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1 A First Application of Sum-Check: #SAT ∈ IP

Let φ be any Boolean formula on n variables of size S = poly(n). That is, φ is a directed tree of AND, OR,
and NOT gates of fan-in 2, with leafs corresponding to inputs x1, . . . ,xn. Abusing notation, we will use φ to
refer to both the formula itself and the function on {0,1}n that it computes. In the #SAT problem, the goal
is to compute the number of satisfying assignments of φ , or equivalently to compute ∑x∈{0,1}n φ(x). This is
precisely the kind of function that Lund et al. [LFKN92] designed the sum-check protocol to compute.

However, in order to apply the sum-check protocol, we need to identify a polynomial extension g of φ

of total degree poly(S) over a suitable finite field F, such that the verifier can evaluate g at a random point r
in polynomial time. We define g as follows.

Let F be a finite field of size, say, S4 (to guarantee soundness error δs≤ 1/3, the field must be big enough
so that d ·v/|F| ≤ δs). We can turn φ into an arithmetic circuit ψ over F that computes the desired extension
g of φ . An arithmetic circuit C has input gates, output gates, intermediate gates, and directed wires between
them. Each gate computes addition or multiplication over a finite field F.

For any gate in φ computing the AND of two inputs y,z, ψ replaces AND(y,z) with multiplication of y
and z over F; it is easy to check that the bivariate polynomial y · z extends the Boolean function AND(y,z);
i.e., AND(y,z) = y · z for all y,z ∈ {0,1}. Likewise, ψ replaces a gate computing NOT(y) by 1− y, and a
gate computing OR(y,z) by y+ z− y · z. This transformation is depicted in Figures 1 and 2. It is easy to
check that ψ(x) = φ(x) for all x ∈ {0,1}n.

For the polynomial g computed by ψ , ∑
v
i=1 degi(g) ≤ S. Thus, the total communication cost of the

sum-check protocol applied to g is O(S ·n) field elements, and V requires O(S) time to check the first n−1
messages from P . To check P’s final message, V must also evaluate g(r) for the random point r∈ Fn chosen
during the sum-check protocol. V can clearly evaluate g(r) gate-by-gate in time O(S).

As explained in the previous lecture, the prover can runs in time (at most) 2n ·T , where T is the cost of
evaluating g at a point. Since g can be evaluated at g in time O(S), the prover in the #SAT protocols run in
time O(S ·2n). The costs of this protocol are summarized in Table 1.

Proving IP = PSPACE. To establish that IP⊆ PSPACE, it suffices to show that, for any interactive proof
protocol with communication cost c(n), the verifier’s acceptance probability for any given prover strategy
P can be computed in space poly(c(n)), as x ∈ L if and only if this acceptance probability is larger 1/3 for
some P . Eliding some details, this acceptance probability for any prover strategy P can be computed by
enumerating over every possible setting of the verifier’s random coins and computing the fraction of settings
that lead the verifier to accept.

The more challenging direction is to show that PSPACE ⊆ IP. The #SAT protocol of Lund et al.
[LFKN92] described above already contains the main ideas necessary to prove this. Shamir [Sha92] ex-
tended the #SAT protocol to solve the PSPACE-complete language TQBF, and Shen [She92] gave a sim-
pler proof (the cost of Shamir’s and Shen’s protocols are similar to those of the #SAT protocol described
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Figure 1: A Boolean formula φ .
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Figure 2: An arithmetic circuit ψ computing a polynomial
extension g of φ over a finite field F.

Communication Rounds V time P time
O(S) field elements n O(S) O(S ·2n)

Table 1: Costs of the #SAT protocol of Section 1 when applied to a Boolean formula φ : {0,1}n→{0,1} of size S.

above). We do not cover Shamir or Shen’s extensions here, since later lectures will provide a different and
quantitatively stronger proof that PSPACE⊆ IP (via the GKR protocol).

Open Problem: On The Power of the Prover, or Are Sum-Check Techniques Really Necessary to Solve
Languages in coNP? The prover in the protocol for the PSPACE-complete problem TQBF can itself be
implemented in PSPACE. Similarly, the prover in the #P-complete problem #SAT protocol can itself be
implemented via polynomially many calls to a function in #P. However, there is no known interactive for
the coNP-complete language ¯3SAT in which the prover need not solve #P-complete problems. Is there
a protocol for ¯3SAT with a prover that can be implemented in, say, PNP? Under plausible complexity
assumptions, PNP is powerful enough to approximate the number of satisfying assignments to a factor of
1±1/poly(n),1, but is not believed to be powerful enough to exactly count them, as can be done in #P.
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1See e.g. http://mathoverflow.net/questions/2218/characterize-pnp
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