov turns f into a matrix F, called the “pattern matrix” of f, satisfying the following property:
 - Any randomized communication protocol that computes F correctly with probability $p = 1/2 + 2^{-d}$ has cost at least d.
The Pattern Matrix Method (Sherstov, 2008)

- Goal: Take a function $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ with threshold degree (at least) d, and turn it into a $2^{2n} \times 2^{2n}$ matrix F of sign-rank at least 2^d.
- (Sherstov, 2008) comes close to this, but falls a little short.
 - Sherstov turns f into a matrix F, called the “pattern matrix” of f, satisfying the following property:
 - Any randomized communication protocol that computes F correctly with probability $p = 1/2 + 2^{-d}$ has cost at least d.
 - Note: to get a sign-rank/UPPcc lower bound, we would need the above to hold for any $p > 1/2$.

The Pattern Matrix Method (Sherstov, 2008)

- Goal: Take a function $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ with threshold degree (at least) d, and turn it into a $2^{2n} \times 2^{2n}$ matrix F of sign-rank at least 2^d.
- (Sherstov, 2008) comes close to this, but falls a little short.
 - Sherstov turns f into a matrix F, called the “pattern matrix” of f, satisfying the following property:
 - Any randomized communication protocol that computes F correctly with probability $p = 1/2 + 2^{-d}$ has cost at least d.
 - Note: to get a sign-rank/UPPcc lower bound, we would need the above to hold for any $p > 1/2$.
 - Specifically, $F(x, y)$ is set to f evaluated at an input derived from (x, y) in a simple way.
The Pattern Matrix Method (Sherstov, 2008)

- Goal: Take a function \(f: \{-1, 1\}^n \rightarrow \{-1, 1\} \) with threshold degree (at least) \(d \), and turn it into a \(2^{2n} \times 2^{2n} \) matrix \(F \) of sign-rank at least \(2^d \).
- (Sherstov, 2008) comes close to this, but falls a little short.
 - Sherstov turns \(f \) into a matrix \(F \), called the “pattern matrix” of \(f \), satisfying the following property:
 - Any randomized communication protocol that computes \(F \) correctly with probability \(p = 1/2 + 2^{-d} \) has cost at least \(d \).
 - Note: to get a sign-rank/UPP\(^cc\) lower bound, we would need the above to hold for any \(p > 1/2 \).
 - Specifically, \(F(x, y) \) is set to \(f \) evaluated at an input derived from \((x, y) \) in a simple way.
 - \(y \) “selects” \(n \) bits of \(x \), flips some of them, and feeds the result into \(f \).
By linear programming duality: $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ has threshold degree at least $d \iff \exists$ a distribution μ on $\{-1, 1\}^n$ under which f is uncorrelated with any polynomial of degree at most d.

Think of μ as a dual “witness” to the fact that the threshold degree of f is large.

Sherstov shows that μ can be “lifted” into a distribution over $\{-1, 1\}^{2n} \times \{-1, 1\}^{2n}$ under which $F(x,y)$ cannot be computed with probability $\frac{1}{2} + 2^{-d}$, unless the communication cost is at least d.
Proof Sketch for the Pattern Matrix Method: Dual Witnesses

- By linear programming duality: \(f : \{−1, 1\}^n \rightarrow \{−1, 1\} \) has threshold degree at least \(d \) \(\iff \exists \) a distribution \(\mu \) on \(\{−1, 1\}^n \) under which \(f \) is uncorrelated with any polynomial of degree at most \(d \).

- Think of \(\mu \) as a dual “witness” to the fact that the threshold degree of \(f \) is large.
Proof Sketch for the Pattern Matrix Method: Dual Witnesses

- By linear programming duality: \(f : \{-1, 1\}^n \rightarrow \{-1, 1\} \) has threshold degree at least \(d \) \iff \exists a distribution \(\mu \) on \(\{-1, 1\}^n \) under which \(f \) is uncorrelated with any polynomial of degree at most \(d \).

- Think of \(\mu \) as a dual “witness” to the fact that the threshold degree of \(f \) is large.

- Sherstov shows that \(\mu \) can be “lifted” into a distribution over \(\{-1, 1\}^{2n} \times \{-1, 1\}^{2n} \) under which \(F(x,y) \) cannot be computed with probability \(1/2 + 2^{-d} \), unless the communication cost is at least \(d \).
Let $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ satisfy $\deg_{\pm}(f) \geq d$.

Razborov and Sherstov showed that if there is a dual witness μ for f that additionally satisfies a smoothness condition, then the pattern matrix F of f actually has sign-rank at least 2^d.
Let \(f : \{-1, 1\}^n \rightarrow \{-1, 1\} \) satisfy \(\text{deg}_\pm(f) \geq d \).

Razborov and Sherstov showed that if there is a dual witness \(\mu \) for \(f \) that additionally satisfies a smoothness condition, then the pattern matrix \(F \) of \(f \) actually has sign-rank at least \(2^d \).

Specifically, \(\mu \) is said to be smooth if \(\mu(x) > 2^{-O(d)} \cdot 2^{-n} \) for all but a \(2^{-d} \) fraction of inputs \(x \).
Let $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ satisfy $\deg_{\pm}(f) \geq d$.

Razborov and Sherstov showed that if there is a dual witness μ for f that additionally satisfies a smoothness condition, then the pattern matrix F of f actually has sign-rank at least 2^d.

Specifically, μ is said to be smooth if $\mu(x) > 2^{-O(d)} \cdot 2^{-n}$ for all but a 2^{-d} fraction of inputs x.

The bulk of Razborov-Sherstov is showing that there is a DNF formula f with large threshold degree and smooth dual witness to this fact.

Since f is computed by a DNF formula, its pattern matrix is easily seen to be in Σ^c_2.
Minsky and Papert (1969) famously exhibited a DNF formula $f = \text{OR}_{n^{1/3}} \circ \text{AND}_{n^{2/3}}$ with threshold degree $\Omega(n^{1/3})$.

Razborov and Sherstov show that f has a smooth dual witness to this fact.

They did not explicitly construct the smooth dual witness; they just showed that one exists.
Our Results: New Construction of Smooth Duals
Our Results and Methods

- Let OR_d denote the OR function on d bits.
- We identify a class of functions C_d, so that if $h \in C_d$, then there is a smooth dual witness for the fact that $\text{deg}_\pm(\text{OR}_d \circ h) \geq d$.

Let OR_d denote the OR function on d bits.

We identify a class of functions C_d, so that if $h \in C_d$, then there is a smooth dual witness for the fact that

$$\deg_\pm(\text{OR}_d \circ h) \geq d.$$

Roughly, C_d corresponds to the set of functions h that cannot be uniformly approximated to error $1/3$ by degree d polynomials.
Our Results and Methods

- Let OR_d denote the OR function on d bits.
- We identify a class of functions C_d, so that if $h \in C_d$, then there is a smooth dual witness for the fact that $\deg_+(\text{OR}_d \circ h) \geq d$.
- Roughly, C_d corresponds to the set of functions h that cannot be uniformly approximated to error $1/3$ by degree d polynomials.
- Examples:
 - AND_k is in C_d for $d = \sqrt{k}$.
 - By setting $k = n^{2/3}$, we recover Razborov and Sherstov’s result for the function $\text{OR}_{n^{1/3}} \circ \text{AND}_{n^{2/3}}$.
Our Results and Methods

- Let OR_d denote the OR function on d bits.
- We identify a class of functions C_d, so that if $h \in C_d$, then there is a smooth dual witness for the fact that $\deg_\pm(\text{OR}_d \circ h) \geq d$.
- Roughly, C_d corresponds to the set of functions h that cannot be uniformly approximated to error $1/3$ by degree d polynomials.
- Examples:
 - AND_k is in C_d for $d = \sqrt{k}$.
 - By setting $k = n^{2/3}$, we recover Razborov and Sherstov's result for the function $\text{OR}_{n^{1/3}} \circ \text{AND}_{n^{2/3}}$.
 - The function ED_k is in C_d for $d = k^{2/3}$.
Our Results and Methods

- Let OR_d denote the OR function on d bits.
- We identify a class of functions C_d, so that if $h \in C_d$, then there is a smooth dual witness for the fact that $\deg_{\pm}(\text{OR}_d \circ h) \geq d$.
- Roughly, C_d corresponds to the set of functions h that cannot be uniformly approximated to error $1/3$ by degree d polynomials.
- Examples:
 - AND_k is in C_d for $d = \sqrt{k}$.
 - By setting $k = n^{2/3}$, we recover Razborov and Sherstov’s result for the function $\text{OR}_{n^{1/3}} \circ \text{AND}_{n^{2/3}}$.
 - The function ED_k is in C_d for $d = k^{2/3}$.
 - ED_k is computed by a CNF with logarithmic bottom fan-in \implies its pattern matrix is in Σ^c_2.
Let OR_d denote the OR function on d bits.

We identify a class of functions \mathcal{C}_d, so that if $h \in \mathcal{C}_d$, then there is a smooth dual witness for the fact that
\[\deg_{\pm}(\text{OR}_d \circ h) \geq d. \]

Roughly, \mathcal{C}_d corresponds to the set of functions h that cannot be uniformly approximated to error $1/3$ by degree d polynomials.

Examples:

- AND_k is in \mathcal{C}_d for $d = \sqrt{k}$.
- By setting $k = n^{2/3}$, we recover Razborov and Sherstov’s result for the function $\text{OR}_{n^{1/3}} \circ \text{AND}_{n^{2/3}}$.
- The function ED_k is in \mathcal{C}_d for $d = k^{2/3}$.
- ED_k is computed by a CNF with logarithmic bottom fan-in \implies its pattern matrix is in Σ^c_2.
- Let $f = \text{OR}_{n^{2/5}} \circ \text{ED}_{n^{3/5}}$. Our result implies that there is smooth dual witness for the fact that $\deg_{\pm}(f) \geq n^{2/5}$.
Our Results and Methods

- Let OR_d denote the OR function on d bits.
- We identify a class of functions C_d, so that if $h \in C_d$, then there is a smooth dual witness for the fact that $\deg_{\pm}(\text{OR}_d \circ h) \geq d$.
- Roughly, C_d corresponds to the set of functions h that cannot be uniformly approximated to error $1/3$ by degree d polynomials.
- Examples:
 - AND_k is in C_d for $d = \sqrt{k}$.
 - By setting $k = n^{2/3}$, we recover Razborov and Sherstov’s result for the function $\text{OR}_{n^{1/3}} \circ \text{AND}_{n^{2/3}}$.
 - The function ED_k is in C_d for $d = k^{2/3}$.
 - ED_k is computed by a CNF with logarithmic bottom fan-in \implies its pattern matrix is in Σ^c_2.
 - Let $f = \text{OR}_{n^{2/5}} \circ \text{ED}_{n^{3/5}}$. Our result implies that there is smooth dual witness for the fact that $\deg_{\pm}(f) \geq n^{2/5}$.
 - Hence, the pattern matrix of f has sign-rank $\exp(\Omega(n^{2/5}))$.
(Sherstov, STOC 2014) gave a dual witness showing that \(\deg_{\pm}(\text{OR}_d \circ h) \geq d \) for any \(h \in C_d \).

But his dual witness isn’t smooth.

We substantially modify his construction to give a smooth dual witness.