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Abstract

The approximate degree of a Boolean function f captures how well f can be approximated
pointwise by low-degree polynomials. This article surveys what we know about approximate
degree and illustrates some of its applications in theoretical computer science.

1 Introduction

The ability (or inability) to represent or approximate Boolean functions by polynomials is a central
concept in complexity theory, underlying interactive and probabilistically checkable proof systems,
circuit lower bounds, quantum complexity theory, and more. In this column, we survey some
of what is known about our personal favorite notion of approximation by polynomials. The ε-
approximate degree of a Boolean function f : {−1, 1}n → {−1, 1}, denoted d̃egε(f), is the least
total degree of a real polynomial p : {−1, 1}n → R such that

|f(x)− p(x)| ≤ ε for all x ∈ {−1, 1}n. (1)

Every Boolean function is approximated to error ε = 1 by the constant 0 function, implying that
d̃eg1(f) = 0 for all such f . However, whenever ε is strictly less than 1, d̃egε(f) is a fascinating
notion with a rich theory and applications throughout theoretical computer science.

Applications of approximate degree lower bounds. The study of approximate degree is it-
self a “proto-complexity theory” [Aar08], with pointwise approximation by real polynomials serving
as a rudimentary model of computation, and degree acting as a measure of complexity. Moreover,
when f has large (say, nΩ(1)) approximate degree, it is also hard to compute in a variety of other
computational models. Different models correspond to different settings of the error parameter ε
with two regimes of particular interest. First, if d̃eg1/3(f) is large, then f cannot be efficiently
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evaluated by bounded-error quantum query algorithms [BBC+01].4 This connection is often re-

ferred to as the “polynomial method in quantum computing.” Second, if d̃egε(f) is large for every
ε < 1, then f is difficult to compute by unbounded-error randomized (or quantum) query algo-
rithms. These are randomized algorithms that are only required to do slightly better than random
guessing, and correspond to the complexity class PP (short for probabilistic polynomial time) de-
fined by Gill [Gil77]. This connection has recently been used to answer long-standing questions in
relativized complexity, e.g., in studying the power of statistical zero-knowledge proofs.

Applications of approximate degree upper bounds. We’ve seen how lower bounds on
d̃egε(f) imply hardness results for computing f . There are also many applications of upper

bounds on d̃egε(f), typically in the design of fast algorithms in areas such as learning theory
[KS04, KKMS08] and differential privacy [TUV12, CTUW14]. Approximate degree upper bounds
have also been used to prove complexity lower bounds. Here is an illustrative example. Suppose
one shows that every circuit over n-bit inputs in a class C can be approximated to error ε < 1
by a polynomial of degree o(n). We know that simple functions f such as Majority and Parity
require approximate degree Ω(n), and therefore cannot be computed by circuits in C. In fact, if
ε = 1/3, then one can even conclude that C is not powerful enough to compute these functions on
average, meaning that for every circuit C ∈ C, we have Prx∼{−1,1}n [C(x) = f(x)] ≤ 1/2 + 1

nω(1)

[Tal17, BKT19]. This principle underlies several state-of-the-art lower bounds for frontier problems
in circuit complexity.

Goals of this survey. This survey covers recent progress on proving approximate degree lower
and upper bounds and describes some applications of the new bounds to oracle separations, quan-
tum query and communication complexity, and circuit complexity. On the lower bounds side,
progress has followed from an approach called the method of dual polynomials, which seeks to
prove approximate degree lower bounds by constructing solutions to (the dual of) a certain linear
program that captures the approximate degree of any function. This survey explains how several
of these advances have been unlocked by a particularly simple and elegant technique—called dual
block composition—for constructing solutions to this dual linear program.

2 Preliminaries

We often use a subscript after a function to clarify the number of variables over which it is defined.
For example, ORn denotes the function over domain {−1, 1}n that evaluates to −1 if at least one
of its inputs equals −1, and otherwise evaluates to 1. (Throughout this survey, −1 is interpreted
as logical TRUE and +1 is interpreted as logical FALSE.) For any input x ∈ {−1, 1}n, we let
|x| =

∑n
i=1(1 − xi)/2 denote the number of coordinates of x equal to −1 and refer to |x| as the

Hamming weight of x. We let

A(x) =
n∑
i=1

xi.

Note that |x| andA(x) are both degree-1 polynomials in x. We use [n] to denote the set {1, 2, . . . , n},
[n]∗ to denote {0, 1, . . . , n}, and 1n to denote the input in {−1, 1}n in which all entries are 1. For

4The choice of constant 1/3 is made for aesthetic reasons. Replacing ε = 1/3 with any other constant in (0, 1)
changes the ε-approximate degree of f by at most a constant factor.
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a real number t, we let sgn(t) equal 1 if t is nonnegative and equal −1 if t is negative.
For two functions fm, gb, we denote by fm ◦ gb the block-composed function over domain(

{−1, 1}b
)m

, i.e., (fm ◦ gb) (x1, . . . , xm) := f(g(x1), . . . , g(xm)). Given probability distributions
µ1, . . . , µm over {−1, 1}b, we let ⊗mi=1µi denote the product distribution over (x1, . . . , xm) ∈(
{−1, 1}b

)m
where xi ∼ µi. Given a single probability distribution µ, the distribution µ⊗n is

the product distribution over (x1, . . . , xn) where each xi ∼ µ.
We assume that all polynomials with domain {−1, 1}n are multilinear. This is without loss of

generality because x2
i = 1 whenever xi ∈ {−1, 1}. We denote the degree of a univariate polynomial

q by deg(q). For a multivariate polynomial p, we denote by deg(p) the total degree of p, i.e., the
maximum sum of variable degrees over all monomials of p with nonzero coefficients.

Recall that in applications of approximate degree, two regimes for the error parameter ε are of
particular relevance. The first is ε = 1/3. For brevity, we use d̃eg(f) as a shorthand for d̃eg1/3(f),
and refer to this quantity without qualification as the approximate degree of f . The latter regime
of special interest considers all ε arbitrarily close to, but strictly less than, 1. This regime is
equivalent to a notion called the threshold degree of f , denoted deg±(f), which is the least degree
of a polynomial p such that

p(x) · f(x) > 0 for all x ∈ {−1, 1}n. (2)

It is not hard to see that the threshold degree of f is greater than d if and only if for every ε < 1,
f cannot be approximated to error ε by any degree-d polynomial. Any function p that satisfies
Condition (2) is said to sign-represent f . If a nonzero p satisfies Condition (2) with weak rather
than strict inequality, p is said to weakly sign-represent f .

3 Warm-Up 1: The Approximate Degree of ORn

To get acquainted with approximate degree, let us study the function ORn, which is well-known to
have approximate degree Θ(

√
n) [NS94].

3.1 O(
√
n) Degree Upper Bound

The upper bound is almost an immediate consequence of the existence of Chebyshev polynomials.
These polynomials naturally arise in the context of approximate degree because they are extremal
for a classical result in approximation theory called Markov’s inequality [Mar90].5 This inequality
states that if G is degree-d polynomial that is bounded over the interval [−1, 1], then its derivative
G′(t) cannot be too large at any point within the interval.

Lemma 1. (Markov’s inequality) Let G : [−1, 1]→ [−1, 1] be a real polynomial of degree at most
d. Then maxt∈[−1,1] |G′(t)| ≤ d2.

The Chebyshev polynomials are exactly extremal for Markov’s inequality: For any integer d > 0,
the degree-d Chebyshev polynomial Td satisfies |Td(t)| ≤ 1 for all t ∈ [−1, 1], while T ′d(1) = d2. In
particular, for d = b

√
2nc, T ′d(1) ≈ 2n. By shifting and scaling Td without increasing its degree

(i.e., by performing an affine transformation), we can obtain a univariate polynomial q that maps

5Not to be confused with Markov’s inequality from probability theory, but rather a special case of the “Markov
brothers’ inequality” attributed jointly to A.A. Markov and V.A. Markov.
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(a) The degree-24 Chebyshev polynomial
T24, which has derivative 242 = 576 at
input 1.

(b) The polynomial q from Equation (3) with d = 24 (used to
approximate ORn for n = 172 = 289).

1 to 1 and maps the entire interval [−1, 1 − 2/n] to [−1,−2/3]. That is, as its input t decreases
from 1, the polynomial q “jumps” very quickly from 1 down toward −1, and stays near −1 until t
leaves the unit interval. Specifically, the following polynomial achieves the desired behavior:

q(t) = 2 · Td(t+ 4/d2)

Td(1 + 4/d2)
− 1. (3)

See Figures (a) and (b) for illustrations of Td(t) and q(t) when n = 172 = 289 and d = b
√

2nc = 24.
The behavior displayed by q is exactly what we need to approximate the OR function. This

is because ORn evaluates to 1 on the unique input x with A(x)/n = 1 and evaluates to −1 on all
other inputs. Indeed, recalling that A(x) =

∑n
i=1 xi, the n-variate polynomial

p(x) := q (A(x)/n) (4)

has total degree at most deg(q), and approximates the OR function pointwise to error at most 1/3.

3.2 Ω(
√
n) Lower Bound via Symmetrization

Prior to the method of dual polynomials, approximate degree lower bounds were typically proved
via a technique called symmetrization. The ethos of this technique is that univariate polynomials
are generally easier to understand than multivariate polynomials. Hence, symmetrization seeks
to reduce the task of lower bounding the ε-approximate degree of a multivariate function f to
a question about univariate polynomials. This is usually done by generically transforming an n-
variate polynomial p into a univariate polynomial q without increasing its degree. One then argues
that if p satisfies Condition (1), then q exhibits some behavior that forces it to have large degree.
Since deg(q) lower bounds deg(p), one concludes that p must have large degree as well.

The transformation giving q is often built from a sequence of probability distributions Dt over
{−1, 1}n, where t ranges over a (finite or infinite) subset S of R. One then shows that for any
n-variate polynomial p, its symmetrization q(t) = Ex∼Dt [p(x)] is a univariate polynomial of degree
at most deg(p) over t ∈ S. Here are two classic examples.

• (t-biased symmetrization): Let S be the interval [−1, 1]. For t ∈ S, let µt be the distribution
over {−1, 1} with expected value t. Let Bt be the product distribution µ⊗nt on {−1, 1}n.
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• (Minsky–Papert symmetrization): Let S = [n]∗. For each t ∈ S, define Ht to be the uniform
distribution over x ∈ {−1, 1}n with Hamming weight t (i.e., exactly t entries equal to −1).

The next two lemmas show that both of these classic symmetrization techniques are indeed
degree non-increasing maps from n-variate to univariate polynomials.

Lemma 2. For any polynomial p : {−1, 1}n → R of total degree at most d, the univariate function
q(t) = Ex∼Bt [p(x)] is a polynomial of degree at most d over [−1, 1].

Proof. By linearity of expectation, it is without loss of generality to consider a polynomial p con-
sisting of a single monomial, e.g., p(x) = x1x2 . . . xd. Then since Bt is a product distribution,

Ex∼Bt [p(x)] = Ex1∼µt [x1] · Ex2∼µt [x2] · . . . · Exd∼µt [xd] = td.

Lemma 3. For any polynomial p : {−1, 1}n → R of total degree at most d, the univariate function
q(t) = Ex∼Ht [p(x)] is a polynomial of degree at most d over [n]∗.

Proof. Again, it is without loss of generality to assume p is a single monomial, e.g., p(x) =
x1x2 . . . xd. Applying the variable transformation xi 7→ (1 − xi) does not alter the degree of p,
and hence it is also without loss of generality to assume that p(x) = (1− x1) · (1− x2) · · · (1− xd).
In this case, for x ∈ {−1, 1}n we have p(x) = 2d if x1 = x2 = · · · = xd = −1 and p(x) = 0 otherwise.

For any t ∈ [n]∗, the number of n-bit inputs with Hamming weight exactly t is
(
n
t

)
, while the

number of such inputs that additionally satisfy x1 = x2 = · · · = xd = −1 is
(
n−d
t−d
)
. (We are using

the convention that if t− d is negative, then
(
n−d
t−d
)

is 0.) It follows that for any t ∈ [n]∗,

Ex∼Ht [p(x)] = 2d ·
(
n−d
t−d
)(

n
t

) =

(
2d · (n− d)!

n!

)
· t(t− 1)(t− 2) · · · (t− d+ 1).

This is a polynomial of degree d in t.

The tight Ω(
√
n) lower bound for the approximate degree of ORn follows easily from Lemma

2 and Markov’s inequality (Lemma 1). In short, the proof applies Lemma 2 to any polynomial p
approximating ORn to derive a univariate polynomial q(t) that is bounded on the whole interval
[−1, 1] but has a large “jump” in the vicinity of t = 1 (quantitatively, a derivative of Ω(n)).
Markov’s inequality then implies that q has degree Ω(

√
n).

Theorem 4. The approximate degree of ORn is Ω(
√
n).

Proof. Let p approximate ORn to error at most 1/3, and let q be the univariate polynomial whose
existence is guaranteed by Lemma 2. Since the distribution B1 assigns probability 1 to the input
1n, we may conclude that q(1) = p(1n) ∈ [2/3, 4/3].

Now let t = 1−4/n. Then Bt assigns probability mass at most (1−2/n)n < 1/e2 to 1n. Hence,

q(1− 4/n) = Ex∼Bt [p(x)] ≤ (4/3) · 1/e2 + (−2/3) · (1− 1/e2) ≤ −1/3.

The Mean Value Theorem now implies that there is some t∗ ∈ (1− 4/n, 1) such that q′(t∗) ≥ n/4.
Finally, since it approximates ORn, the polynomial p has magnitude at most 4/3 over the entire

Boolean hypercube {−1, 1}n. Hence q(t) ∈ [−4/3, 4/3] for all t ∈ [−1, 1] as well. Applying Markov’s
inequality to 3

4q now implies that deg(p) ≥ deg(q) ≥
√

3n/16.
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Application: Quantum query and communication lower bounds. In (deterministic) query
complexity, an algorithm is given oracle access to the bits of an unknown input x ∈ {−1, 1}n. Its
goal is to evaluate a known function f on x by making as few queries to the oracle as possible.
Quantum query complexity is a generalization of this model wherein the algorithm is allowed to
make queries in superposition, and must output f(x) with probability at least 2/3. We refer the
reader to [Amb18] for details of the model and a recent survey of results. While quantum query
complexity is an information-theoretic model (i.e., the query algorithm is allowed to spend as long
as it wants to decide which bits of x to query and to process the oracle’s responses to the queries),
it turns out to capture much of the power of quantum computing: Most query-efficient quantum
algorithms can be realized as time-efficient algorithms and vice versa.

Beals et al. [BBC+01] proved a result that is central to our understanding of quantum query
complexity. They showed that any quantum query algorithm for f making at most T queries on
every input can be transformed into an approximating polynomial for f of degree at most 2T .
Hence, if d̃eg1/3(f) ≥ d, then the quantum query complexity of f is at least Ω(d).

Theorem 4 thus implies that the quantum query complexity of ORn is Ω(
√
n), matching an upper

bound achievable via Grover’s search algorithm. Equivalently, to quote the most recent tagline of
Scott Aaronson’s blog, “quantum computers need ∼

√
n queries to search a list of size n.” While

this did not give the first tight quantum query lower bound proof for ORn—it was first proved by
Bennett et al. [BBBV97] using different techniques—the proof via approximate degree has other
consequences in quantum complexity. Approximate degree lower bounds extend in a black-box
manner from quantum query to quantum communication lower bounds [She11, SZ09]. In particular,
the lower bound for ORn transfers to a tight Ω(

√
n) lower bound on the quantum communication

complexity of the Disjointness function, an important result (first proved by Razborov [Raz03])
that is not known to follow from other techniques for lower bounding quantum query complexity.

4 Warm-Up 2: The Threshold Degree of the Minsky–Papert CNF

The function ORn considered in the previous section is an interesting case study for (1/3)-
approximate degree. However, the ε-approximate degree of ORn is uninteresting for values of ε
that are substantially closer to 1. In particular, for ε ≥ 1 − 1/n, d̃egε(ORn) = 1. To see this, let
p(x) = (A(x) + 1) /n− 1. It is easy to check that |p(x)− ORn(x)| ≤ 1− 1/n for all x ∈ {−1, 1}n.

In this section, we describe a classic function called the Minsky–Papert CNF that is much harder
to approximate than ORn when the error parameter ε is close to 1. Specifically, consider the block-
composed function ANDm ◦ ORb, which is known to have deg±(ANDm ◦ ORb) = Θ̃(min{m, b1/2}).
The Minsky–Papert CNF is the function on n variables obtained by setting m = n1/3 and b = n2/3,
for which the threshold degree bound becomes Θ̃(n1/3).

The upper bound is attained via two different polynomials that sign-represent ANDm ◦ ORb,
one with degree Õ(b1/2) and one with degree m. Throughout this section, let x = (x1, . . . , xm) ∈(
{−1, 1}b

)m
denote an arbitrary input to ANDm ◦ ORb.

First upper bound. The first upper bound construction uses Chebyshev polynomials to ap-
proximate each ORb to very small error, and then combines these approximations using a linear
sign-representation of ANDm. Specifically, a slight generalization of the construction in Section 3.2
yields a polynomial p of degree O(b1/2 logm) that approximates ORb to error 1/(3m).6 Then the

6In fact, ORb can be approximated to error 1/m with degree Θ(
√
b logm) [KLS96, BCDWZ99].
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following degree-O(b1/2 logm) polynomial sign-represents MP(x):

p∗(x1, . . . , xm) := −1 +
m∑
i=1

(1 + p(xi)). (5)

Indeed, if OR(xi) = −1 for all i, then |1 + p(xi)| ≤ 1/(3m) for all i, and hence p∗(x) ≤ −2/3 < 0.
Meanwhile, if OR(xi) = 1 for even a single i, then (1 + p(xi)) ≥ 2− 1/(3m) and hence p∗(x) > 0.

Second upper bound. The second upper bound closely approximates each ORb using a ratio
of low-degree polynomials, combines these as before using a linear sign-representation of ANDm,
and then “clears the denominator” to obtain a polynomial. This is a key idea underlying Beigel,
Reingold, and Spielman’s famous result that PP is closed under intersection [BRS95]. Specifically,
there are degree-1 polynomials p(x), q(x) over domain {−1, 1}b such that the ratio p/q approximates
ORb to error 1/(3m) as follows. For M ≥ 6m, let p(x) = 1−M · |x| and q(x) = 1 +M · |x|. Then if

x = 1b, we have p(x)/q(x) = 1
1 = 1, while if x 6= 1b, we have p(x)

q(x) ∈
[
−1, 1−M

1+M

]
⊆
[
−1,−1 + 1

3m

]
.

Since p(x)/q(x) approximates ORb to error 1/(3m), by analogy with Equation (5), the following
quantity sign-represents ANDm ◦ ORb:

−1 +
m∑
i=1

(
1 +

p(xi)

q(xi)

)
. (6)

Unfortunately, Expression (6) is not itself a low-degree polynomial; rather, it is a sum of ratios of
linear polynomials. To get a polynomial that sign-represents ANDm ◦ORb, we place all terms in the
sum of Expression (6) over the common denominator r(x) =

∏m
j=1 q(xj). That is, for i = 1, . . . ,m,

let si(x) := p(xi) ·
∏
j=1,...,m : j 6=i q(xj). Then Expression (6) becomes

1

r(x)
·
m∑
i=1

si(x).

Finally, observe that r(x) > 0 for all x ∈ {−1, 1}n. Hence, multiplication by the denominator
r(x) does not alter the sign of the expression. This means that p∗(x) :=

∑m
i=1 si(x) sign-represents

ANDm ◦ ORb and is clearly a polynomial of degree at most m.

Minsky and Papert [MP69] gave a classic symmetrization argument showing that one of these
approximation techniques is always optimal for ANDm ◦ ORb.

Theorem 5. deg±(ANDm ◦ ORb) ≥ Ω(min{m, b1/2}).

Their proof used a generalization of Lemma 3 to show that if p sign-represents ANDm ◦OR4m2 ,
then there exist a polynomial q : ([4m2]∗)m → R such that q(t1, . . . , tm) > 0 iff ti = 0 for some index
i. The polynomial q can then by symmetrized once again into a univariate polynomial r : [2m]∗ → R
that changes sign m times as its input increases from 0 to 2m. Such a polynomial requires degree
at least m, so q and hence the original polynomial p do as well.
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Applications: Learning, circuits, and communication. En route to their discovery of the
fastest known algorithm for PAC learning CNF formulas, Klivans and Servedio [KS04] showed that
the threshold degree of any polynomial size CNF is at most Õ(n1/3). Up to logarithmic factors,
the Minsky–Papert CNF thus has the largest possible threshold degree amongst all CNFs.

As with bounded-error approximate degree, generic lifting theorems are known which translate
threshold degree lower bounds into communication lower bounds. For example, Sherstov [She09,
She11] showed how Theorem 5 implies an inverse exponential upper bound on the discrepancy of
a communication problem computed by a polynomial-size depth-3 circuit (hence, an exponential
lower bound on its PP communication complexity). As a consequence, such a circuit cannot be
computed by depth-2 majority circuits of subexponential size, despite the fact that quasipolynomial-
size depth-3 majority circuits can compute all of AC0 [All89]. This result was later strengthened
by Razborov and Sherstov [RS10] to show that the same polynomial-size depth-3 circuit cannot
be computed efficiently in the even more powerful UPP communication model, answering an old
open question of Babai, Frankl, and Simon [BFS86] regarding the relationship between UPP and
the communication analog of the polynomial hierarchy.

5 The Method of Dual Polynomials

Symmetrization arguments are quite powerful and have been used to determine the ε-approximate
degree of many important functions. This includes all symmetric functions—those which depend
only on the Hamming weight of the input [Pat92]. More sophisticated (and ad hoc) symmetrization
arguments have also been applied to classes of non-symmetric functions such as halfspaces [She13b,
She13c] and other functions central to quantum computing, cryptography, and circuit complexity
[MP69, AS04], including the Minsky–Papert CNF described in Section 4.

Nevertheless, we should not expect symmetrization arguments to yield tight lower bounds for
arbitrary functions. Approximating an n-variate function f is inherently a multivariate question.
Unless f itself exhibits symmetric structure, it seems unlikely that a univariate function could fully
capture the resistance of f to approximation by low-degree n-variate polynomials.

In contrast, a more recent lower bound technique called the method of dual polynomials is
“lossless” in the sense that for any function f and any setting of the error parameter ε, the method
is in principle capable of proving a tight lower bound on degε(f). Here is how the method works.
Fix a function f : {−1, 1}n → {−1, 1} of interest and a degree bound d. What is the smallest error
to which any polynomial of degree less than d can approximate f? The answer to this question is
the value of the following linear program. It has

(
n
<d

)
+ 1 variables, one for each coefficient of p and

one for the error parameter ε, and 2 · 2n linear constraints that force p to approximate f to error
at most ε at each input x ∈ {−1, 1}n.

minp,ε ε

s.t. |p(x)− f(x)| ≤ ε for all x ∈ {−1, 1}n

deg p < d

Taking the dual yields the following.
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maxψ
∑

x∈{−1,1}n
ψ(x)f(x)

s.t.
∑

x∈{−1,1}n
|ψ(x)| = 1

∑
x∈{−1,1}n

ψ(x)p(x) = 0 for all p with deg p < d

Weak LP duality implies that in order to prove that degε(f) ≥ d, it suffices to identify a function
ψ : {−1, 1}n → R satisfying the following three conditions. Strong LP duality, moreover, implies
that every approximate degree lower bound on f is witnessed by such a ψ.∑

x∈{−1,1}n
ψ(x)f(x) > ε, (7)

∑
x∈{−1,1}n

|ψ(x)| = 1 (8)

∑
x∈{−1,1}n

ψ(x)p(x) = 0 for all polynomials p of degree less than d. (9)

Such a ψ is called a dual polynomial for f . We refer to Condition (7) by saying that ψ has
correlation at least ε with f , to Condition (8) by saying that ψ has `1-norm 1, and to Condition
(9) by saying that ψ has pure high degree at least d, denoting the largest such d by phd(ψ). This
terminology comes from the fact that ψ satisfies Condition (9) if and only if its representation
as a multilinear polynomial is a sum only of monomials with degree at least d. We use ‖ψ‖1 =∑

x∈{−1,1}n |ψ(x)| to denote the `1-norm of ψ and 〈ψ,ϕ〉 =
∑

x∈{−1,1}n ψ(x)ϕ(x) to denote the
correlation of any two functions ψ,ϕ : {−1, 1}n → R.

One may find it helpful to think of ψ as capturing the “component” of f that is “completely
missed” by polynomials of degree less than d. Indeed, the pure high degree condition means that
every such polynomial p is totally uncorrelated with ψ. If ψ is well-correlated with f , then it means
that ψ is a “big part” of f and hence such p must incur a lot of error when approximating f .

Decomposing dual polynomials into pieces. It can be fruitful to think of ψ as consisting of
two pieces. There are in fact two natural ways to perform such a decomposition.

• We can think of ψ = 1
2(ψ+1−ψ−1) where ψ−1 = 2 max{−ψ(x), 0} and ψ+1 = 2 max{ψ(x), 0}

are non-negative functions. The factor of 2 is chosen to ensure that ψ−1 and ψ+1 are prob-
ability mass functions. Indeed, so long as ψ has pure high degree at least 1 (implying it
is uncorrelated with the constant-1 function), then since ψ has `1-norm 1, it must be the
case that ‖ψ−1‖1 = ‖ψ+1‖1 = 1. The pure high degree condition ensures that no degree-d
polynomial can distinguish the distributions ψ−1 and ψ+1 with any advantage over random
guessing, while the correlation condition guarantees that f can distinguish ψ−1 and ψ+1 with
advantage ε. This perspective has been helpful in using approximate degree lower bounds to
design low-complexity secret-sharing schemes [BIVW16].
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• Alternatively, we can think of ψ(x) as consisting of a sign, sgn(ψ(x)) ∈ {−1, 1}, and a
magnitude |ψ(x)|. The sign sgn(ψ(x)) can be thought of as ψ’s “prediction” for f(x) and the
magnitude |ψ(x)| as a measure of ψ’s confidence in its prediction. The correlation requirement
(Equation (7)) ensures that ψ’s predictions, when weighted by its confidence, are accurate on
average. With this in mind, we say that ψ makes an error at x if sgn(ψ(x)) · f(x) < 0.

When ψ has `1-norm 1, we use |ψ| to denote the probability distribution under which x is
assigned probability |ψ(x)|. Observe that the correlation 〈ψ, f〉 equals

Pr
x∼|ψ|

[sgn(ψ(x)) = f(x)]− Pr
x∼|ψ|

[sgn(ψ(x)) 6= f(x)] = 1− 2 Pr
x∼|ψ|

[sgn(ψ(x)) 6= f(x)].

If ψ weakly sign-represents f (i.e., ψ never makes an error), then 〈ψ, f〉 = 1. In this case we
say that ψ is perfectly correlated with f . This means that for every ε < 1, ψ demonstrates
that the ε-approximate degree of f is at least phd(ψ); equivalently, deg±(f) is at least phd(ψ).

A simple example of a dual polynomial. Consider the parity function PARn on n bits. Minsky
and Papert famously7 used symmetrization to prove that deg±(PARN ) = n. A dual polynomial for
this fact is simply ψ := 2−n · PARn. Clearly ψ has perfect correlation with PARn (since it is just
a rescaling of PARn itself) and has `1-norm 1. Finally, as PARn is a monomial of degree n, it is
uncorrelated with any polynomial of degree at most n− 1.

5.1 A Dual Polynomial for ORn

A more complicated example is to construct a dual polynomial for the fact that d̃eg(ORn) ≥ Ω(
√
n).

Here is a construction from [BT15a], slightly refining an earlier dual polynomial of Špalek [Špa08]
and in turn building on ideas of Harry Buhrman and Mario Szegedy, and Kahn et al. [KLS96].
For any subset S ⊆ [n]∗, define the univariate polynomial qS(t) =

∏
i∈[n]∗,i6∈S(t − i). Let c be a

sufficiently large constant, and let

S = {0, 1} ∪ {ci2 : i = 1, 2, . . . , b
√
n/cc}. (10)

Define ψ : {−1, 1}n → R as ψ(x) = (−1)|x| · qS(|x|), and finally define the dual polynomial for ORn
to be ψOR(x) = ψ(x)/‖ψ‖1. By design, ψOR has `1-norm 1, so to show that it is a dual polynomial
for ORn, we must show it has pure high degree b

√
n/cc and that it has correlation at least 1/3

with ORn. The former holds by the following fact.

Fact 6. If Q is any univariate polynomial of degree at most n− 1, then
∑n

t=0(−1)t
(
n
t

)
Q(t) = 0.

Proof. We again use the fact that the parity function on n bits is uncorrelated with every polynomial
of total degree at most n − 1. The n-variate polynomial Q(|x|) has degree at most n − 1 and its
correlation with the parity function is

∑n
t=0(−1)t

(
n
t

)
Q(t).

Lemma 7. ψOR has pure high degree at least d = b
√
n/cc.

Proof. Let p : {−1, 1}n → R be a polynomial of degree less than d. Then Lemma 3 guarantees that
Q(t) = Ex∼Ht [p(t)] is a univariate polynomial of degree less than d over [n]∗. The correlation of p
with ψOR is 1

‖ψ′‖1
∑n

t=0(−1)t
(
n
t

)
qS(t) ·Q(t) = 0 using Fact 6 and the fact that qS ·Q is a univariate

polynomial of degree at most deg(qS) + deg(Q) ≤ (n− d− 1) + d = n− 1.

7Or perhaps infamously, as this result contributed to the first “AI winter” for neural network research.
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The first conceptual step to showing that ψOR has correlation at least 1/3 with ORn is the
following fact.

Fact 8. The correlation of ψOR with ORn is 〈ψOR,ORn〉 = 2 · ψOR(1n).

Proof. Since ψOR has pure high degree at least 1, it is uncorrelated with the constant-1 function.
Hence,

∑
x∈{−1,1}n ψOR(x) · ORn(x) = 2 · ψOR(1n) +

∑
x∈{−1,1}n ψOR(x) · (−1) = 2 · ψOR(1n).

Hence, to show that 〈ψOR,OR〉 ≥ 1/3, it suffices to show that ψOR(1n) ≥ 1/6. In other words,
ψOR places a constant fraction of its mass on this single input. We will not show it here, but this
follows from an elementary, albeit lengthy, calculation.

5.1.1 Where did this dual come from?

A common complaint about dual polynomial constructions is that their definitions appear as if by
magic, with lengthy calculations needed to show they are well-correlated with the target function
f . But there is one source of intuition regarding their construction: complementary slackness.
One can think of a dual polynomial ψ as assigning weights to the constraints of the primal linear
program, with ψ(x) being the weight assigned to the constraint |p(x)− f(x)| ≤ ε. Complementary
slackness asserts that if p is an optimal solution to the primal linear program, there must be an
optimal solution ψ∗ to the dual that only assigns nonzero weight to the constraints made tight by
p, i.e., ψ∗(x) 6= 0 only for those x such that |p(x)− f(x)| = ε.

For the function f = ORn, we know roughly what an optimal solution to the primal looks
like—see Equation (4), which gave an approximation p(x) = q(A(x)/n) for ORn, where q is the
transformed degree-d Chebyshev polynomial from Equation (3). The values of A(x)/n where
|q(A(x)/n)−ORn(x)| is maximized are closely approximated by the extreme points of the degree-d

Chebyshev polynomial: cos
(
iπ
d

)
≈ 1 − 1

2 ·
(
iπ
d

)2
for i = 1, 2, . . . , d. When d = Θ(

√
n) we have

1− 1
2 ·
(
iπ
d

)2 ≈ 1−2ci2/n for some constant c. Inputs x for which A(x)/n = 1−2ci2/n are precisely
those inputs with Hamming weight |x| = ci2. And these in turn are exactly those inputs (other
than those with |x| ∈ {0, 1}) in S that are assigned nonzero values by ψ per Equation (10).

5.1.2 Two additional properties of ψOR

The dual polynomial ψOR we constructed satisfies additional properties beyond what is needed
(Conditions (7)-(9)) to ensure that d̃eg(OR) ≥ Ω(

√
n). As we will see later, these properties play

essential roles in constructing and analyzing dual polynomials for functions derived from ORn via
composition, e.g., ANDm ◦ ORn.

First, any dual polynomial for ψOR has an important one-sided error property [GS10]. Fact 8
implies that ψOR(1n) must be positive if ψOR is to have positive correlation with ORn. Since
OR−1

n (+1) = {1n}, this means that the only inputs on which ψOR makes an error are in OR−1
n (−1).

Corollary 9. {x : ψOR(x) · OR(x) < 0} ⊆ OR−1(−1).

Second, as shown in [BT19b, BKT18], the calculation used to show that ψOR(1n) ≥ 1/6 in fact
establishes the following stronger property, showing that the total mass that |ψOR| places on inputs
of Hamming weight t decreases very rapidly with t, especially once t�

√
n.

Theorem 10. There are constants c1, c2 > 0 such that
∑
|x|=t |ψOR(x)| ≤ c1 · exp(−c2 · t/

√
n)/t2

for all t ∈ [n]∗.
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The extra properties satisfied by the dual polynomial ψOR captured in Theorem 10 and Corollary
9 both have natural “primal” interpretations, which readers might find more intuitive.

Primal interpretation of Corollary 9: One-sided approximate degree. Let ψ be a dual
polynomial for the ε-approximate degree of f , such that ψ satisfies the additional property that

{x : ψ(x) · f(x) < 0} ⊆ f−1(−1). (11)

Then ψ in fact witnesses that the one-sided approximate degree of g is at least d = phd(ψ). Here,
one-sided approximate degree is an intermediate notion between approximate degree and threshold
degree. Specifically, a real polynomial p is a one-sided ε-approximation for f if

|p(x)− (−1)| ≤ ε ∀x ∈ f−1(−1) and p(x) ≥ 1− ε ∀x ∈ f−1(1).

The one-sided approximate degree of f , denoted õdegε(g), is the minimum degree of a one-sided

ε-approximation for f . Note that deg±(f) ≤ õdegε(f) ≤ d̃egε(f) for every ε > 0, but there can be
huge gaps in either inequality. For instance, we’ve seen that ORn has one-sided approximate degree
equal to its approximate degree (namely, Θ(

√
n)), which is vastly larger than its threshold degree,

which is 1. Meanwhile õdeg1/3(ANDn) = 1, with the one-sided approximation being A(x)+(n−1).
This equals the threshold degree of ANDn and is vastly smaller than its approximate degree Θ(

√
n).

Claim 11. For every ε > 0 and degree d, we have õdegε(f) ≥ d if and only if there exists a dual
polynomial ψ satisfying Conditions (7)-(9) as well as Condition (11).

One can prove Claim 11 by expressing one-sided approximate degree as a linear program anal-
ogous to approximate degree, and observing that a ψ satisfying the assumptions of Claim 11 is
equivalent to a solution to the dual linear program with value ε.

Primal interpretation of Theorem 10. Suppose f has a dual polynomial ψ placing very little
mass on a subset S ⊆ {−1, 1}n, i.e., |ψ(S)| :=

∑
x∈S |ψ(x)| is small. Then f cannot be approximated

even by polynomials p that are allowed to be very large on inputs in S, so long as p approximates
f well outside of S.

Claim 12. Let 0 < δ < 1. Suppose that ψ satisfies Conditions (7)-(9) and additionally that
|ψ(S)| ≤ εδ/3. Then for any polynomial p such that

|p(x)− f(x)| ≤ ε/3 for all x 6∈ S and |p(x)| ≤ 1/δ for all x ∈ S, (12)

we have deg(p) ≥ d.

Proof. Let p be a polynomial of degree less than d satisfying Condition (12). Then because ψ has
pure high degree at least d, we have 〈ψ, p〉 = 0. On the other hand,

〈ψ, p〉 =
∑
x6∈S

ψ(x)p(x) +
∑
x∈S

ψ(x)p(x) ≥

∑
x6∈S

ψ(x)f(x)− |ψ(x)| · ε
3

−∑
x∈S
|ψ(x)| · 1

δ

≥ 〈ψ, f〉 − εδ/3− ε/3− ε/3 > 0.

Here, the first inequality used Condition (12), the second used that the `1-norm of ψ is 1 (Equation
(8)) and that |ψ(S)| ≤ εδ/3, and the final inequality used that 〈ψ, f〉 > ε (Condition (7)).

ACM SIGACT News 59 December 2020, vol. 51, no. 4



A similar argument to Claim 12 shows that Theorem 10 implies that there is some constant
c > 0 such that no polynomial of degree d ≤ c

√
n can satisfy the following condition:

|p(x)− ORn(x)| ≤ exp(c · |x|/
√
n) for all x ∈ {−1, 1}n.

6 Approximate Degree Under Function Composition

An beautiful and important result of Sherstov (refining earlier work of Buhrman et al. [BNRdW07])
shows that ε-approximate degree can increase at most multiplicatively under block composition.

Theorem 13 ([She12a]). d̃eg(f ◦ g) ≤ O(d̃eg(f) · d̃eg(g)).

In contrast to the situation for related measures such as quantum query complexity, it is still
open whether the bound in Theorem 13 is tight for every pair of functions f, g.

Open Problem 14. For every pair of total Boolean functions f, g, is it the case that d̃eg(f ◦ g) ≥
Ω(d̃eg(f) · d̃eg(g))?

Prior to 2012, Problem 14 was open even for the special case that f = AND and g = OR. This
case was eventually resolved via the method of dual polynomials [She13a, BT15a] using a simple
yet powerful technique called dual block composition. Dual block composition tries to take dual
polynomials witnessing the high approximate degrees of f and g individually, and combine them
in a very specific manner to obtain a dual polynomial for the (even higher) approximate degree of
f ◦ g. The combining technique was proposed by several authors [She13b, Lee09, SZ09]. Here it is:

Definition 15. Given dual polynomials ψ : {−1, 1}m → R and φ : {−1, 1}b → R such that φ has
pure high degree at least 1, define the dual block composition ψ ? φ by

(ψ ? φ)(x1, . . . , xm) = ψ(sgn(φ(x1)), . . . , sgn(φ(xm))) ·
m∏
i=1

(2|φ(xi)|).

Intuition for Definition 15. There are two ways to think about Definition 15, corresponding
to the two ways of decomposing dual polynomials as discussed in Section 5. The first way to view
ψ ? φ is as half the difference between two distributions (ψ ? φ)+1 and (ψ ? φ)−1 constructed as
follows. To sample from (ψ ? φ)+1, first choose z from ψ+1 and then choose x = (x1, . . . , xm) from
the product distribution ⊗mi=1φzi . Similarly, to sample from (ψ ? φ)−1, first choose z from ψ−1 and
then choose x = (x1, . . . , xm) from the product distribution ⊗mi=1φzi .

The second interpretation is to get a prediction sgn((ψ ? φ)(x)) for (f ◦ g)(x) as follows. First,
construct the vector z = (sgn(φ(x1)), . . . , sgn(φ(xm))) consisting of φ’s predictions for each evalua-
tion of g on x1, . . . , xm. The final prediction sgn(ψ(z)) for (f ◦g)(x) is then simply ψ’s prediction on
input z. The confidence assigned to this prediction is proportional to the product of the confidences
of all of the constituent predictions, namely |ψ(z)| ·

∏m
i=1 |φ(xi)|.

When is ψ ? φ a good dual witness? The hope is that if ψ is a dual witness to the fact
that d̃eg(f) ≥ df and φ is a dual witness to d̃eg(g) ≥ dg, then ψ ? φ is a dual witness to the fact

that d̃egε(f ◦ g) ≥ df · dg for some constant ε ∈ (0, 1). This requires showing that ψ ? φ satisfies
Conditions (7)-(9) for d = df · dg. In fact, as we prove below (Lemmas 16 and 17), ψ ? φ does
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always satisfy the second and third (Conditions (8) and (9)). Unfortunately, it is not always true
that ψ ? φ satisfies Condition (7). An example is when f = ANDm and g = ANDb. That is, if

ψ is a dual witness for d̃eg(ANDm) ≥ Ω(
√
m) and d̃eg(ANDb) ≥ Ω(

√
b), then ψ ? φ is not a dual

witness for the fact that d̃eg(ANDm ◦ ANDb) ≥ Ω(
√
mb). While the latter statement is true (since

ANDm ◦ ANDb is simply ANDmb), the function ψ ? φ is sadly not a dual witness to this fact.

However, there are a variety of special cases in which ψ?φ is known to witness that d̃egε(f ◦g) ≥
df · dg for some constant ε ∈ (0, 1). Section 6.1 describes the proof for ANDm ◦ ORb.

Lemma 16. If ψ has pure high degree df and φ has pure high degree dg, then the pure high degree
of ψ ? φ is at least df · dg.

Proof. Let us consider the representation of ψ ? φ : {−1, 1}m·b → R as a multilinear polynomial.
The lemma is equivalent to showing that the coefficient of every monomial of degree less than df ·dg
is 0 (i.e., all Fourier coefficients of ψ ? φ of degree less than df · dg are 0).

By linearity, it is without loss of generality to assume that ψ(z1, . . . , zm) is itself a monomial.
By assumption, the degree of this monomial is at least df ; say, ψ(z1, . . . , zm) = z1z2 . . . zdf (larger
degree can be handled similarly). Then

2−m · (ψ ? φ)(x) =

 df∏
i=1

sgn(φ(xi))

( m∏
i=1

|φ(xi)|

)
=

 df∏
i=1

φ(xi)

 m∏
i=df+1

|φ(xi)|

.
By assumption, all monomials of φ have degree at least dg. Since x1, . . . , xdf are disjoint blocks

of variables, every monomial appearing in
∏df
i=1 φ(xi) has degree at least df · dg. For example, if

φ(xi) =
∏dg
j=1 xi,j , then

∏df
i=1 φ(xi) =

∏df
i=1

∏dg
j=1 xi,j . Since the blocks of variables xdf+1, . . . , xm

are disjoint from x1, . . . , xdf , multiplying this expression by
∏m
i=df+1 |φ(xi)| (or any other function

of xdf+1, . . . , xm for that matter) does not decrease the degree of any appearing monomial. This
proves the lemma.

Lemma 17. If φ has pure high degree at least 1, then the `1-norm of ψ ? φ is 1.

Proof. Since ψ has `1-norm 1, |ψ| is a probability distribution. Recall that we can think of |ψ?φ| as
first choosing z according to the probability distribution |ψ|, and then choosing x = (x1, . . . , xm) ∈
({−1, 1}b)m from the product distribution ⊗mi=1φzi . Hence, |ψ ? φ| is a convex combination of
probability distributions, and thus is itself a probability distribution.

6.1 The Approximate Degree of ANDm ◦ ORb is Ω(
√
m · b)

We’ve seen that whenever ψ and φ are dual witnesses to the high approximate degrees of f and g,
respectively, then ψ?φ has two of the three properties needed to prove that f◦g has high approximate
degree (large pure high degree, and `1-norm 1). We now sketch why the third property, namely
high correlation with f ◦ g, holds in the special case of f = ANDm and g = ORb.

Lemma 18. Let ψ have correlation at least 7/8 with ANDm and φ have correlation at least 7/8
with ORb. Then ψ ? φ has correlation at least 1/3 with ANDm ◦ ORb.
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Proof. Recall that to sample from |ψ ? φ|, one chooses a vector z ∈ {−1, 1}m according to |ψ|
and then chooses an input x = (x1, . . . , xm) ∈ ({−1, 1}b)m from the product distribution ⊗mi=1φzi .
Taking this perspective, a short calculation shows that 〈ψ ? φ,ANDm ◦ ORb〉 equals

∑
z∈{−1,1}m

ψ(z) · ANDm(z) ·

1− 2 · Pr
x∼⊗mi=1φzi

[(ANDm ◦ ORb)(x) 6= ANDm(z)]︸ ︷︷ ︸
:=E(z)

 . (13)

In other words, 〈ψ ? φ,ANDm ◦ ORb〉 is the same as 〈ψ,ANDm〉, but each term in the sum is
adjusted by an error term E(z). Since we know that ψ has high correlation with ANDm, it is
enough to show that these error terms are small. Quantitatively, it will be enough to show that
E(z) ≤ 1/8 for every z.

Case 1: z 6= −1m. In this case, (ANDm ◦ ORb)(x) = ANDm(z) so long as there is at least one xi
such that ORb(xi) = 1. Let i be any index with zi = 1. Then Fact 8 combined with the assumption
that φ has correlation at least 7/8 with ORb implies that φ+1(1b) ≥ 7/8 and hence E(z) ≤ 1/8.

Case 2: z = −1m. In this case, (ANDm ◦ ORb)(x) = ANDm(z) only if ORb(xi) = −1 for all i =
1, 2, . . . ,m, i.e., if xi 6= 1b for all i = 1, 2, . . . ,m. In this case, Corollary 9 implies that φ−1(1b) = 0.
It follows that for all x in the support of ⊗mi=1φ−1, we have xi 6= 1b for all i = 1, 2, . . . ,m. Hence,
E(−1m) = 0.

Lemmas 16-18, together with d̃eg7/8(ANDm) = Θ(
√
m) and d̃eg7/8(ORb) = Θ(

√
b), imply:

Theorem 19. d̃eg(ANDm ◦ ORb) ≥ Ω(
√
mb).

The key to the proof of Lemma 18 was Case 2, which exploited the fact that the dual witness φ for
the inner function g = ORb had one-sided error: {x : φ(x) · g(x) < 0} ⊆ g−1(−1) (Corollary 9), i.e.,

φ is actually a dual witness for õdeg7/8(ORb) ≥ Ω(
√
b). In fact, the proof of Theorem 19 shows more

generally that d̃eg(ANDm ◦ g) ≥ Ω(
√
m · õdeg1/3(g)). In contrast, recall that õdeg7/8(ANDb) = 1.

This explains why dual block composition yields a good dual witness for ANDm ◦ ORb but not for
ANDm ◦ ANDb, even though both functions have approximate degree Θ(

√
mb).

6.2 Hardness Amplification via Dual Block Composition

Hardness amplification theorems for approximate degree show that the block composition f ◦ g is
harder to approximate by low-degree polynomials than is g alone. Theorem 19 is an example of such
a result, with f = ANDm and g = ORb, showing that the degree required to approximate f ◦ g to
error 1/3 is larger than the degree required to approximate g to the same error. Sherstov [She12b]
used a refined version of dual block composition to prove an XOR Lemma for approximate degree
showing that PARm ◦ g requires both higher degree and larger error to approximate than g itself.

Theorem 20. ([She12b]) Let g be a Boolean function with d̃eg1/2(g) ≥ d and F = PARm ◦g. Then

d̃eg1−2−m(F ) ≥ Ω(m · d).
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When using approximate degree to study AC0, the class of constant-depth {AND,OR,NOT}-
circuits, one would like the “hardness-amplified” function F to be a constant-depth circuit whenever
g is. More recent work has shown that error amplification within AC0 is possible by taking the
outer function to be AND, so long as the inner function has high one-sided approximate degree.

Theorem 21. ([BT15b]) Let g be a Boolean function with õdeg1/2(g) ≥ d and F = ANDm ◦ g.

Then d̃eg1−2−m(F ) ≥ d.

Theorem 22. ([She18b]) Let g be a Boolean function with õdeg1/2(g) ≥ d and F = ANDm ◦ g.
Then deg±(F ) ≥ min{d,m}.

Note that since õdeg1/2(ORb) ≥ Ω(
√
b), Theorem 5 is a special case of Theorem 22. That is,

Minsky and Papert’s threshold degree lower bound for their CNF is a special case of a far more
general result that can be proved using dual block composition as opposed to symmetrization.

Proof of Theorem 21. Here, we define a simple dual witness ψ for the fact that ANDm has approxi-
mate degree at least 1 by taking ψ(1m) = 1/2, ψ(−1m) = −1/2, and ψ(x) = 0 otherwise. Let φ be

any dual witness to the fact that õdeg1/2(f) ≥ d. We claim that ψ ?φ = 1
2 ·
(
φ⊗m+1 − φ

⊗m
−1

)
witnesses

that d̃eg1−2−m(F ) ≥ d. Note that ψ ? φ has `1-norm 1 by Lemma 17, and pure high degree d by
Lemma 18 and the fact that phd(ψ) ≥ 1 and phd(φ) ≥ d.

To show that 〈ψ ? φ,ANDm ◦ g〉 ≥ 1− 2−m, recall from the proof of Lemma 18 (Equation (13))
that the key to showing that 〈ψ ? φ,ANDm ◦ g〉 ≈ 〈ψ,ANDm〉 = 1 is to upper bound

E(z) = Pr
x∼⊗mi=1φzi

[(ANDm ◦ g)(x) 6= ANDm(z)] (14)

for the two points z = −1m,1m in the support of |ψ|.

Case 1: z = 1m. In this case, (ANDm ◦ g)(x) 6= ANDm(z) only if g(x1) = g(x2) = · · · = g(xm) =
−1. It can be seen that since φ has correlation at least 1/2 with g, φ+1(g−1(−1)) ≤ 1/2. Hence,
for z = 1m, Expression (14) is at most 2−m.

Case 2: z = −1m. Since φ is a dual witness for the one-sided approximate degree of g, the support
of φ−1 is a subset of g−1(−1), and hence the support of ⊗mi=1φ−1 is a subset of (ANDm ◦ g)−1(−1).
Hence, for z = −1m, Expression (14) is 0.

The proof of Theorem 22 builds on this construction, adding to ψ ? φ an additional “correction
term” ζ of pure high degree m such that ψ ? φ− ζ is perfectly correlated with ANDm ◦ g.

Application: Oracle separations for statistical zero knowledge. Certain applica-
tions require the “hardness-amplifying function” to be still simpler than ANDm. Define
GAPMAJm : {−1, 1}m → {−1, 1} to be the partial function that equals −1 if at least 2/3 of its
inputs are −1, equals +1 if at least 2/3 of its inputs are +1, and is undefined otherwise.

Theorem 23 ([BCH+19]). Let f be a Boolean function with d̃eg1/2(f) ≥ d. Let F = GAPMAJm◦f .

Then d̃eg1−2−Ω(t)(F ) ≥ d and deg±(F ) ≥ Ω(min{d,m}).
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Bouland et al. [BCH+19] used this result to exhibit an oracle O relative to which SZKO 6⊆ PPO.
Here SZK is the class of languages with efficient statistical zero knowledge proofs—proofs of mem-
bership that reveal no information other than their own validity. As PP is a very powerful complex-
ity class, this separation gives some evidence for the prevailing belief that SZK contains intractable
problems. The proof of the oracle separation proceeds as follows. Using a standard diagonalization
argument, it suffices to establish a separation in the analogous query complexity models:

Fact 24. To obtain an oracle O such that SZKO 6⊆ PPO, it suffices to identify an F such that
SZKdt(F ) = O(log n) and PPdt(F ) = nΩ(1).

Here SZKdt(F ) denotes the least cost of a statistical zero knowledge query protocol computing
F . Similarly, PPdt(F ) is the least d for which a randomized algorithm making at most d queries
computes F (x) with probability at least 1/2 + 2−d. Since the acceptance probability of any d-
query randomized algorithm is a polynomial of degree at most d, we have that if PPdt(F ) ≤ d,

then d̃egε(F ) ≤ d for ε = 1 − 2−d. So to prove a PPdt lower bound, it is enough to prove an
approximate degree lower bound for an error parameter that is exponentially close to 1.

The Permutation Testing Problem (PTP) is a partial function that interprets its input x as a
list of (the binary representations of) N = Θ(n/ log n) numbers from range [N ]. The list can itself
be interpreted as a function π : [N ] → [N ]. The function PTP(x) = −1 if π is a permutation and
PTP(x) = −1 if π is “far” from every permutation. Aaronson [Aar12] used a sophisticated sym-
metrization argument (building on work of Aaronson and Shi [AS04]) to show that PTP has large
(1/3)-approximate degree. Meanwhile, Permutation Testing has a non-interactive zero-knowledge
protocol with logarithmic cost: A common random string samples a range item i ∈ [N ], and the
prover is required to provide a preimage j of i. The verifier can confirm that π(j) = i by querying
logN bits of x. This protocol is perfectly complete and has soundness error bounded away from
1. It is perfect zero knowledge because, when the input is a permutation, the verifier learns only
a random pair (i, j) such that π(j) = i; the verifier could compute this information on its own by
picking j at random from [N ] and making O(logN) queries to learn i = π(j).

To get a PPdt lower bound, we need a function with high ε-approximate degree even for ε expo-
nentially close to 1. We can transform PTP into such a function by composing it with a function that
preserves SZK query complexity, yet amplifies hardness against polynomial approximation. Specif-
ically, let F = GAPMAJn1/4 ◦PTPn3/4 . One can show that composition with GAPMAJ preserves log-

arithmic SZK query complexity. Meanwhile, Theorem 23 implies that d̃eg
1−2−n

1/4 (F ) = Ω(n1/4).

7 Beyond Block-Composed Functions

Section 6 showed how dual block composition can yield tight lower bounds for the approximate
degree of a variety of block-composed functions. However, many functions of great interest in
quantum computing and complexity theory are not block composed. Can dual block composition
be used to determine the approximate degree of such functions?

This turns out to be possible. For many non-block-composed functions fn on n-bit inputs,
the approximate degree of fn is equivalent to the approximate degree of a related block-composed
function Fm defined over inputs of size m � n, but under the promise that the input to F has
Hamming weight at most n. That is, approximating f to error ε by a degree d polynomial is
equivalent to constructing a degree d polynomial p over domain {−1, 1}m such that

|p(x)− F (x)| ≤ ε for all |x| ≤ n. (15)
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Note, crucially, that p is allowed to behave arbitrarily on inputs of Hamming weight larger than n.
Let us denote by F≤n the partial function obtained by restricting the domain of F to inputs

of Hamming weight at most n, and by d̃egε(F
≤n) the least degree of a polynomial p satisfying

Condition (15). As we will see, if F = f ◦ g is a block composition of two functions whose
approximate degree is understood, then dual block composition can sometimes prove tight lower
bounds on d̃egε(F

≤n).

7.1 Surjectivity: A Case Study

The above connection between a non-block-composed function f and a block composed function F
is best demonstrated with an example. Let N ≥ R with R a power of 2. The Surjectivity function
(SURJ) takes as input a vector in x ∈ {−1, 1}n with n = N log2R. It interprets the vector as a
list of (the binary representations of) N numbers (k1, . . . , kN ) from range [R] = {1, . . . , R}, and it
outputs −1 if and only if for every i ∈ [R], there is at least one index j such that kj = i.

Approximate degree upper bound. We now relate SURJ to the block composition ANDR ◦
ORN . A natural way to do this is to consider representing the list (k1, . . . , kN ) ∈ [R]N via a set of
N · R variables y(x) = {yi,j : i ∈ [R], j ∈ [N ]} in which yi,j = −1 if kj = i and yi,j = 1 otherwise.
Observe that each variable yi,j depends on only log2R bits of x, and moreover

SURJ(x) = (ANDR ◦ ORN ) (y(x)).

One can think of the input x to SURJ as a compressed representation of the input y(x) to ANDR ◦
ORN , in that y(x) consists of N ·R bits while x consists of just N log2R bits.

A key observation is that for any input x to SURJ, the Hamming weight of the corresponding
vector y(x) is exactly N . This means that if p approximates (ANDR ◦ ORN )≤N to error ε then
p(y(x)) approximates SURJ to error ε, and has degree at most deg(p) · log2R. Crucially, this holds
regardless of how p behaves on inputs in {−1, 1}R·N of Hamming weight more than N .

Observation 25. d̃egε(SURJ) ≤ d̃egε

(
(ANDR ◦ ORN )≤N

)
· log2(R).

We’ve already seen that d̃eg(ANDR ◦ ORN ) = Θ(
√
RN). It turns out that ANDR ◦ ORN is

substantially easier to approximate when the approximation only needs to be accurate on inputs
of Hamming weight at most N . Multiple proofs of this upper bound are known [She18a, BKT18].
Here we describe the approximating polynomial from [She18a].

Theorem 26. d̃eg
(

(ANDR ◦ ORN )≤N
)
≤ O(R1/4 ·N1/2).

Proof. Let q be a polynomial over domain {−1, 1}R of degree O(
√
R) that approximates ANDR to

error 1/4. A change of basis argument allows us to express q as a linear combination of disjunctions,
i.e, terms of the form ORS(x) = ∨i∈Sxi for some subset S ⊆ [R]. Moreover, the sum of the

magnitudes of the coefficients in the linear combination is at most 2O(
√
R).

Clearly |s ◦ ORN − ANDR ◦ ORN | ≤ 1/4. Because the composition of any two disjunctions is
itself a disjunction, s ◦ ORN is itself a linear combination of disjunctions over domain {−1, 1}RN

in which the sum of the magnitudes of the coefficients is at most W ≤ 2O(
√
R). Let us write this

linear combination as
(q ◦ ORN )(y) =

∑
S⊆{−1,1}RN

cS · ORS(y). (16)
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Here is where we exploit the fact that we only require our final approximation to accurately
approximate ANDR ◦ ORN on inputs of Hamming weight at most N . A generalization of the

Chebyshev-based construction in Section 3 shows that d̃egε(OR
≤N
R·N ) ≤ O

(√
N log(1/ε)

)
for any

ε > 0 (see Footnote 6), regardless of R · N . Note that the approximating polynomial may be
exponentially large in its degree for inputs x of Hamming weight more than N .

Now set ε = 1/(12W ), and let us replace each disjunction ORS on the right hand side of Equation
(16) with an ε-approximation to OR≤NS . The resulting polynomial p has degree O(

√
N log(1/W )) =

O(R1/4N1/2). On any input y of Hamming weight at most N , we have | (s ◦ ORN ) (y)−p(y)| ≤ 1/12
and hence | (ANDR ◦ ORN ) (y)− p(y)| ≤ 1/12 + 1/4 = 1/3.

Approximate degree lower bound. One might suspect that the approximation for SURJ con-
structed above is unnecessarily tying its own hands by ignoring all structure in the vector y(x)
besides the fact that y(x) has Hamming weight at most N . For example, it is ignoring the fact that
for each j ∈ [N ], yi,j = −1 for exactly one index i ∈ [R]. It turns out that this additional structure
in the vector y(x) cannot be leveraged by low-degree polynomials. That is, the approximate degree
of SURJ is not just upper bounded by that of (ANDR ◦ ORN )≤N , but in fact is equivalent to it.

Lemma 27. d̃eg(SURJ) ≥ d̃eg((ANDR ◦ ORN )≤N ).

Lemma 27 was shown in [BT19b] using a symmetrization argument due to Ambainis [Amb05].

A tight lower bound on the approximate degree of SURJ now follows from one for d̃eg((ANDR ◦
ORN )≤N ), which can be proved by dual block composition.

Theorem 28 ([BKT18]). d̃eg((ANDR ◦ ORN )≤N ) ≥ Ω̃(R1/4 ·N1/2).

Proof sketch. Let ψ be any dual polynomial for the fact that d̃eg7/8(ANDR) ≥ Ω(R1/4), and let

N ′ := N/R1/2. It turns out to be useful to focus on the function (ANDR ◦ ORN ′)≤N rather than
(ANDR ◦ ORN )≤N (the former is a subfunction of the latter, so a lower bound for the former will
imply our desired lower bound for the latter).

Let φ be the dual polynomial for deg7/8(ORN ′) ≥ Ω(
√
N ′) constructed in Section 5.1. Lemmas

16-18 show that ψ ? φ is a dual polynomial for the fact that d̃eg(ANDR ◦ ORN ′) ≥ Ω(
√
R ·N ′) ≥

Ω(R1/4 · N1/2). Unfortunately, this is not enough, as we need our degree lower bound to hold
against polynomials that can behave arbitrarily on inputs of Hamming weight larger than N , i.e.,
we must lower bound d̃eg((ANDR ◦ ORN ′)≤N ).

The property making this possible is that |ψ ? φ| places very little mass on inputs of Hamming
weight larger than N . Quantitatively,∑

y∈{−1,1}R·N′ : |y|>N

|(ψ ? φ)(y)| ≤ 2−Ω(N/
√
N ′) = 2−Ω(R1/4N1/2). (17)

At a high level, this bound arises as follows. Theorem 10 shows that |φ| places most of its mass
on inputs of very low Hamming weight. In particular, an exponentially small fraction of its mass
lies on inputs of Hamming weight more than

√
N ′. Recall that the probability distribution |ψ ? φ|

can be thought of as first choosing z according to the distribution |ψ|, and then choosing y =

(y1, . . . , yR) ∈
(
{−1, 1}N ′

)R
from the product distribution ⊗Ri=1φzi . Because |φ| (and hence also

φ+1 and φ−1) places such little mass on inputs of Hamming weight more
√
N ′, it turns out that
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for y = (y1, . . . , yR) ∼ ⊗Ri=1φzi , the probability that y has Hamming weight greater than N is
dominated by the probability of the following event: there are at least ` := N/

√
N ′ values of i for

which |yi| ≈
√
N ′. And this probability is exponentially small in `. We now explain how Condition

(17) implies that d̃eg((ANDR ◦ ORN ′)≤N ) ≥ d for d = phd(ψ ? φ)/ logN . Suppose p approximates
ANDR ◦ ORN ′ for all inputs of Hamming weight at most N . Then in particular, |p(y)| ≤ 4/3 for
all |y| ≤ d < N . An interpolation argument of Razborov and Sherstov shows that this implies p is
bounded in magnitude by exp(Õ(d)) for all inputs, even those of very large Hamming weight.

Lemma 29 ([RS10]). Let p : {−1, 1}R·N → R be a polynomial of degree at most d. If |p(y)| ≤ O(1)
for all |y| ≤ N , then |p(y)| ≤ (RN)O(d) for all y ∈ {−1, 1}RN .

Hence, we conclude that |p(y)| ≤ (RN)O(d) = 2O(R1/4N1/4) for all y ∈ {−1, 1}RN . Now recall
that, as captured in Claim 12, if a dual polynomial for a function F places mass at most δ on a set
S, then it in fact lower bounds the degree of polynomial approximations p to F that are permitted
to be as large as roughly 1/δ at inputs in S. Taking S to be the set of all inputs of Hamming

weight greater than N and δ = 2−Ω(R1/4N1/2), Condition (17) thus implies that p requires degree
at least d. This completes the proof.

7.2 Other Functions and Applications to Quantum Query Complexity

A number of other problems that arise in quantum query complexity can be related to block-
composed functions under a Hamming weight promise. For example, the k-distinctness function
EDk interprets its input as a list of N numbers from a range of size R and outputs −1 if and
only if there is some range item that appears at least k times in the list. It is easy to see that
EDk(x) = (ORR ◦ THRkN )(y(x)) where THRk denotes the symmetric k-threshold function that
outputs −1 iff its input has Hamming weight at least k. As before, we have:

Lemma 30. For k ≥ 2, d̃eg(EDk) = Θ̃(d̃eg(
(
OR ◦ THRkN

)≤N
)).

Dual block composition can be used to show that d̃eg(
(
OR ◦ THRkN

)≤N
) ≥ Ω(N3/4−1/(4k)) for

any constant k ≥ 2 [BKT18, MTZ20]. For large k, this nearly matches a known upper bound

of O
(
n

3/4− 1

2k+2−4

)
on the quantum query complexity, and hence also approximate degree, of EDk

[Bel12]. Similar connections give tight lower bounds (up to logarithmic factors) on both the approx-
imate degree and quantum query complexity of various property testing problems, including junta
testing, statistical distance estimation, entropy approximation, and image size testing [BKT18].

7.3 Approximate Degree of AC0

One of our favorite open questions in the study of approximate degree is to ascertain whether
there are AC0 circuits of approximate degree Ω(n). The Parity and Majority functions have linear
approximate degree, but they are not in AC0. For a long time, the best known lower bound on the
approximate degree of an AC0 function was Ω(n2/3), proved by Aaronson and Shi [AS04]. Analyzing
non-block-composed functions, as described above, brings us a lot closer to answering this question.
In particular, SURJ is in AC0 and has approximate degree Θ̃(n3/4). In fact, the key to the SURJ
lower bound (Theorem 28) can be seen as another hardness amplification theorem, showing that
the function (ANDR ◦ORN )≤N requires higher degree to approximate than does ANDR itself. The
main property of ANDR used in Theorem 28 is that it has approximate degree Ω(

√
R). Simplifying

ACM SIGACT News 67 December 2020, vol. 51, no. 4



the actual construction slightly, replacing ANDR with SURJR yields a function (SURJR ◦ ORN )≤N

that has even larger approximate degree Ω̃(n7/8).
By iteratively applying this hardness amplification technique, for any δ > 0, one can obtain a

family of AC0 circuits with approximate degree Ω(n1−δ) [BT19b, BKT18]. This was further im-

proved by the authors from (1/3)-approximate degree to (1−2−n
1−δ

)-approximate degree [BT19a],
and finally by Sherstov and Wu [SW19] to a Ω(n1−δ) lower bound on the threshold degree of AC0.

8 Open Questions

A direct sum theorem for approximate degree? Open Problem 14 asks whether, for every
pair of functions f, g, d̃eg(f ◦ g) ≥ Ω(d̃eg(f) · d̃eg(g)). Two partial results are state of the art. One
result applies to arbitrary functions f, g.

Theorem 31 ([She12b]). For any Boolean functions f : {−1, 1}m → {−1, 1} and g,

d̃eg(f ◦ g) ≥ Ω
(

d̃eg(f) · d̃eg
1−d̃eg(f)/m

(g)
)
.

This result resolves Open Problem 14 whenever the outer function f has linear approximate
degree. It is proved using a similar variant of dual block composition underlying the “XOR lemma,”
Theorem 20. The other result does not apply to arbitrary functions f , g, but resolves Open Problem
14 (up to a logarithmic factor) in the special case that the outer function f is symmetric.

Theorem 32 (Bouland et al. [BDBGK18]). Let f : {−1, 1}m → {−1, 1} be a symmetric Boolean

function and g be an arbitrary function. Then d̃eg(f ◦ g) · logm ≥ Ω(d̃eg(f) · d̃eg(g)).

Theorem 32 is not proved using the method of dual polynomials, but rather indirectly relies on
a sophisticated quantum algorithm for combinatorial group testing, due to Belovs [Bel15].

Circuit lower bounds. Our recent work with Kothari [BKT19] built on the techniques used to
prove Theorem 26 to show that any linear-size constant-depth circuit has sublinear approximate
degree. This in turn yielded state-of-the-art lower bounds on the size of AC0 ◦MOD2 circuits com-
puting the Boolean inner product function on average. (These are constant-depth AND/OR/NOT
circuits augmented with a layer of parity gates adjacent to the inputs—fully understanding their
power seems to require new circuit lower bound techniques, i.e., beyond random restrictions.) How-
ever, our circuit lower bound is still very far from what we believe to be true. It is only slightly
superlinear, while it is widely believed that exponential-size AC0 ◦MOD2 circuits are needed to
compute the Boolean inner product function.

A barrier to further progress is that we do not know a sublinear upper bound on the approxi-
mate degree of quadratic-size AC0 circuits (even depth-2 circuits, i.e., CNFs), or on the threshold
degree of quadratic-size depth-3 circuits. At the same time, our lower bound techniques for the
approximate degree of AC0 appear stuck at Ω(n1−δ) for any constant δ > 0.

While the potential space for improving the known lower bound of Ω(n1−δ) appears small, we
believe that significant progress in circuit complexity would follow from a matching upper bound.
Could there be a positive function δ(d, c) such that every family of depth-d, size-nc AC0 circuits
has approximate degree—or threshold degree—O(n1−δ(d,c))?
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New paradigms in quantum algorithm design? Approximate degree has been useful in
quantum computing because it lower bounds quantum query complexity [BBC+01]. The converse
is not true: An approximate degree upper bound of d does not imply a quantum query algorithm
making O(d) queries. However, recent work has identified variants of approximate degree that are
closer to quantum query complexity. In fact, Arunachalam, Briët, and Palazuelos [ABP19] showed
that quantum query complexity is characterized by one of these variants, called approximation by
completely-bounded forms. Still, no one has yet been able to use this characterization to give a
new quantum algorithm for any problem. Can known constructions of approximating polynomials
be modified to yield completely-bounded forms? If so, this has the potential to be a powerful new
paradigm in quantum algorithm design.
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[ABP19] Srinivasan Arunachalam, Jop Briët, and Carlos Palazuelos. Quantum query algo-
rithms are completely bounded forms. SIAM Journal on Computing, 48(3):903–925,
2019.

[All89] Eric Allender. A note on the power of threshold circuits. In Foundations of Computer
Science, pages 580–584, 1989.

[Amb05] Andris Ambainis. Polynomial degree and lower bounds in quantum complexity: Col-
lision and element distinctness with small range. Theory of Computing, 1(1):37–46,
2005.

[Amb18] Andris Ambainis. Understanding quantum algorithms via query complexity. In Pro-
ceedings of the International Congress of Mathematicians, May 2018.

[AS04] Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and the
element distinctness problems. Journal of the ACM, 51(4):595–605, 2004.

[BBBV97] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths
and weaknesses of quantum computing. SIAM Journal on Computing, 26(5):1510–
1523, 1997.

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald De Wolf.
Quantum lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001.

[BCDWZ99] Harry Buhrman, Richard Cleve, Ronald De Wolf, and Christof Zalka. Bounds for
small-error and zero-error quantum algorithms. In Foundations of Computer Science,
pages 358–368, 1999.

ACM SIGACT News 69 December 2020, vol. 51, no. 4



[BCH+19] Adam Bouland, Lijie Chen, Dhiraj Holden, Justin Thaler, and Prashant Nalini Va-
sudevan. On the power of statistical zero knowledge. SIAM Journal on Computing,
49(4):1–58, 2019.

[BDBGK18] Shalev Ben-David, Adam Bouland, Ankit Garg, and Robin Kothari. Classical lower
bounds from quantum upper bounds. In Foundations of Computer Science, pages
339–349, 2018.

[Bel12] Aleksandrs Belovs. Learning-graph-based quantum algorithm for k-distinctness. In
Foundations of Computer Science, pages 207–216, 2012.

[Bel15] Aleksandrs Belovs. Quantum algorithms for learning symmetric juntas via the adver-
sary bound. Computational Complexity, 24(2):255–293, 2015.
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