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Query complexity

Goal: 

!1 !2 !3 !%⋯

'('(



Why query complexity?
Quantum algorithmic motivation

Classical algorithmic motivation

Classical complexity motivation

Other applications



Quantum query complexity

Quantum query complexity: Minimum number of uses of !" in a quantum 
algorithm that for every input #, outputs $(#) with error ≤ 1/3. + $

Example: .

Then + OR. = + AND. = Θ 4 [Grover96, Bennett-Bernstein-Brassard-Vazirani97]  

Classically, we need Θ 4 queries for both problems.
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Query Complexity of Block-Composed Functions
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Query Complexity of Shared-Input Compositions

! ℎ is: ! ℎ ≤ $ ! % & !(()

• We show the answer is YES whenever g=AND, and Q(f)<<n. 
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Query Complexity of Shared-Input Compositions

! ℎ is: ! ℎ ≤ $ ! % & !(() .
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Main Theorem: ! ℎ ≤ $ ! % & ' & ()*+*),(') .

• Without leveraging input sharing, the best upper bound for ! ℎ is: 

! ℎ ≤ $ ! % & ' .

• Also show an analog for approximate degree: adeg ℎ ≤ $ adeg % & ' .

• Both results are tight for some functions, e.g., for ℎ = 56789:; ◦ 6<=>
?
.

%

^ … ^
… xn…x1 xn-1

ℎ



Main Theorem: ! ℎ ≤ $ ! % & ' & ()*+*),(') .

• Without leveraging input sharing, the best upper bound for ! ℎ is: 

! ℎ ≤ $ ! % & ' .

• Also show an analog for approximate degree: adeg ℎ ≤ $ adeg % & ' .

• Both results are tight for some functions, e.g., for ℎ = 56789:; ◦ 6<=>
?
.

%

^ … ^
… xn…x1 xn-1

ℎ



Idea of the Quantum Algorithm for h

• Query input bits with the goal of “killing” high fan-in AND gates.
• i.e., if we query bit !" and learn !" = 0, then all AND gates involving !" have 

their value fixed to 0, so we can effectively delete them.

• Let ℎ&denote ℎ with all queries bits !" restricted to their queried values.
• If all surviving AND gates have fan-in at most '/)(+), then the trivial upper 

bound (that ignores sharing of inputs between AND gates) yields:

) ℎ ≤ ) + . /
0 1 = ' . ) + . 

• Remaining challenge: Figure out how to reduce the fan-in of all surviving AND 

gates to '/)(+), using only ' . ) + queries.
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Idea of the Quantum Algorithm for h
• Remaining challenge: Figure out how to reduce the fan-in of all surviving AND 

gates to !/#(%), using only ! ' # % queries.

• To accomplish this, we iteratively Grover search for an () such that:

• () = 0 and 
• () is connected to “many” surviving high-fan-in AND gates.





Quantum Query Algorithms for Linear-Size AC0

• Recursively applying our Main Theorem shows that any linear size, depth-d 
(i.e., LC!" ) circuit # satisfies Q # = &(()*+,-). 

Main Theorem: / ℎ ≤ & / # 2 ( 2 3456547(() .



Quantum Query Algorithms for Linear-Size AC0

• Recursively applying our Main Theorem shows that any linear size, depth-!
(i.e., LC"

# ) circuit $ satisfies Q $ = '()*+,-.). 

…

Depth 1

Linear Size Depth 2

0 OR3 = O ) [Grover96, BBBV97]

0 $ = O )4/6 [Childs, Kothari, Kimmel 2012]

Linear Size Depth 3

Linear Size Depth d

0 $ = O )7/8 [new]

0 $ = O )*+,-. [new]

Main Theorem: 0 ℎ ≤ ' 0 $ ; ) ; <=>?>=@()) .



Quantum Query Algorithms for Linear-Size AC0

• Recursively applying our Main Theorem shows that any linear size, depth-!
(i.e., LC"

# ) circuit $ satisfies Q $ = '()*+,-.). 
• Nearly matches known lower bound: for every !, there is a $ ∈ LC"

# with 

Q $ = Ω()*+,-2(.)). [Childs, Kothari, Kimmel 2012].



Quantum Query Algorithms for Linear-Size AC0

• Recursively applying our Main Theorem shows that any linear size, depth-!
(i.e., LC"

# ) circuit $ satisfies Q $ = '()*+,-.). 
• Nearly matches known lower bound: for every !, there is a $ ∈ LC"

# with 

Q $ = Ω()*+,-2(.)). [Childs, Kothari, Kimmel 2012].

• Algorithmic application: the circuit class LC"# can be agnostically PAC learned in 

time 26(78-9
-.). [Kalai, Klivans, Mansour, Servedio 2005]



Implications for Circuit Lower Bounds
• An important frontier problem in circuit complexity is to show that IP2 cannot 

be computed by AC0 ◦ ⊕ circuits of polynomial size. 

• Best known lower bound: IP2 cannot be computed by depth-" AC0 ◦ ⊕ circuits 

of size #$%&'([CR96, CGJWX16].

• Our upper bound of ) * = , #$-.'( for LC/
0

circuits * implies that IP2 

cannot be computed by depth " AC0 ◦ ⊕ circuits of size ,(#$%.'(), even on a 

½+1/poly(n) fraction of inputs. [cf. Tal17].





Is our Upper Bound on Q(LC!
" ) Tight Up To Logs?

• Recall: we show # LC!
" = %('()*+,). 

• Nearly matches a known lower bound: for every ., there is an LC!
" circuit 4

with # 4 = Ω('()*+6(,)). [Childs, Kothari, Kimmel 2012].

Open Problem: Improve the lower bound to 7 89):+; .
• To accomplish this, it would be enough to achieve the following:

Open Problem: Exhibit a quadratic-size DNF with linear quantum query        
ascomplexity.
• Alternatively, show that every (quadratic? polynomial?) size DNF has 

sublinear quantum query complexity!
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The Lower Bound Argument of [CKK 2012]
• Fact [Beame and Machmouchi 2012, Sherstov 2015]: There is a quadratic size AC0 

circuit C of depth three, called SURJECTIVITY, with " # = Ω & .
• [CKK 2012] show how to turn # into a linear-size circuit #(of depth 3 such that 
" #′ = Ω(&+/-).
• #(: = #01/2◦ AND01/2. 

• Recall that " #01/2◦ AND01/2 = Θ " #01/2 7 " AND01/2 = Ω(&+/-).

• Then #′′: = #01/2◦ #’01/2 is a linear size circuit of depth 5 such that " #’’ = Ω &
9
: .

• Then #′′′: = #01/2◦ #’’01/2 is a linear size circuit of depth 7 such that " #’’’ =
Ω &

1;
1< . And so on.



The Lower Bound Argument of [CKK 2012]
• Fact [Beame and Machmouchi 2012, Sherstov 2015]: There is a quadratic size AC0 

circuit C of depth three, called SURJECTIVITY, with " # = Ω & .
• [CKK 2012] show how to turn # into a linear-size circuit #(of depth 3 such that 
" #′ = Ω(&+/-).
• #(: = #01/2◦ AND01/2. 

• Recall that " #01/2◦ AND01/2 = Θ " #01/2 7 " AND01/2 = Ω(&+/-).

• Then #′′: = #01/2◦ #’01/2 is a linear size circuit of depth 5 such that " #’’ = Ω &
9
: .

• Then #′′′: = #01/2◦ #’’01/2 is a linear size circuit of depth 7 such that " #’’’ =
Ω &

1;
1< . And so on.



Generalizing Our Composition Theorem?
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Main Theorem: " ℎ ≤ % " ! & ' & ()*+*),(') .
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• NOTE: if the roles of AND and ! are reversed, the composition theorem 
is FALSE.

• But other generalizations of the composition theorem may be possible.
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More Classical Implications of Quantum Query 
Upper Bounds?
• A sublinear upper bound on the quantum query complexity or approximate degree of 

a circuit class establishes very strong limitations on that class.

• Immediately implies the class cannot compute IP2, even on average (e.g., [Tal17]).

• Immediately implies subexponential time agnostic PAC learning algorithms for the 
class.

• Open Question 2: Identify other implications, e.g., Faster SAT algorithms for the 
class? 



Non-Trivial Query or Communication Upper 

Bounds for Stronger Circuit Classes?
• Can we show sublinear quantum query or approximate degree upper bounds 

for circuit classes beyond LC!
"? 

• Maybe this is a path towards showing IP2 ∉ $%" ◦ ⊕.

• Alternatively, sublinear threshold degree (or subexponential sign-rank) upper 

bounds for a circuit class imply the class cannot compute IP2 in the worst 

case, and yield PAC learning algorithms for the class.

• Can we show such bounds for interesting circuit classes beyond LC!
"?

• E.g., showing LT2 circuits have sub-exponential sign-rank would mean such 

circuits cannot compute IP2. 


