Quantum Algorithms for Composed
Functions With Shared Inputs
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https://simons.berkeley.edu/talks/quantum-algorithms-composed-functions-shared-inputs

Introduction



Query complexity

Let /:{0,1}"* - {0,1} be a function and x € {0,1}" be aninput to f.

X = x1 xz x3 xn

Goal: Compute f(x) by reading as few bits of x as possible.

Equivalently, compute f(x) using a
circuit/algorithm with the least number
of uses of this oracle:
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In the quantum setting, we have this
oracle:

i)|p) —— Ox —— |i)|b ® xy)




Why query complexity?

Quantum algorithmic motivation

* Query algorithms often can be made time-efficient, while the abstraction of query
complexity often gets rid of unnecessary details.

* Most quantum algorithms are naturally phrased as query algorithms. E.g., Shor, Grover,
Hidden Subgroup, Linear systems (HHL), etc.

Classical algorithmic motivation

« Functions with quantum query complexity < d can be agnostically PAC learned in time ~n?.

Classical complexity motivation

 If all circuits in a class C have quantum query complexity o(n), then no circuit from C can
correctly compute IP2 on a % + 1/poly(n) fraction of inputs.

Other applications

* Oracle separations between classes, lower bounds on restricted models, upper and lower
bounds in communication complexity, data structures, etc.



Quantum query complexity

Quantum query complexity: Minimum number of uses of O, in a quantum
algorithm that for every input x, outputs f (x) with error < 1/3.
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Example: Let OR,,(x) = Vi~ x; and AND,,(x) = Al x;.
Then Q(OR,,) = Q(AND,,) = O(y/n) [Grover96, Bennett-Bernstein-Brassard-Vazirani97]

Classically, we need ®(n) queries for both problemes.




Query Complexity of Block-Composed Functions

« If £:{0,1}™ - {0,1} and g: {0,1}* — {0,1}, the block composition f ° g:{0,1}™"* — {0,1} is
definedvia f °g = f(g, ..., g), with each copy of g on a disjoint set of variables.
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» Fact: Q(fog) = 0(Q(f) - Q(g)) [HLS 2007, Reichardt 2010].

 Tomorrow: Troy Lee’s talk will discuss whether the analogous statement holds for
randomized query complexity.



Main Composition Theorem



Query Complexity of Shared-Input Compositions

 We are interested in shared-input compositions.

j

f
TR

g g
NS\
X4 e X Xy

 Atrivial upper bound for Q(h)is: Q(h) < 0(Q(f) - Q(g)).
* Isit always possible to leverage the sharing of inputs to improve this upper bound?
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 We are interested in shared-input compositions.
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 Atrivial upper bound for Q(h)is: Q(h) < 0(Q(f) - Q(g)).
* Isit always possible to leverage the sharing of inputs to improve this upper bound?

« We show the answer is YES whenever g=AND, and Q(f) < n.
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Main Theorem: Q(h) < 0(y/Q(f) - n - polylog(n)).

* Without leveraging input sharing, the best upper bound for Q(h) is:

Q(h) = 0(Q(f) - V).
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Main Theorem: Q(h) < 0(y/Q(f) - n - polylog(n)).

« Without leveraging input sharing, the best upper bound for Q(h) is:
Q(h) = 0(Q(f) - vVn).
» Also show an analog for approximate degree: adeg(h) < O (\/adeg(f) : n)

* Both results are tight for some functions, e.g., for h = PARITY; © ANDn.
t



ldea of the Quantum Algorithm for h

* Query input bits with the goal of “killing” high fan-in AND gates.
* i.e., if we query bit x; and learn x; = 0, then all AND gates involving x; have
their value fixed to 0, so we can effectively delete them.



ldea of the Quantum Algorithm for h

* Query input bits with the goal of “killing” high fan-in AND gates.
* i.e., if we query bit x; and learn x; = 0, then all AND gates involving x; have
their value fixed to 0, so we can effectively delete them.

Let h'denote h with all queried bits x; restricted to their queried values.
If all surviving AND gates have fan-in at most n/Q(f), then the trivial upper
bound yields:

Q) =) - [75 = AP




ldea of the Quantum Algorithm for h

 Remaining challenge: Figure out how to reduce the fan-in of all surviving AND

gates ton/Q(f), using only \/n - Q(f) queries.

* To accomplish this, we iteratively Grover search for an x; such that:

e x; =0and

* X; is connected to “many” surviving high-fan-in AND gates.



Implications of the Composition
Theorem



Quantum Query Algorithms for Linear-Size AC°

e Recursively applying our Main Theorem shows that any linear size, depth-d
(i.e., LCJ) circuit f satisfies Q(f) = 0(nt=2""h.

Main Theorem: Q(h) < 0(y/Q(f) - n - polylog(n)).




Quantum Query Algorithms for Linear-Size AC°

* Recursively applying our Main Theorem shows that any linear size, depth-d
(i.e., LCJ) circuit f satisfies Q(f) = 0(nt=2""h.

Main Theorem: Q(h) < 0(y/Q(f) - n - polylog(n)).

-Q(f) =0 ( 1=z d)[neW]

Q(f) = 0(n"/®) new
Q(f) — 6(713/4) [Childs, Kothari, Kimmel 2012]

Linear Size Depth 2

— Q(OR,,) = 0(y/n) [Groveros, BBBV97]




Quantum Query Algorithms for Linear-Size AC°

* Recursively applying our Main Theorem shows that any linear size, depth-d
(i.e., LCJ) circuit f satisfies Q(f) = 0(nt=2""h.

* Nearly matches known lower bound: for every d, thereisa f € LC?i with
Q(f) = Q=2 [childs, Kothari, Kimmel 2012].



Quantum Query Algorithms for Linear-Size AC°

* Recursively applying our Main Theorem shows that any linear size, depth-d
(i.e., LCJ) circuit f satisfies Q(f) = 0(nt=2""h.

* Nearly matches known lower bound: for every d, thereisa f € LC?i with
Q(f) = Qn*=27"). [Childs, Kothari, Kimmel 2012].

e Algorithmic application: the circuit class ch can be agnostically PAC learned in

~ o d
time 20"% )- [Kalai, Klivans, Mansour, Servedio 2005]



Implications for Circuit Lower Bounds

An important frontier problem in circuit complexity is to show that IP2 cannot
be computed by AC® ° € circuits of polynomial size.

Best known lower bound: IP2 cannot be computed by depth-d AC® ° & circuits
of size n1+4"“[CR96, CGIWX16].
Our upper bound of Q(f) = ( 1=2" d) for LCJ circuits f implies that IP2

cannot be computed by depth d AC° » @ circuits of size O(n'™% d), even on a
¥%+1/poly(n) fraction of inputs. [cf. Tal17].



Open Questions



s our Upper Bound on Q(LC;)) Tight Up To Logs?
» Recall: we show Q(LC)) = O(nt=2""h.

» Nearly matches a known lower bound: for every d, there is an LC) circuit f
with Q(F) = Q(n1=2""). [Childs, Kothari, Kimmel 2012].

Open Problem: Improve the lower bound to 2 (nl‘z_d) .
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with Q(F) = Q(n1=2""). [Childs, Kothari, Kimmel 2012].

Open Problem: Improve the lower bound to 2 (nl‘z_d) .

 To accomplish this, it would be enough to achieve the following:

Open Problem: Exhibit a quadratic-size DNF with linear quantum query
complexity.



s our Upper Bound on Q(LC;)) Tight Up To Logs?
» Recall: we show Q(LC)) = O(nt=2""h.
» Nearly matches a known lower bound: for every d, there is an LC) circuit f

with Q(F) = Q(n1=2""). [Childs, Kothari, Kimmel 2012].

Open Problem: Improve the lower bound to 2 (nl‘z_d) .

 To accomplish this, it would be enough to achieve the following:

Open Problem: Exhibit a quadratic-size DNF with linear quantum query
complexity.

* Alternatively, show that every (quadratic? polynomial?) size DNF has
sublinear quantum query complexity!



The Lower Bound Argument of [CKK 2012]

* Fact [Beame and Machmouchi 2012, Sherstov 2015]: There is a quadratic size AC°
circuit C of depth three, called SURJECTIVITY, with Q(C) = Q(n).

e [CKK 2012] show how to turn C into a linear-size circuit C'of depth 3 such that
Q(C") = Qn3/).

e (1= Cn1/2° ANDn1/2.

» Recall that Q(C,j1/2° AND,1/2) = © (Q(Cn1/2) : Q(ANDnl/z)) = Q(n3/*).



The Lower Bound Argument of [CKK 2012]

* Fact [Beame and Machmouchi 2012, Sherstov 2015]: There is a quadratic size AC°
circuit C of depth three, called SURJECTIVITY, with Q(C) = Q(n).

e [CKK 2012] show how to turn C into a linear-size circuit C'of depth 3 such that
Q(C") = Qn3/).
e (1= Cn1/2° ANDn1/2.

» Recall that Q(C,j1/2° AND,1/2) = © (Q(Cn1/2) : Q(ANDnl/z)) = Q(n3/*).
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* Then C"": = C,1/2° C’ 1,2 is a linear size circuit of depth 5 such that Q(C”) = Q (ng)

* Then C""":= C 1/2° C” 1,2 is a linear size circuit of depth 7 such that Q(C") =
15
Q nﬁ). And so on.



Generalizing Our Composition Theorem?

f‘

/// \\\
/ M\

Main Theorem: Q(h) < 0(y/Q(f) - n - polylog(n)).

* NOTE: if the roles of AND and f are reversed, the composition theorem
is FALSE.

* But other generalizations of the composition theorem may be possible.



More Classical Implications of Quantum Query
Upper Bounds?

 Asublinear upper bound on the quantum query complexity or approximate degree of
a circuit class establishes very strong limitations on that class.

Immediately implies the class cannot compute IP2, even on average (e.g., [Tal17]).

Immediately implies subexponential time agnostic PAC learning algorithms for the
class.

Open Question 2: Identify other implications, e.g., Faster SAT algorithms for the
class?



Non-Trivial Query or Communication Upper
Bounds for Stronger Circuit Classes?

 Can we show sublinear quantum query or approximate degree upper bounds
for circuit classes beyond LC)?

* Maybe this is a path towards showing IP2 & AC° - .

e Alternatively, sublinear threshold degree (or subexponential sign-rank) upper
bounds for a circuit class imply the class cannot compute IP2 in the worst
case, and yield PAC learning algorithms for the class.

*  Can we show such bounds for interesting circuit classes beyond LCy?

 E.g., showing LT, circuits have sub-exponential sign-rank would mean such
circuits cannot compute IP2.



