Boolean function $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$

$$\text{AND}_n(x) = \begin{cases} -1 \ (\text{TRUE}) & \text{if } x = (-1)^n \\ 1 \ (\text{FALSE}) & \text{otherwise} \end{cases}$$
A real polynomial p ϵ-approximates f if

$$|p(x) - f(x)| < \epsilon \quad \forall x \in \{-1, 1\}^n$$

- $\tilde{\text{deg}}_\epsilon(f) =$ minimum degree needed to ϵ-approximate f
- $\tilde{\text{deg}}(f) := \tilde{\text{deg}}_{1/3}(f)$ is the approximate degree of f
Threshold Degree

Definition

Let $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ be a Boolean function. A polynomial p **sign-represents** f if $\text{sgn}(p(x)) = f(x)$ for all $x \in \{-1, 1\}^n$.

Definition

The **threshold degree** of f is $\min \deg(p)$, where the minimum is over all sign-representations of f.

- An equivalent definition of threshold degree is $\lim_{\epsilon \searrow 1} \tilde{\deg}_\epsilon(f)$.

Upper bounds on $\tilde{\deg}_\epsilon(f)$ and $\deg_\pm(f)$ yield **efficient learning algorithms**.

- $\epsilon \approx 1/3$: Agnostic Learning [KKMS05]
- $\epsilon \approx 1 - 2^{-n^\delta}$: Attribute-Efficient Learning [KS04, STT12]
- $\epsilon \to 1$ (i.e., $\deg_\pm(f)$ upper bounds): PAC learning [KS01]

Upper bounds on $\tilde{\deg}_\epsilon(f)$ also imply fast algorithms for differentially private data release [TUV12, CTUW14].

Upper bounds on $\tilde{\deg}_\epsilon(f)$ and $\deg_\pm(f)$ for small formulas and threshold circuits f yield state of the art formula size and threshold circuit lower bounds [Tal17, Forster02].
Upper bounds on $\widetilde{\deg}_\epsilon(f)$ and $\deg_\pm(f)$ yield efficient learning algorithms.

- $\epsilon \approx 1/3$: Agnostic Learning [KKMS05]
- $\epsilon \approx 1 - 2^{-n^\delta}$: Attribute-Efficient Learning [KS04, STT12]
- $\epsilon \to 1$ (i.e., $\deg_\pm(f)$ upper bounds): PAC learning [KS01]

- Upper bounds on $\widetilde{\deg}_{1/3}(f)$ also imply fast algorithms for differentially private data release [TUV12, CTUW14].
Upper bounds on $\tilde{\deg}_\varepsilon(f)$ and $\deg_\pm(f)$ yield efficient learning algorithms.

- $\varepsilon \approx 1/3$: Agnostic Learning [KKMS05]
- $\varepsilon \approx 1 - 2^{-n^\delta}$: Attribute-Efficient Learning [KS04, STT12]
- $\varepsilon \to 1$ (i.e., $\deg_\pm(f)$ upper bounds): PAC learning [KS01]

- Upper bounds on $\tilde{\deg}_{1/3}(f)$ also imply fast algorithms for differentially private data release [TUV12, CTUW14].
- Upper bounds on $\tilde{\deg}_\varepsilon(f)$ and $\deg_\pm(f)$ for small formulas and threshold circuits f yield state of the art formula size and threshold circuit lower bounds [Tal17, Forster02].
Lower bounds on $\tilde{\deg}_\epsilon(f)$ and $\deg_\pm(f)$ yield lower bounds on:

- **Oracle Separations** [Bei94, BCHTV16]
- **Quantum query complexity** [BBCMW98]
- **Communication complexity** [She08, SZ08, CA08, LS08, She12]
 - Lower bounds hold for a communication problem related to f.
 - Via, e.g., a technique called the Pattern Matrix Method [She08].
Why Care About Approximate and Threshold Degree?

Lower bounds on $\tilde{\deg}_\epsilon(f)$ and $\deg_{\pm}(f)$ yield lower bounds on:

- **Oracle Separations** [Bei94, BCHTV16]
- **Quantum query complexity** [BBCMW98]
- **Communication complexity** [She08, SZ08, CA08, LS08, She12]

- Lower bounds hold for a communication problem related to f.
- Via, e.g., a technique called the Pattern Matrix Method [She08].

- $\epsilon \approx \frac{1}{3}$ \implies BQP^{cc} lower bounds.
- $\epsilon \approx 1 - 2^{-n^\delta}$ \implies PP^{cc} lower bounds
- $\epsilon \to 1$ (i.e., $\deg_{\pm}(f)$ lower bounds) \implies UPP^{cc} lower bounds.
Why Care About Approximate and Threshold Degree?

Lower bounds on $\widetilde{\deg}_\epsilon(f)$ and $\deg_\pm(f)$ yield lower bounds on:

- **Oracle Separations** [Bei94, BCHTV16]
- **Quantum query complexity** [BBCMW98]
- **Communication complexity** [She08, SZ08, CA08, LS08, She12]
 - Lower bounds hold for a communication problem related to f.
 - Via, e.g., a technique called the Pattern Matrix Method [She08].

- $\epsilon \approx 1/3 \implies \text{BQP}^{cc}$ lower bounds.
- $\epsilon \approx 1 - 2^{-n^\delta} \implies \text{PP}^{cc}$ lower bounds
- $\epsilon \to 1$ (i.e., $\deg_\pm(f)$ lower bounds) $\implies \text{UPP}^{cc}$ lower bounds.

- Lower bounds on $\widetilde{\deg}_\epsilon(f)$ and $\deg_\pm(f)$ also yield efficient secret-sharing schemes [BIVW16]
Example 1: The Approximate Degree of AND_n
Example: What is the Approximate Degree of AND_n?

\[\tilde{\deg}(\text{AND}_n) = \Theta(\sqrt{n}). \]

- Upper bound: Use **Chebyshev Polynomials**.
- The degree d Chebyshev polynomial T_d satisfies:
 - $|T_d(t)| \leq 1$ for all $t \in [-1, 1]$.
 - $T'_d(\pm 1) = d^2$.

![Chebyshev Polynomial Graph]
Example: What is the Approximate Degree of AND_n?

$$\widetilde{\deg}(\text{AND}_n) = O(\sqrt{n}).$$

- After shifting a scaling, can turn degree $O(\sqrt{n})$ Chebyshev polynomial into a univariate polynomial $Q(t)$ that looks like:

![Graph showing $Q(-1+2/n) = 2/3$]

- Define n-variate polynomial p via $p(x) = Q(\sum_{i=1}^{n} x_i/n)$.
- Then $|p(x) - \text{AND}_n(x)| \leq 1/3 \quad \forall x \in \{-1, 1\}^n$.
Example: What is the Approximate Degree of AND_n?

\[\text{NS92} \quad \tilde{\deg}(\text{AND}_n) = \Omega(\sqrt{n}). \]

- Lower bound: Use **symmetrization**.
- Suppose \(|p(x) - \text{AND}_n(x)| \leq 1/3 \quad \forall x \in \{-1, 1\}^n \).
- There is a way to turn \(p \) into a univariate polynomial \(p^{\text{sym}} \) that looks like this:

![Graph showing the approximation of AND function]

- **Claim 1:** \(\deg(p^{\text{sym}}) \leq \deg(p) \).
- **Claim 2:** Markov’s inequality \(\implies \deg(p^{\text{sym}}) = \Omega(n^{1/2}) \).
What if ϵ is “somewhat close” to 1?

- **Fact:** $\deg_{1-1/n}(\text{AND}_n) = 1$.
- **Proof:** Consider the approximation $1 - 1/n + \sum_{i=1}^{n} x_i/n$.
Example 2: A Function With Large Approximate Degree For ϵ Exponentially Close to 1

Definition
Define the function ODD-MAX-BIT (OMB) via the following procedure: “For $i = 1, \ldots, n$, if $x_i = -1$, halt and output $(-1)^i$.”

- OMB is a decision list.
- Any decision list is also a linear-size DNF.

An example decision list on 4 variables.
Example 2: A Function With Large Approximate Degree For ϵ Exponentially Close to 1

Definition

Define the function ODD-MAX-BIT (OMB) via the following procedure: “For $i = 1, \ldots, n$, if $x_i = -1$, halt and output $(-1)^i$.”

- OMB is a decision list.
- Any decision list is also a linear-size DNF.

Theorem (Beigel 1992, Klivans and Servedio 2004)

For any $d \geq 0$, $\widetilde{\deg}_\epsilon(OMB) = d$ for some $\epsilon = 1 - 2^{-\tilde{\Theta}(n/d^2)}$.

Special cases:

- $\deg_{\pm}(OMB) = \widetilde{\deg}_{1-2^{-\Theta(n)}}(OMB) = 1$.
- $\widetilde{\deg}_\epsilon(OMB) = \tilde{\Theta}(n^{1/3})$ for $\epsilon = 1 - 2^{-n^{1/3}}$.
- $\deg_{1/3}(OMB) = \tilde{\Theta}(n^{1/2})$.
In a k-decision list, each $C_i(x)$ is a conjunction of width k.
In a k-decision list, each $C_i(x)$ is a conjunction of width k.

- Any k-decision list of length ℓ list is computed by a depth-3 circuit of bottom fan-in $O(k)$ and size $O(\ell)$.
Our Main Result

Theorem (Main Theorem)

For any (large) constant $\Gamma > 0$ and (small) constant $\delta > 0$, there is an $O(\log n)$-decision list f of length $\text{poly}(n)$ satisfying the following: $\deg_{\epsilon}(f) \geq n^{1/2-\delta}$ for $\epsilon = 1 - 2^{-n^\Gamma}$.

Compare to prior work: Theorem (Beigel 1992, Klivans and Servedio 2004) For any $d \geq 0$, $\deg_{\epsilon}(\text{OMB}) = d$ for some $\epsilon = 1 - 2^{-\widetilde{\Theta}(n/d^2)}$.

In Main Theorem, $\deg_{\pm}(f) = O(\log n)$ and $\deg(f) = \widetilde{\Theta}(n^{1/2})$. So our f can be sign-represented by a very low degree polynomial, but any polynomial of degree $\ll \deg(f)$ must incur extremely large error (superexponentially close to 1).

Proving this type of result requires fundamentally new techniques.
Our Main Result

Theorem (Main Theorem)

For any (large) constant \(\Gamma > 0 \) and (small) constant \(\delta > 0 \), there is an \(O(\log n) \)-decision list \(f \) of length \(\text{poly}(n) \) satisfying the following: \(\overline{\deg}_\epsilon(f) \geq n^{1/2-\delta} \) for \(\epsilon = 1 - 2^{-n^\Gamma} \).

Compare to prior work:

Theorem (Beigel 1992, Klivans and Servedio 2004)

For any \(d \geq 0 \), \(\overline{\deg}_\epsilon(\text{OMB}) = d \) for some \(\epsilon = 1 - 2^{-\tilde{\Theta}(n/d^2)} \).
Our Main Result

Theorem (Main Theorem)

For any (large) constant $\Gamma > 0$ and (small) constant $\delta > 0$, there is an $O(\log n)$-decision list f of length $\text{poly}(n)$ satisfying the following: $\deg_\epsilon(f) \geq n^{1/2-\delta}$ for $\epsilon = 1 - 2^{-n^\Gamma}$.

- Compare to prior work:

Theorem (Beigel 1992, Klivans and Servedio 2004)

For any $d \geq 0$, $\deg_\epsilon(\text{OMB}) = d$ for some $\epsilon = 1 - 2^{-\tilde{\Theta}(n/d^2)}$.

- In Main Theorem, $\deg_\pm(f) = O(\log n)$ and $\deg(f) = \tilde{\Theta}(n^{1/2})$.

- So our f can be sign-represented by a very low degree polynomial, but any polynomial of degree $\ll \deg(f)$ must incur extremely large error (superexponentially close to 1).

- Proving this type of result requires fundamentally new techniques.
Two Main Motivations for Our Main Result
First Motivation: PAC Learning DNFs

- The fastest known algorithm for PAC learning DNFs runs in time $2\tilde{O}(n^{1/3})$ [Klivans and Servedio 2001].
- Follows from the fact that for any DNF f, $\deg_{\pm}(f) = \tilde{O}(n^{1/3})$.

Klivans and Servedio ask: for any DNF f, is it possible that $\tilde{\deg}_{\pm}(f) \leq \tilde{O}(n^{1/3})$ for $\epsilon = 1 - 2^{-n^{1/3}}$? An affirmative answer would yield a much simpler DNF learning algorithm.

Our Main Theorem comes close to a negative resolution of their question.
The fastest known algorithm for PAC learning DNFs runs in time $2\tilde{O}(n^{1/3})$ [Klivans and Servedio 2001].

Follows from the fact that for any DNF f, $\deg_\pm(f) = \tilde{O}(n^{1/3})$.

How do Klivans and Servedio prove this?

- First, they turn any DNF into a (generalization of) a k-decision list, for some $k = \tilde{O}(n^{1/3})$.
- Second, they observe that any k-decision list f satisfies $\deg_\pm(f) \leq k$.
- More specifically, $\deg_\epsilon(f) \leq k$ for $\epsilon = 1 - 2^{-n^k}$.
The fastest known algorithm for PAC learning DNFs runs in time $2\tilde{O}(n^{1/3})$ [Klivans and Servedio 2001].

Follows from the fact that for any DNF f, $\deg_{\pm}(f) = \tilde{O}(n^{1/3})$.

How do Klivans and Servedio prove this?

- First, they turn any DNF into a (generalization of) a k-decision list, for some $k = \tilde{O}(n^{1/3})$.
- Second, they observe that any k-decision list f satisfies $\deg_{\pm}(f) \leq k$.
- More specifically, $\tilde{\deg}_{\epsilon}(f) \leq k$ for $\epsilon = 1 - 2^{-n^k}$.

Klivans and Servedio ask: for any DNF f, is it possible that $\tilde{\deg}_{\epsilon}(f) \leq \tilde{O}(n^{1/3})$ for $\epsilon = 1 - 2^{-n^{1/3}}$?

An affirmative answer would yield a much simpler DNF learning algorithm.
First Motivation: PAC Learning DNFs

- The fastest known algorithm for PAC learning DNFs runs in time $2\tilde{O}(n^{1/3})$ [Klivans and Servedio 2001].
- Follows from the fact that for any DNF f, $\deg_\pm(f) = \tilde{O}(n^{1/3})$.
- How do Klivans and Servedio prove this?
 - First, they turn any DNF into a (generalization of) a k-decision list, for some $k = \tilde{O}(n^{1/3})$.
 - Second, they observe that any k-decision list f satisfies $\deg_\pm(f) \leq k$.
 - More specifically, $\deg_\epsilon(f) \leq k$ for $\epsilon = 1 - 2^{-n^k}$.
- Klivans and Servedio ask: for any DNF f, is it possible that $\deg_\epsilon(f) \leq \tilde{O}(n^{1/3})$ for $\epsilon = 1 - 2^{-n^{1/3}}$?
- An affirmative answer would yield a much simpler DNF learning algorithm.
- Our Main Theorem comes close to a negative resolution of their question.
Second Motivation: Complexity of AC0

- **PP** is the class of all languages solvable by polynomial time randomized algorithms that output the correct answer with probability strictly better than $1/2$.

- **PP** has a natural communication analog, **PPcc**.

- Why is **PPcc** important?
 - **PP$^{cc}(F)$** characterizes the margin complexity and discrepancy of F.
 - If $\text{PP}^{cc}(F) \geq d \Rightarrow F$ is not computed by Majority-of-Threshold Circuits of size 2^d.

- Open question: How big can $\text{PP}^{cc}(F)$ be for an AC0 function F? Can it be $\Omega(n)$?
Second Motivation: Complexity of AC⁰

- **PP** is the class of all languages solvable by polynomial time randomized algorithms that output the correct answer with probability strictly better than 1/2.
- **PP** has a natural **communication analog**, **PPcc**.
- Why is **PPcc** important?
 - **PPcc** (F) characterizes the **margin complexity** and **discrepancy** of F.
 - **PPcc** (F) ≥ d → F is not computed by Majority-of-Threshold Circuits of size 2ᵈ.
- Open question: How big can **PPcc** (F) be for an AC⁰ function F? Can it be Ω(n)?
- (Sherstov 2008): If \(\widetilde{\deg}_\epsilon(f) \geq d \) for \(\epsilon = 1 - 2^{-d} \), then f can be turned into a related function F satisfying **PPcc** (F) ≥ d.
Open question: How big can $\mathsf{PP}^{cc}(F)$ be for an AC^0 function F?

History:

- Folklore: All depth-2 circuits F have $\mathsf{PP}^{cc}(F) = O(\log n)$.

Our work: For any constant $\delta > 0$, there is a depth-3 circuit F with $\mathsf{PP}^{cc}(F) = \tilde{\Omega}(n^{1/2 - \delta})$.

(Bun and Thaler 2015): A depth-3 circuit F with $\mathsf{PP}^{cc}(F) \geq \tilde{\Omega}(n^{2/5})$.

(Sherstov 2015): A depth-3 circuit F with $\mathsf{PP}^{cc}(F) \geq \tilde{\Omega}(n^{3/7})$ and a depth-4 circuit F with $PP^{cc}(F) \geq \tilde{\Omega}(n^{1/2})$.

Implication: Allender (1989) showed all of AC^0 can be computed by quasipolynomial size depth-3 majority circuits. This cannot be improved to depth-2 majority circuits.
Second Motivation: Complexity of AC0

- Open question: How big can $\mathbf{PP}^{cc}(F)$ be for an AC0 function F?
- History:
 - Folklore: All depth-2 circuits F have $\mathbf{PP}^{cc}(F) = O(\log n)$.
 - (Sherstov 2008, BVdW 2008): There is a depth-3 circuit F with $\mathbf{PP}^{cc}(F) \geq n^{1/3}$.
 - (Bun and Thaler 2015): A depth-3 circuit F with $\mathbf{PP}^{cc}(F) \geq \tilde{\Omega}(n^{2/5})$.
 - (Sherstov 2015): A depth-3 circuit F with $\mathbf{PP}^{cc}(F) \geq \tilde{\Omega}(n^{3/7})$ and a depth-4 circuit F with $\mathbf{PP}^{cc}(F) \geq \tilde{\Omega}(n^{1/2})$.

- Our work: For any constant $\delta > 0$, there is a depth-3 circuit F with $\mathbf{PP}^{cc}(F) \geq \tilde{\Omega}(n^{1/2-\delta})$.
Open question: How big can $\mathsf{PP}^{cc}(F)$ be for an AC^0 function F?

History:
- Folklore: All depth-2 circuits F have $\mathsf{PP}^{cc}(F) = O(\log n)$.
- (Sherstov 2008, BVdW 2008): There is a depth-3 circuit F with $\mathsf{PP}^{cc}(F) \geq n^{1/3}$.
- Implication: Allender (1989) showed all of AC^0 can be computed by quasipolynomial size depth-3 majority circuits. This cannot be improved to depth-2 majority circuits.
Second Motivation: Complexity of AC^0

- Open question: How big can $\text{PP}^{cc}(F)$ be for an AC^0 function F?

- History:
 - Folklore: All depth-2 circuits F have $\text{PP}^{cc}(F) = O(\log n)$.
 - (Sherstov 2008, BVdW 2008): There is a depth-3 circuit F with $\text{PP}^{cc}(F) \geq n^{1/3}$.
 - Implication: Allender (1989) showed all of AC^0 can be computed by quasipolynomial size depth-3 majority circuits. This cannot be improved to depth-2 majority circuits.
 - (Bun and Thaler 2015): A depth-3 circuit F with $\text{PP}^{cc}(F) \geq \tilde{\Omega}(n^{2/5})$.
 - (Sherstov 2015): A depth-3 circuit F $\text{PP}^{cc}(F) \geq \tilde{\Omega}(n^{3/7})$ and a depth-4 circuit F with $\text{PP}^{cc}(F) \geq \tilde{\Omega}(n^{1/2})$.

Our work: For any constant $\delta > 0$, there is a depth-3 circuit F with $\text{PP}^{cc}(F) \geq \tilde{\Omega}(n^{1/2} - \delta)$.

Second Motivation: Complexity of AC0

- Open question: How big can $\mathbf{PP}^{cc}(F)$ be for an AC0 function F?

- History:
 - Folklore: All depth-2 circuits F have $\mathbf{PP}^{cc}(F) = O(\log n)$.
 - (Sherstov 2008, BVdW 2008): There is a depth-3 circuit F with $\mathbf{PP}^{cc}(F) \geq n^{1/3}$.
 - Implication: Allender (1989) showed all of AC0 can be computed by quasipolynomial size depth-3 majority circuits. This cannot be improved to depth-2 majority circuits.
 - (Bun and Thaler 2015): A depth-3 circuit F with $\mathbf{PP}^{cc}(F) \geq \tilde{\Omega}(n^{2/5})$.
 - (Sherstov 2015): A depth-3 circuit F $\mathbf{PP}^{cc}(F) \geq \tilde{\Omega}(n^{3/7})$ and a depth-4 circuit F with $\mathbf{PP}^{cc}(F) \geq \tilde{\Omega}(n^{1/2})$.

- **Our work:** For any constant $\delta > 0$, there is a depth-3 circuit F with $\mathbf{PP}^{cc}(F) \geq \tilde{\Omega}(n^{1/2 - \delta})$.
These theorems show that $g \circ f$ is "harder to approximate" by low-degree polynomials than is f alone. Here, $g \circ f = g(f, \ldots, f)$ is the block-composition of g and f.
Prior Techniques: Proving Hardness Amplification Theorems For Block-Composed Functions

These theorems show that $g \circ f$ is “harder to approximate” by low-degree polynomials than is f alone.

Here, $g \circ f = g(f, \ldots, f)$ is the block-composition of g and f.
Hardness-Amplification Theorems From Prior Work

<table>
<thead>
<tr>
<th>Theorem (Sherstov 2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let f be a Boolean function with $\widehat{\deg}{1/2}(f) \geq d$. Let $F = \bigoplus_t \circ f$, where \bigoplus_t is the parity function on t bits. Then $\widehat{\deg}{1-2^{-t}}(F) \geq d \cdot t$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Bun and Thaler 2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let f be a Boolean function with $\widehat{\deg}_{-1/2}(f) \geq d$. Let $F = \text{OR}t \circ f$. Then $\widehat{\deg}{1-2^{-t}}(F) \geq d$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Sherstov 2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let f be a Boolean function with $\widehat{\deg}_{-1/2}(f) \geq d$. Let $F = \text{OR}t \circ f$. Then $\deg{\pm}(F) = \Omega(\min{d, t})$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Thaler 2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let f be a Boolean function with $\widehat{\deg}_{+1/2}(f) \geq d$. Let $F = \text{OMB}t \circ f$. Then $\widehat{\deg}{1-2^{-t}}(F) \geq d$.</td>
</tr>
</tbody>
</table>
Our Techniques: Beyond Block-Composed Functions
An $O(\log n)$-Decision List Harder to Approximate than OMB?

Theorem (Beigel94, Thaler14)

Let $F = \text{OMB}_t \circ \text{OR}_b$. Then $\overline{\deg}_{1-2^{-t}}(F) \geq \sqrt{b}$. E.g., if $t = n^{1/3}$ and $b = n^{2/3}$, then $\deg_{\epsilon}(F) \geq n^{1/3}$ for $\epsilon = 1 - 2^{-n^{1/3}}$.
An $O(\log n)$-Decision List Harder to Approximate than OMB?

Theorem (Beigel94, Thaler14)

Let $F = \text{OMB}_t \circ \text{OR}_b$. Then $\widetilde{\deg}_{1-2^{-t}}(F) \geq \sqrt{b}$. E.g., if $t = n^{1/3}$ and $b = n^{2/3}$, then $\deg_\epsilon(F) \geq n^{1/3}$ for $\epsilon = 1 - 2^{-n^{1/3}}$.

- Our goal is to modify $\text{OMB}_t \circ \text{OR}_b$ to obtain a function f that is much harder to approximate by low-degree polynomials, while still ensuring that f is computed by an $O(\log n)$-decision list.

Theorem (Main Theorem)

For any (large) constant $\Gamma > 0$ and (small) constant $\delta > 0$, there is an $O(\log n)$-decision list f of length $\text{poly}(n)$ satisfying the following: $\widetilde{\deg}_\epsilon(f) \geq n^{1/2-\delta}$ for $\epsilon = 1 - 2^{-n^\Gamma}$.

First attempt: Letting \oplus_k denote the Parity function on k bits, consider $F := \oplus_k \circ \text{OMB}_t \circ \text{OR}_b$. This is a k-decision list of length n^k. Unfortunately, this is too easy to approximate. Let p approximate $\text{OMB}_b \circ \text{OR}_t$ to error $1 - \epsilon$. Then the polynomial $q(x_1,\ldots,x_k) = \prod_{i=1}^k p(x_i)$ approximates $F(x_1,\ldots,x_k)$ to error $1 - \epsilon^k$. Note: q treats each of the k "blocks" x_i independently, and outputs the products of the k results.
An $O(\log n)$-Decision List Harder to Approximate than OMB?

Theorem (Beigel94, Thaler14)

Let $F = \text{OMB}_t \circ \text{OR}_b$. Then $\deg_{1-2^{-t}}(F) \geq \sqrt{b}$. E.g., if $t = n^{1/3}$ and $b = n^{2/3}$, then $\deg_{\epsilon}(F) \geq n^{1/3}$ for $\epsilon = 1 - 2^{-n^{1/3}}$.

- Our goal is to modify $\text{OMB}_t \circ \text{OR}_b$ to obtain a function f that is much harder to approximate by low-degree polynomials, while still ensuring that f is computed by an $O(\log n)$-decision list.

- First attempt: Letting \oplus_k denote the Parity function on k bits, consider $F := \oplus_k \circ \text{OMB}_t \circ \text{OR}_b$.
 - This is a k-decision list of length n^k.

Unfortunately, this is too easy to approximate. Let p approximate $\text{OMB}_b \circ \text{OR}_t$ to error $1 - \epsilon$. Then the polynomial $q(x_1, \ldots, x_k) = \prod_{i=1}^{k} p(x_i)$ approximates $F(x_1, \ldots, x_k)$ to error $1 - \epsilon^k$. Note: q treats each of the k “blocks” x_i independently, and outputs the products of the k results.
An $O(\log n)$-Decision List Harder to Approximate than OMB?

Theorem (Beigel94, Thaler14)

Let $F = \text{OMB}_t \circ \text{OR}_b$. Then $\widetilde{\deg}_{1 - 2^{-t}}(F) \geq \sqrt{b}$. E.g., if $t = n^{1/3}$ and $b = n^{2/3}$, then $\deg_\epsilon (F) \geq n^{1/3}$ for $\epsilon = 1 - 2^{-n^{1/3}}$.

- Our goal is to modify $\text{OMB}_t \circ \text{OR}_b$ to obtain a function f that is much harder to approximate by low-degree polynomials, while still ensuring that f is computed by an $O(\log n)$-decision list.

- First attempt: Letting \oplus_k denote the Parity function on k bits, consider $F := \oplus_k \circ \text{OMB}_t \circ \text{OR}_b$.
 - This is a k-decision list of length n^k.

- Unfortunately, this is too easy to approximate.
 - Let p approximate $\text{OMB}_b \circ \text{OR}_t$ to error $1 - \epsilon$.
 - Then the polynomial $q(x_1, \ldots, x_k) = \prod_{i=1}^k p(x_i)$ approximates $F(x_1, \ldots, x_k)$ to error $1 - \epsilon^k$.
An $O(\log n)$-Decision List Harder to Approximate than OMB?

Theorem (Beigel94, Thaler14)

Let $F = \text{OMB}_t \circ \text{OR}_b$. Then $\overline{\deg}_{1 - 2^{-t}}(F) \geq \sqrt{b}$. E.g., if $t = n^{1/3}$ and $b = n^{2/3}$, then $\deg_\epsilon(F) \geq n^{1/3}$ for $\epsilon = 1 - 2^{-n^{1/3}}$.

- Our goal is to modify $\text{OMB}_t \circ \text{OR}_b$ to obtain a function f that is much harder to approximate by low-degree polynomials, while still ensuring that f is computed by an $O(\log n)$-decision list.

- First attempt: Letting \oplus_k denote the Parity function on k bits, consider $F := \oplus_k \circ \text{OMB}_t \circ \text{OR}_b$.
 - This is a k-decision list of length n^k.

- Unfortunately, this is too easy to approximate.
 - Let p approximate $\text{OMB}_b \circ \text{OR}_t$ to error $1 - \epsilon$.
 - Then the polynomial $q(x_1, \ldots, x_k) = \prod_{i=1}^k p(x_i)$ approximates $F(x_1, \ldots, x_k)$ to error $1 - \epsilon^k$.
 - Note: q treats each of the k “blocks” x_i independently, and outputs the products of the k results.
Our F first “pre-processes” its input (x_1, \ldots, x_k) to obtain values $(u_1, \ldots, u_k) \in \{-1, 1\}^{(t \cdot b) \times k}$, which are then fed into $\oplus_k \circ \text{OMB}_t \circ \text{OR}_b$.

The pre-processing introduces dependencies between blocks. This ensures that an approximating polynomial for F will be unable to treat them independently.

But the pre-processing is “mild” enough that F is an $O(\log n)$-decision list of length n^k.

The larger k is, the better our lower bound for F (i.e., the lower bound holds for a larger Γ and a smaller δ).
Our F first “pre-processes” its input (x_1, \ldots, x_k) to obtain values $(u_1, \ldots, u_k) \in \{-1, 1\}^{(t \cdot b) \times k}$, which are then fed into $\oplus_k \circ \text{OMB}_t \circ \text{OR}_b$.

The pre-processing introduces dependencies between blocks.

- This ensures that an approximating polynomial for F will be unable to treat them independently.
- But the pre-processing is “mild” enough that F is an $O(\log n)$-decision list of length n^k.
- The larger k is, the better our lower bound for F (i.e., the lower bound holds for a larger Γ and a smaller δ).

Idea for $k = 2$.

- F takes two input “blocks” (x_1, x_2), with $x_1 \in \{-1, 1\}^{t \cdot b}$, and $x_2 \in \{-1, 1\}^{t \cdot b \cdot \log_2 (t \cdot b)}$.
- Turn (x_1, x_2) into $(u_1, u_2) \in \{-1, 1\}^{t \cdot b} \times \{-1, 1\}^{t \cdot b}$ as follows:
Moving Beyond Block-Composition

- Our F first “pre-processes” its input (x_1, \ldots, x_k) to obtain values $(u_1, \ldots, u_k) \in \{-1, 1\}^{(t \cdot b) \times k}$, which are then fed into $\oplus_k \circ \text{OMB}_t \circ \text{OR}_b$.
- The pre-processing introduces dependencies between blocks.
 - This ensures that an approximating polynomial for F will be unable to treat them independently.
 - But the pre-processing is “mild” enough that F is an $O(\log n)$-decision list of length n^k.
 - The larger k is, the better our lower bound for F (i.e., the lower bound holds for a larger Γ and a smaller δ).
- Idea for $k = 2$.
 - F takes two input “blocks” (x_1, x_2), with $x_1 \in \{-1, 1\}^{t \cdot b}$, and $x_2 \in \{-1, 1\}^{t \cdot b \cdot \log_2(t \cdot b)}$.
 - Turn (x_1, x_2) into $(u_1, u_2) \in \{-1, 1\}^{t \cdot b} \times \{-1, 1\}^{t \cdot b}$ as follows:
 - $u_1 = x_1$.
 - Let $i^* \in \{1, \ldots, t\}$ be the largest value such that $x_{1,i^*} = -1$.
 - u_2 is obtained from x_2 by testing each consecutive sequence of $\log_2(tb)$ bits for equality with (the binary representation of) i^*.
Schematic of Our Hard-To-Approximate $O(\log n)$-Decision List for $k = 2$
Subsequent Work and Open Questions

- (Bun and Thaler, 2017): A different hardness amplification technique that moves beyond block-composed functions.
 - For any constant $\delta > 0$, yielded a nearly-optimal $\Omega(n^{1-\delta})$ lower bound on the approximate degree of AC0 (specifically, depth $\log(1/\delta)$).
 - Previous best lower bound for AC0 was $\Omega(n^{2/3})$ (Aaronson and Shi, 2004).

- (Bun and Thaler 2018): Different refinements, showing that there is an AC0_c circuit of depth $O(1/\delta)$ and PP$^{cc}(F) \geq n^{1-\delta}$.

Conjecture: For any constant $\delta > 0$, there is a depth-3 AC0_c circuit F with PP$^{cc}(F) \geq n^{1-\delta}$ (maybe even $\Omega(n)$).

Can we prove this by combining the techniques of this work with (Bun and Thaler, 2017/2018)? Can we extend our lower bound for $O(\log n)$-decision lists to DNFs, answering the question of Klivans and Servedio?
Subsequent Work and Open Questions

- (Bun and Thaler, 2017): A different hardness amplification technique that moves beyond block-composed functions.
 - For any constant $\delta > 0$, yielded a nearly-optimal $\Omega(n^{1-\delta})$ lower bound on the approximate degree of AC^0 (specifically, depth $\log(1/\delta)$).
 - Previous best lower bound for AC^0 was $\Omega(n^{2/3})$ (Aaronson and Shi, 2004).
- (Bun and Thaler 2018): Different refinements, showing that there is an AC^0 circuit of depth $O(1/\delta)$ and $\text{PP}^{cc}(F) \geq n^{1-\delta}$.

Conjecture: For any constant $\delta > 0$, there is a depth-3 AC^0 circuit F with $\text{PP}^{cc}(F) \geq n^{1-\delta}$ (maybe even $\Omega(n)$).

Can we prove this by combining the techniques of this work with (Bun and Thaler, 2017/2018)?

Can we extend our lower bound for $O(\log n)$-decision lists to DNFs, answering the question of Klivans and Servedio?
(Bun and Thaler, 2017): A different hardness amplification technique that moves beyond block-composed functions.

- For any constant $\delta > 0$, yielded a nearly-optimal $\Omega(n^{1-\delta})$ lower bound on the approximate degree of AC^0 (specifically, depth $\log(1/\delta)$).

- Previous best lower bound for AC^0 was $\Omega(n^{2/3})$ (Aaronson and Shi, 2004).

- (Bun and Thaler 2018): Different refinements, showing that there is an AC^0 circuit of depth $O(1/\delta)$ and $\text{PP}^{cc}(F) \geq n^{1-\delta}$.

Conjecture: For any constant $\delta > 0$, there is a depth-3 AC^0 circuit F with $\text{PP}^{cc}(F) \geq n^{1-\delta}$ (maybe even $\Omega(n)$).

- Can we prove this by combining the techniques of this work with (Bun and Thaler, 2017/2018)?
Subsequent Work and Open Questions

- (Bun and Thaler, 2017): A different hardness amplification technique that moves beyond block-composed functions.
 - For any constant $\delta > 0$, yielded a nearly-optimal $\Omega(n^{1-\delta})$ lower bound on the approximate degree of AC^0 (specifically, depth $\log(1/\delta)$).
 - Previous best lower bound for AC^0 was $\Omega(n^{2/3})$ (Aaronson and Shi, 2004).
- (Bun and Thaler 2018): Different refinements, showing that there is an AC^0 circuit of depth $O(1/\delta)$ and $\text{PP}^{cc}(F) \geq n^{1-\delta}$.

Conjecture: For any constant $\delta > 0$, there is a depth-3 AC^0 circuit F with $\text{PP}^{cc}(F) \geq n^{1-\delta}$ (maybe even $\Omega(n)$).

- Can we prove this by combining the techniques of this work with (Bun and Thaler, 2017/2018)?

- Can we extend our lower bound for $O(\log n)$-decision lists to DNFs, answering the question of Klivans and Servedio?
Thank you!