
Peeling Arguments and Double Hashing

Michael Mitzenmacher1 and Justin Thaler2

Abstract— The analysis of several algorithms and data struc-
tures can be reduced to the analysis of the following greedy
“peeling” process: start with a random hypergraph; find a
vertex of degree at most k, and remove it and all of its adjacent
hyperedges from the graph; repeat until there is no suitable
vertex. This specific process finds the k-core of a hypergraph,
and variations on this theme have proven useful in analyzing
for example decoding from low-density parity-check codes,
several hash-based data structures such as cuckoo hashing, and
algorithms for satisfiability of random formulae. This approach
can be analyzed several ways, with two common approaches
being via a corresponding branching process or a fluid limit
family of differential equations.

In this paper, we make note of an interesting aspect of these
types of processes: the results are generally the same when
the randomness is structured in the manner of double hashing.
This phenomenon allows us to use less randomness and simplify
the implementation for several hash-based data structures and
algorithms. We explore this approach from both an empirical
and theoretical perspective, examining theoretical justifications
as well as simulation results for specific problems.

I. INTRODUCTION

The analysis of several algorithms and data structures
can be reduced to the analysis of the following greedy
“peeling” process: start with a random hypergraph; find a
vertex of degree at most k, and remove it and all of its
adjacent hyperedges from the graph; repeat until there is
no suitable vertex. This specific process finds the k-core of
a hypergraph. The k-core itself appears in the analysis of
several algorithms, and variations on this underlying process
have arisen in the analysis of many problems that on their
surface appear quite different, such as low-density parity-
check codes [16], cuckoo hashing [23], [5], [7], [9], and the
satisfiability of random formulae [2], [18], [22].

An interesting question is whether the “full randomness”
assumption for the underlying random graph is necessary for
the analysis of the peeling process. Specifically, we consider
here a hashing scheme that assigns d possible locations for
a key x, such as for example cuckoo hashing, where the
key will be placed in one of the d location choices. For
any set of inputs S, the hashing scheme naturally defines
a random hypergraph G, where nodes in G correspond to
locations, and for each key x ∈ S there is a hyperedge in
G corresponding to the d location choices for x. Instead
of computing values using d independent hash functions
h1(x), h2(x), . . . , hd(x), consider the following alternative:
we compute two hash values f1(x) and f2(x), and then use

1School of Engineering and Applied Sciences, Harvard University. Sup-
ported in part by the NSF under grants CNS-1011840, IIS-0964473, and
CCF-091592.

2School of Engineering and Applied Sciences, Harvard University. Sup-
ported by an NSF Graduate Research Fellowship.

as our d hash values hi(x) = f1(x) + if2(x) mod n for
i ∈ {0, . . . , d − 1}, where n is the size of our hash table.
(We generally assume that f1(x) is uniform over [0, n− 1],
and f2(x) is uniform over all numbers in [1, n−1] relatively
prime to n to avoid duplicated hash values, and all hash
values are independent.) This approach is commonly referred
to as double hashing, and it has clear utility in the context
of hash tables: it reduces the amount of randomness and
computation required. Moreover, multiple-choice hashing is
used in several hardware systems (such as routers), and
double hashing is extremely conducive to implementation
in hardware.

In the general setting of hypergraphs, we can think of dou-
ble hashing restricting the hyperedges chosen so that the ver-
tices in the hyperedge form an arithmetic sequence. We can
view this informally as a particular type of “quasi-random”
hypergraph, and the motivation from multiple-choice hashing
schemes makes it a natural subclass of random hypergraphs
to study. One might ask about the behavior of any number of
graph properties for these double hashing hypergraphs. Here
we suggest that it is particularly interesting to ask how the
change from fully random hypergraphs to double hashing
hypergraphs affects results like the computation of the k-
core, given that the k-core plays a key role in the analysis
several algorithms and data structures.

In this paper, we provide empirical evidence and theoret-
ical justification that using double hashing does not affect
the size of the k-core, except up to lower order terms.
This suggests that double hashing may be suitable for use
in a number of practical settings. We provide experimental
results for the 2-core and 3-core, as well as for cuckoo
hashing; we also consider how previous analyses, based on
branching processes or differential equations, might extend
to the double hashing setting.

Several interesting open questions remain, and we believe
that these hypergraphs, which we have dubbed double hash-
ing hypergraphs, are worthy of further study.

A. Previous Work

Recall that, for open address hash tables, double hashing
works as follows. The jth ball obtains two hash values, f(j)
and g(j). For a hash table of size n, f(j) ∈ [0, n − 1] and
g(j) ∈ [1, n − 1]. Successive locations h(j, k) = f(j) +
kg(j) mod n, k = 0, 1, 2,, are tried until an empty
slot is found. On an insertion, the ball is placed in that
location; on a lookup, the locations are tried in that order
under the ball is found, or if an empty slot is found the
search in unsuccessful. Interestingly, the average length of
an unsuccessful search sequence for standard double hashing

when the table load is a constant α has been shown to be, up
to lower order terms, 1/(1−α), showing that double hashing
has essentially the same performance as random probing
(where each ball would have its own random permutation
of the bins to examine, in order, until finding an empty bin)
[1], [10], [17]. However, these results appear to have been
derived using different techniques than we examine here.

The idea of using double hashing in place of random
hashing for multiple choice schemes has appeared in prior
work. A highly related setting where double hashing was
shown to provide the same asymptotic performance as fully
random hashing was in the context of Bloom filters, first
in the empirical work of Dillinger and Manolios [6], and
then later in a corresponding theoretical justification given
by Kirsch and Mitzenmacher [12]. They showed in standard
settings where the false positive probability is designed to
be constant, the false positive rate achieved using double
hashing equals the rate achieved using fully random hashing
(up to lower order terms). More recently, Mitzenmacher has
shown that in the setting of balanced allocation (hash tables
with multiple choices), the fluid limit approach applies even
when using only double hashing [20]. In hindsight, both of
these works can be seen as exemplars of the more general
framework we propose here.

In a more general sense, this work falls into the long
history of work on reducing required randomness for hash-
ing, perhaps the most notable of which is the seminal work
of Carter and Wegman on universal hash functions [3].
More recently, Pǎtraşcu and Thorup study simple tabulation
hashing in the context of several algorithms, including linear
probing and cuckoo hashing [24]. The main goal of our work
is to show that in many contexts the use of double hashing
in lieu of random hashing leads to results that are essentially
indistinguishable in practice, and to provide some partial
theoretical justification for this phenomenon. Arguably, this
is a stronger goal than most related work, which aims to show
that results obtained using reduced randomness are good
approximations to, or asymptotically the same as, results
using full randomness.

B. Paper Outline

The remainder of the paper is structured as follows. In
Section II, we adapt a branching argument for analyzing the
k-core of a random hypergraph to the double hashing setting.
This section contains the main technical content of the paper,
including our primary conjecture (Conjecture 2) and our
main theorem (Theorem 3, which proves Conjecture 2 for
a limited range of parameters). In Section III, we describe
a different analysis of the k-core of a random hypergraph
based on differential equations; our intention here is to raise
the question of whether these types of arguments can be
extended to the case of double hashing. Section IV introduces
cuckoo hashing and discusses its relationship to k-cores
of random hypergraphs. Section V presents our simulation
results, suggesting that in many settings double hashing
hypergraphs yield results that are essentially identical to truly
random hypergraphs.

II. THE BRANCHING ARGUMENT FOR k-CORES

There are various forms of the branching argument for
analyzing the k-core of a random graph. We utilize a
variation based primarily on [22], although similar arguments
appear elsewhere (e.g., [5], [15]). Our main insight is that
these branching arguments, for the most part, also apply
when only double hashing is used to determine the random
hyperedges.

Specifically, we review the analysis of the asymptotic size
of the k-core of a random hypergraph with n hyperedges
on m vertices where c = n/m is held fixed as n and m
grow, and then consider the related analysis for the double
hashing setting. We can allow our random hypergraph to
have hyperedges with varying numbers of vertices; let λj
be the probability a hyperedge has degree j. We assume
λ0 = λ1 = 0 and λi = 0 for all i greater than some
constant value. We define λ(x) =

∑
j λjx

j . For convenience
we assume all vertices in a hyperedge are distinct, although
asymptotically the difference is negligible in our arguments.
Also, we find it slightly easier to use the binomial random
hypergraph formulation where each hyperedge of degree j
is present with probability nλj

(mj)
; again, asymptotically, this is

equivalent.

We can consider the peeling process as occurring in a
sequence of rounds, where in each round all vertices of
degree less than k are removed the graph, along with their
incident hyperedges. We calculate the probability qh that a
vertex z is deleted after h rounds of peeling. We follow the
description of [5]. Whether a node z remains after a constant
number of iterations h of the peeling procedure depends only
on the sub-hypergraph induced on the vertices at distance
at most h from z. In the setting where n is linear in m,
this subgraph is a hypertree with probability 1 − o(1), and
we assume this henceforth. Consider the hypertree rooted at
z; the children are vertices that share a hyperedge with z,
and the children of one of these vertices correspond to other
vertices that share an edge with that vertex, and so on. The
vertices at distance h − 1 from z are deleted if they have
at most k − 2 children; that is, they are adjacent to at most
k − 1 hyperedges. We then consider vertices at h − 2 from
z in the same manner, taking into account vertices that have
already been deleted, and so on. The root z is deleted if at
the end of this process it has degree at most k − 1.

For i < h, let pi be the probability that a vertex of
distance h− i from z is deleted within the first i rounds of
the peeling process. Let Bin(N, p) denote a random variable
with a binomial distribution, and Po(β) denote a Poisson
distributed random variable with expectation β. We make
use of the asymptotic Poisson approximation of the binomial
distribution, which results in additive terms that tend to zero
in the asymptotic setting; also, we use the fact that the sum
of Poisson random variables is itself Poisson. We have that
p0 = 0 and that pi follows the recursion:

pi+1 = Pr

∑
j

Bin

((
m− 1

j − 1

)
,
nλj(
m
j

) (1− pi)j−1

)
< k − 1


= Pr

∑
j

Po

(
nλj(1− pi)j−1

(
m−1
j−1

)(
m
j

)) < k − 1

+o(1)

= Pr

∑
j

Po
(
cjλj(1− pi)j−1

)
< k − 1

+o(1)

= Pr [Po(cλ′(1− pi)) < k − 1] + o(1).

Here the (1− pi)j−1 term in the first line represents that
j − 1 neighboring vertices of an edge must remain after i
rounds for that edge to have survived for consideration in the
next round of peeling. We have used the fact that the sum of
Poisson random variables is itself Poisson, and the resulting
expression nicely is in terms of the derivative λ′(x).

We note qh has a slightly different form, accounting for
the node in question being the root:

qh = Pr [Po(cλ′(1− ph−1)) < k] + o(1).

However, the probability that z is deleted approaches p =
limj→∞ pj , and p corresponds to the smallest non-negative
solution of

p = Pr [Po(cλ′(1− p)) < k − 1] .

The above argument represents the core of the argument
for finding the asymptotic size of the k-core in a random
hypergraph. In particular, the above suggests that there are
two key regimes to consider; when c < ck, the k-core is
empty with high probability (by which we shall mean 1 −
o(1) throughout, for convenience), and when c > ck, the
k-core is of size pm + o(m) with high probability, where
p is determined by the equation above. However, there are
details that remain for both cases, as shown in [22]. First,
when c < ck, the above argument shows that for any constant
ε, the peeling process leaves fewer than εm vertices after a
constant number of rounds. One must then separately prove
that it is not possible to have a core of size at most ε′m for
some constant ε′ with high probability, which then yields
for this case that the k-core will be empty. Similarly, when
c > ck, the above argument shows that after any constant
number of rounds, the peeling process leaves at least pm
vertices; some additional work is needed to show that in fact
the k-core does not fall below pm + o(m) vertices even if
one allowed more than a constant number of rounds.

We now consider what changes when we move to double
hashing in place of random hashing. The key point is that the
central argument, based on the branching process, continues
to hold even when using double hashing. To see this, let γj be
the total number of possible hyperedges of degree j that can
be chosen using double-hashing. The set of possible degree
j hyperedges is Ej = {(f1(x), f1(x) + f2(x), . . . , f1(x) +
(j−1)f2(x) : f1(x) ∈ {0, . . . ,m−1}, f2(x) ∈ {1, . . . ,m−
1}, gcd(f2(x),m) = 1}, and so γj = |Ej | = Ω(m2).

Specifically, we note the following fact for when m is
prime, which we draw on freely later.

Fact 1: If m is prime and m > j2, then the following
properties hold.

1) There are exactly γj =
(
m
2

)
length j arithmetic

sequences (taken modulo m) that are subsets of
{0, . . . ,m− 1}.

2) Suppose we generate a random length j arithmetic se-
quence via double-hashing. Then all length-j arithmetic
sequences are equally likely to be generated.

Proof: Both statements follow by observing that there
are exactly two ways to generate any arithmetic sequence of
the form e = {a, a+ b, . . . a+ (j − 1)b} by double hashing.
Specifically, e will be generated if and only if f1(x) = a
and f2(x) = b, or f1(x) = a + (j − 1)b and f2(x) = −b.
If m is prime, there are m(m − 1) ways to choose values
(f1(x), f2(x)), and there are therefore m(m − 1)/2 =

(
m
2

)
possible length j arithmetic sequences. Moreover, each is
equally likely to be generated.

We again use a binomial random hypergraph formulation,
where each possible hyperedge available via double hashing
of degree j is present with probability nλj

γj
. Further, the

subgraph of vertices within distance h from a specific vertex
again forms a hypertree with probability 1 − o(1), and we
assume this henceforth. Now note that each vertex, by sym-
metry, appears in γjj

m possible hyperedges. Hence, repeating
the argument regarding the derivation of the equation for the
pi, we find in the double hashing setting:

pi+1 = Pr

∑
j

Bin
(
γjj

m
,
nλj
γj

(1− pi)j−1

)
< k − 1


= Pr

∑
j

Po
(
cjλj(1− pi)j−1

)
< k − 1

+ o(1)

= Pr [Po(cλ′(1− pi)) < k − 1] + o(1),

and the argument proceeds as before. This demonstrates that
as long as c < ck, the peeling process applied to the double-
hashing hypergraph leaves fewer than εm edges for any
constant ε with high probability.

However, the final details of the argument are more deli-
cate. Indeed, the statement that the k-core is empty with high
probability in fact does not hold in the case of double hashing
for 2-cores, although something close holds. To see this,
consider the bottleneck of very small 2-cores consisting of
two hyperedges that are the same. With random hyperedges
of j > 2 vertices, the probability that two of the n edges
are the same is at most

(
n
2

)(
m
j

)−1
= o(1), but in the case of

double hashing the expected number of pairs of hyperedges
that are the same is Ω

((
n
2

)
γ−1
j

)
= Ω(1). Note that for k-

cores with k > 2, in both settings the probability that k of the
n hyperedges are the same is o(1), although the probability
is significantly smaller with random hyperedges as opposed
to hyperedges from double hashing.

Our simulations demonstrate the difference regarding the
2-core does appear in practice; the difference, however, is
between an empty core and one that in practice is roughly
logarithmic in size. (There are heuristic arguments suggesting
why with double hashing below the threshold the 2-core
can be bounded by O(logm), but we do not present them
here.) For some applications, this difference is unimportant;
applications that require an empty 2-core, however, would
need to find a suitable workaround.1

We conjecture that with the exception of the 2-core as
noted above, the k-core threshold behavior is the same
for double hashing, in that below the threshold with high
probability the k-core is empty. Specifically, we make the
following conjecture, which corresponds to a theorem proven
for random hypergraphs in [22, Theorem 1] and gives a
formula for the exact threshold at which a non-empty core
appears. Let Dd

m,n be a randomly chosen d-uniform double
hashing random hypergraph with m nodes and n edges.

Conjecture 2: Let d, k > 2. Define

c∗k,d = min
x>0

x

d
(

1− e−x
∑k−2
i=0

xi

i

)d−1
.

1) For any c < c∗k,d, with probability 1 − o(1) the k-core
of Dd

m,cm is empty.
2) For any c > c∗k,d, with probability 1 − o(1) the k-core

of Dd
m,cm has size α(c)n+ o(n), where

α(c) = 1− e−x
k−1∑
i=0

xi

i
,

and x is the greatest solution to

c =
x

d
(

1− e−x
∑k−2
i=0

xi

i

)d−1
.

Further, for d > 2 and k = 2, the above also hold, except
that when c < c∗k,d, we have with probability 1 − o(1) the
k-core of Dd

m,cm is O(log n).
In the following, we prove Part 1 of Conjecture 2 for a

limited range of parameters.

Theorem 3: Let k, d be constants such that k > d. For all
c < c∗k,d, it holds that with probability 1− o(1) the k-core of
Dd
m,cm is empty.

Proof: The discussion above showed that if c < c∗k,d,
the peeling process applied to the double-hashing hypergraph
leaves fewer than εm edges for any constant ε with high
probability. So to complete the proof of the theorem, it
suffices to show that with probability 1−o(1), there is some
ε′ > 0 such that Dd

m,cm contains no subgraph with fewer
than ε′m vertices and average degree at least k. Our proof
follows the high-level outline of [22, Lemma 5].

As before, we find it slightly easier to analyze the graph
Cdm,cm in which each of the

(
m
2

)
hyperdges appears inde-

pendently with probability p = cm/
(
m
2

)
. Asymptotically, the

1As an example, Biff codes [21] require an empty 2-core; however, a
logarithmic sized 2-core could be handled by using a small amount of
additional error-correction on the original data.

graphs Cdm,cm and Dd
m,cm are equivalent up to o(1) terms

for the purposes of this analysis.
Consider a with d ≤ a ≤ ε′m, for an ε′ to be named later.

If Cdm,cm contains a subgraph G on a vertices with average
degree at least k, then G has at least kad edges; we may delete
edges to obtain a subgraph G′ on a vertices with exactly ka

d

edges (for simplicity, we assume throughout that ka
d is an

integer). Let N denote the number of such subgraphs G′ in
Cdm,cm. We prove an upper bound on the expected value of
N . To this end, notice that

E[N] ≤
(
m

a

)((a
2

)
ka
d

)
p
ka
d .

In the above,
(
m
a

)
counts the number of ways to choose the

set S of a nodes in the subgraph,
(
a
2

)
is an upper bound on

the number of length-d arithmetic sequences containing only
nodes in S, and p

ka
d is the probability that any fixed set of

ka
d edges all appear in Cdm,cm. We then find

E[N] ≤
(
m

a

)((a
2

)
ka
d

)
p
ka
d

≤
(em
a

)a(e(a2)
ka
d

) ka
d
(
cm(
m
2

)) ka
d

≤ Ca1

(m
a

)a
· a kad · (1/m)

ka
d

= Ca1

(a
m

)(kd−1)a

,

where C1 is a universal constant.
Since k and d are constants with k > d, the final term

equals Ca1
(
a
m

)δa
for some constant δ > 0. If a < ε′m

where ε′ = 1/2C
1/δ
1 , then the above expression is at most

1
2δa

. Let ` := 100 logm
δ . For a > `, this quantity is at most

1/m100.
Furthermore, notice that for a ≤ `, Ca1

(
a
m

)δa ≤ 1/mΩ(1).
Thus, the expected number of subgraphs of size at most ε′m
with ka

d edges is at most

E[N] ≤
∑̀
a=d

1

mΩ(1)
+

ε′m∑
a=`

1

m100
=

1

mΩ(1)
.

By Markov’s inequality, with probability 1 − 1/mΩ(1),
there is no such subgraph.

We remark that the bottleneck in preventing extending
this argument to a larger range of parameters appears to
be in showing that there are much fewer than

(
a
2

)
length-

d arithmetic sequences containing only nodes in S. Our use
of
(
a
2

)
appears to be a very pessimistic bound, particularly for

small values of a. However, tightening this bound appears
to require making some non-trivial use of the structure of
collections of arithmetic sequences. Doing so may allow one
to show that Part 1 of Conjecture 2 holds for a larger range
of parameters.

III. THE DIFFERENTIAL EQUATIONS ARGUMENT

Differential equations have also been used to analyze
peeling processes (e.g. [11], [16], [18], [25], [26]), and in
particular the k-core for random hypergraphs [4], [16]. The
approach is generally utilized by analyzing the following
process: choose a random vertex of degree less than k, delete
it and its adjacent hyperedges, and continue.

We explain how this can be used to develop a family of
differential equations. For convenience, we explain only for
the 2-core, and for the case where all hyperedges have fixed
degree d; the approach can be generalized.

As each hyperedge has degree d, if we start with n
hyperedges, we have nd pairs (e, v) where e is a hyperedge
and v is a vertex adjacent to that hyperedge. Let Xi(0) denote
the initial number of pairs where the vertex has degree i. Our
algorithm, at each step, chooses a random vertex of degree
1, and deletes it and the rest of the associated hyperedges.
We can write equations denoting the expected change of
Xi(T) at each step T , where T runs from 0 up to at most
n−1. The key to making this argument hold over time is that
if we start with a random hypergraph with a given degree
distribution, as we continue this process, the result at each
step will continue to be a random hypergraph constrained
to have the corresponding degree distribution obtained after
deleting the vertex and adjacent hyperedges (see, e.g., [4],
[16], [22]). Because of this, at each step, it vector of values
Xi form a Markov chain, and our analysis allows us to study
the limiting behavior of this Markov chain.

Let ∆Xi(T) be the change in Xi over a time step. We drop
the dependence on T from the notation when the meaning
is clear. At each step we lose a vertex of degree 1, and
d− 1 other edge pairs. Each of those edge pairs contains a
random vertex; the edges adjacent to that vertex have their
degree lowered by 1. Let T denote the number of steps that
have been performed. Then

E[∆X1] = (X2 −X1)
d− 1

d(n− T)− 1
− 1,

and for i ≥ 1

E[∆Xi] = (Xi+1 −Xi)
i(d− 1)

d(n− T)− 1
.

(The probability that each of the d − 1 edges hits a vertex
of degree i is Xi

d(n−T)−1 ; when this happens, we lose i pairs
from Xi, but increase Xi−1 by i− 1 pairs.)

In the limit as n grows to infinity, we can scale time so
that t = T/n runs from 0 to 1, and we can use xi(t) =
Xi(tn)/(dn) to denote the correspondingly scaled fraction
of the initial pairs that remain adjacent to vertices of degree
i. Let ∆t = 1/n. If we ignore the negligible −1 terms in the
denominators, then the above equations can be written as

E[∆x1]

∆t
= (x2 − x1)

d− 1

d(1− t)
− 1

d
,

and for i ≥ 1

E[∆xi]

∆t
= (xi+1 − xi)

i(d− 1)

d(1− t)
.

In the limit, these expectations will follow the correspond-
ing differential equations

dx1

dt
= (x2 − x1)

d− 1

d(1− t)
− 1

d
,

and for i ≥ 1

dxi
dt

= (xi+1 − xi)
i(d− 1)

d(1− t)
.

It can be shown that these differential equations in fact
track the behavior of the algorithm for finding the 2-core.
Heuristically, the differential equations can then be used to
determine the size of the 2-core of a random hypergraph,
including the threshold that separates empty from non-empty
2-cores. However, full formalizations of this can require
additional work, much as in the case of the branching
argument (see, e.g., [4]).

It is not immediately clear that the differential equations
approach should apply in the double hashing setting. In
particular, it is not clear at this point if the independence that
one obtains in the fully random setting, where the hypergraph
at each step can be taken to be a random graph (subject to
the degree distribution), necessarily holds here. However, the
recent argument in [20] shows that differential equations can
be used for a load-balancing problem using choices from
double hashing based on the near-independence of vertices,
which follows from the fact that their local neighborhoods
are disjoint with high probability. Extending such arguments
to this domain remains an interesting open problem.

This framework suggests the following conjecture:

Conjecture 4: The differential equations above describing
the evolution of the randomized peeling algorithm for the 2-
core of a random hypergraph also describe the evolution of the
algorithm for the 2-core of a double hashing hypergraph. Sim-
ilarly, the generalizations of these equations for the peeling
algorithm for the k-core for random hypergraphs also apply
to double hashing hypergraphs.

IV. CUCKOO HASHING

We review cuckoo hashing and its connection to random
hypergraphs; for more background, see [19]. In standard
cuckoo hashing [23], keys are placed into a hash table
with each bucket containing one item, and each key has
two choices of bucket locations determined by random hash
values. The key is placed in one of its two choices if either is
empty; if neither is empty, the key is placed in its first choice,
and the key there is moved to its other choice, and so on as
needed. Eventually an empty space is found and all keys are
placed, or a cycle is found and a failure occurs. One means
of handling a failure is to put the key in a separate stash.
The stash must be searched in its entirety when performing
lookups into the table, but if the stash is constant-sized this is
not problematic; in practice in hardware, if the stash is small
it can often be implemented in very fast content addressable
memory (CAM). With two choices, if the ratio to the number
of keys to the number of buckets, known as the load, is less
than 1/2, all keys can be placed with high probability; using

even a small stash can greatly reduce the failure probability
[13]. If we think of the buckets as vertices and the keys
as edges (corresponding to their choice of buckets), then
the problem of assigning each key its own bucket can be
viewed as a random graph problem, where each edge must
be oriented to one of its adjacent vertices and each vertex
can have at most one edge oriented to it.

A natural generalization of standard cuckoo hashing is
to give each key d ≥ 3 or more choices, in which case
we now have a random hypergraph instead of a random
graph, with keys again corresponding to hyperedges and
vertices to buckets. We can again ask if there is a load
threshold under which each key can have its own bucket
with high probability. (For now, we ignore the question of
what algorithm finds such an assignment of keys to buckets
– offline it can be turned into a maximum matching problem
– and focus on the load threshold.) These thresholds have
been determined [5], [7], [8], [9], [14].

One natural approach to find the load threshold utilizes
peeling arguments. If a bucket has only one adjacent key,
we can have that key placed in the bucket, and then the
key is removed from consideration. This corresponds exactly
to peeling until reaching the 2-core in the corresponding
random hypergraph. Obviously, if the 2-core is empty, then
all the keys have been placed. However, unlike many other
algorithmic settings, we do not need the 2-core to be empty
for cuckoo hashing to succeed. For example, if we ended
with a 2-core consisting of two edges (keys) mapping to the
same set of d buckets (vertices), that would be fine; there is
room for both keys. Only if d+1 keys collide with the exact
same d buckets do we fail or force a key into the stash.

Let us call the density of a graph the ratio between the
number of edges and the number of vertices. One way of
describing the problem above, where d+ 1 edges exist on d
vertices, is that the subgraph on those d vertices is too dense.
It happens that this idea characterizes the load threshold.
Above the load threshold, with high probability the 2-core
will have density greater than 1, implying keys cannot be
placed into buckets with each key having its own bucket.
Below the load threshold, with high probability not only
will the 2-core have density less than 1, but further every
subgraph has density less than 1 [7].

The above ideas generalize naturally to buckets that can
hold more than 1 key. The load threshold when buckets hold
k keys corresponds to the point at which the (k + 1)-core
has density k [8].

Given our conjecture that a double hashing hypergraph
yields essentially the same size k-core as a corresponding
random hypergraph, we might expect cuckoo hashing to
have the same load thresholds with double hashing as with
random hashing. This suggests the following more general
conjecture:

Definition 5: We call cd,b a load threshold for cuckoo hash-
ing with fully random hash functions with d ≥ 3 bucket
choices per key and capacity b ≥ 1 per bucket for some con-
stants d and b if the following property is satisfied. Suppose

there are n keys to be stored and m buckets and let c := n/m.
As m → ∞, if c < cd,b then cuckoo hashing succeeds with
probability 1− o(1), and if c > cd,b then cuckoo hashing fails
with probability 1− o(1).

Conjecture 6: Let cd,b be a load threshold for cuckoo hash-
ing with fully random hash functions. Then cd,b is also a load
threshold for cuckoo hashing using double hashing in place of
fully random hash functions.

We emphasize that the density analysis that shows that
cuckoo hashing succeeds is rather complex, and while Con-
jecture 2 or Conjecture 4 would show that double hashing
would yield the same size core as random hashing, this
would not suffice to prove Conjecture 6, which would further
require a generalization of the density analysis.

Finally, because with cuckoo hashing one can use a stash
to handle a small (generally a constant) number of items,
asymptotically small events (such as d+1 keys mapping the
same d locations) can be ameliorated by use of a stash. We
might therefore further expect that any differences between
cuckoo hashing using double hashing and random hashing
might be easily managed via, at worst, a slightly larger stash.

V. SIMULATIONS

A. Simulation Results for k-core

As we have noted previously, in the case of the 2-core, one
would expect to see a difference in performance between ran-
dom hashing and double hashing, and we see this difference
in our simulations. As an example, consider hypergraphs
with 4 vertices per hyperedge. Over 10000 simulations on
random hypergraphs with 800000 hyperedges and 1048576
vertices, the 2-core size was always 0; these results are
unsurprising as the edge density lies sufficiently below the
threshold for an empty 2-core for random hypergraphs, which
calculated numerically is approximately 0.77228. However,
when using hypergraphs derived from double hashing, small
2-cores remain with non-trivial probability, as shown in
Table I. The remaining cores are very small – the largest in
these trials was 14 – but this demonstrates the difference in
behavior. Indeed, even well before the threshold for an empty
2-core, we find that small 2-cores are likely to remain when
using double hashing, as the simple expectation argument
suggests. For example, Table II shows results for 700000
hyperedges.

On the other hand, above the threshold, for the 2-core
the performance is quite similar. Over 10000 simulations on
random hypergraphs with 820000 hyperedges and 1048576
vertices, the 2-core size was never 0 for both random and
double hashing. The (min, mean, max) sizes of the 2-cores
were (504180, 511503, 518191) for random hashing and
(504640, 511458, 517930) for double hashing.

As mentioned previously, whether this difference in 2-
core behavior is significant may depend on the underlying
application. In some applications (e.g., [21]), an empty 2-
core is expected, and in such cases the double hashing
approach may be unsuitable or require a modification to
handle the small 2-core that appears under double hashing.

Core Random Double
0 10000 3088
2 0 3715
4 0 2081
6 0 822
8 0 225
10 0 56
12 0 10
14 0 3

TABLE I
COMPARING RANDOM/DOUBLE 2-CORE SIZES, 800000 HYPEREDGES,

1048576 VERTICES, 4 VERTICES PER HYPEREDGE

Core Random Double
0 10000 4154
2 0 3612
4 0 1623
6 0 472
8 0 114
10 0 22
12 0 3

TABLE II
COMPARING RANDOM/DOUBLE 2-CORE SIZES, 700000 HYPEREDGES,

1048576 VERTICES, 4 VERTICES PER HYPEREDGE

As we shall see for cuckoo hashing with a stash [13], for
some applications, the difference in behavior of the 2-core
has no substantial effect.

Also as expected, this effect appears to vanish when
looking at k-cores for k > 2. For example, in an experi-
ment of 10000 simulations with 4 vertices per hyperedge,
340000 hyperedges, and 262144 vertices, the 3-core size
was always 0 for both random and double hashing. (The
load threshold for 3-cores with 4 vertices per edge is ap-
proximately 1.33364.) Moving above the load threshold, to
360000 hyperedges, the (min,mean,max) sizes of the 3-cores
were (285129, 288296, 290952) for random hashing and
(284565, 288308, 290969) for double hashing. Again, we
see the nearly indistinguishable performance between double
hashing and random hashing in this context.

B. Simulation Results for Cuckoo Hashing

Our simulations demonstrate that in fact there is little
difference between d independent choices and d choices from
double hashing in the cuckoo hashing setting. Simulations
below show results using four choices, in conjunction with
a stash; when a key is placed in the table, a key is put in the
stash after 500 moves if the collision has not been resolved.
The natural way to compare the two schemes is to examine
the distribution of the size of the stash over many trials.
We performed 1000000 trials for each of several settings,
covering both where the load rarely requires a stash to where
a stash is essentially always needed.

The following results are typical. With a hash table of size
217 = 131072 and 124000 keys, a stash is not needed for
over 99% of the trials for both settings, as shown in Table III.
While double hashing requires a stash of size 2 in slightly
more trials, this still represent only 0.0042% of the trials,
and the deviation between the performance of random and

Stash Random Double
0 992174 992004
1 7801 7970
2 25 42

TABLE III
COMPARING RANDOM/DOUBLE STASH SIZES, 124000 ITEMS, HASH

TABLE SIZE 131072, LOAD 94.60%, 4 CHOICES

Stash Random Double
0 742167 742103
1 219439 219483
2 34306 34318
3 3718 3719
4 345 358
5 22 17
6 3 1
7 0 1

TABLE IV
COMPARING RANDOM/DOUBLE STASH SIZES, 125000 ITEMS, HASH

TABLE SIZE 131072, LOAD 95.36%, 4 CHOICES

double hashing does not appear statistically significant. (In
another set of 1000000 trials, we found the double hashing
had fewer trials requiring a stash of size 2 than random.)
Similarly, the distributions of the stash sizes for 125000 and
126000 keys, where the loads are over 95% but the stash size
remains reasonable for many practical settings, are nearly
the same, as shown in Tables IV and V. It does not appear
that double hashing creates significant differences in stash
behavior, even in somewhat overloaded tables.

VI. CONCLUSION

Motivated in large part by a desire to simplify the im-
plementation of several hash-based data structures and algo-
rithms, we have argued for the study of certain families of
hypergraphs generated via double hashing, and hence dubbed
double hashing hypergraphs. We presented empirical results
suggesting that in many algorithmic settings this subclass of
random hypergraphs behaves essentially identically to their
fully random counterparts. We also presented some partial
theoretical justification for our empirical results. The main
open question is to provide a more complete theoretical
understanding of double hashing hypergraphs. In particular,
a full proof of Conjectures 2, 4, and 6, which cover the
behavior of double hashing hypergraphs with regard to the
k-core and cuckoo hashing, appear to be natural next steps.
While analysis for algorithms and data structures based on
peeling arguments and the k-core served as our primary
motivation, there may well be other uses for double hashing
hypergraphs beyond these applications.

REFERENCES

[1] P. Bradford and M. Katehakis. A probabilistic study on combinatorial
expanders and hashing. SIAM Journal on Computing, 37(1):83-111,
2007.

[2] A. Broder, A. Frieze, and E. Upfal. On the satisfiability and maximum
satisfiability of random 3-CNF formulas. In Proceedings of the Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 322–330,
1993.

Stash Random Double
0 1460 1416
1 8709 8791
2 26800 26662
3 56008 55640
4 90195 90372
5 118857 118647
6 135203 135158
7 134631 134405
8 120740 120710
9 98219 98296

10 73782 74441
11 51756 51970
12 34292 34081
13 21386 21386
14 12670 12638
15 7202 7271
16 3967 3945
17 2149 2113
18 1000 1057
19 536 503
20 229 264
21 117 134
22 46 54
23 29 27
24 9 12
25 5 3
26 3 4

TABLE V
COMPARING RANDOM/DOUBLE STASH SIZES, 126000 ITEMS, HASH

TABLE SIZE 131072, LOAD 96.13%, 4 CHOICES

[3] J. L. Carter and M. N. Wegman. Universal classes of hash functions.
Journal of Computer and System Sciences, 18(2):143–154, 1979.

[4] R.W.R. Darling and J.R. Norris. Differential equation approximations
for Markov chains. Probability Surveys, 5:37-79, 2008.

[5] M. Dietzfelbinger, A. Goerdt, M. Mitzenmacher, A. Montanari, R.
Pagh, and M. Rink. Tight thresholds for cuckoo hashing via XORSAT.
In The 37th International Colloquium on Automata, Languages and
Programming, pp. 213-224, 2010.

[6] P.C. Dillinger and P. Manolios. Bloom Filters in Probabilistic Verifi-
cation. In Proceedings of the 5th International Conference on Formal
Methods in Computer-Aided Design, pp. 367-381, 2004.

[7] N. Fountoulakis and K. Panagiotou. Sharp load thresholds for cuckoo
hashing. Random Structures & Algorithms, 41(3):306333, 2012.

[8] N. Fountoulakis, M. Khosla, and K. Panagiotou. The multiple-
orientability thresholds for random hypergraphs. Proceedings of the

22nd Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
1222-1236, 2011.

[9] A. Frieze and P. Melsted. Maximum matchings in random bipartite
graphs and the space utilization of cuckoo hash tables. Arxiv preprint
arXiv:0910.5535, 2009.

[10] L. Guibas and E. Szemeredi. The analysis of double hashing. Journal
of Computer and System Sciences, 16(2):226-274, 1978.

[11] R. Karp and M. Sipser. Maximum matching in sparse random graphs.
In Proceedings of the 22nd Annual Symposium on Foundations of
Computer Science, pp. 364–375, 1981.

[12] A. Kirsch and M. Mitzenmacher. Less hashing, same performance:
Building a better Bloom filter. Random Structures & Algorithms,
33(2):187-218, 2008.

[13] A. Kirsch, M. Mitzenmacher, and U. Wieder. More robust hashing:
cuckoo hashing with a stash. In Proceedings of the 16th Annual
European Symposium on Algorithms, pp. 611-622, 2008.

[14] L. LeLarge. A new approach to the orientation of random hypergraphs.
Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 251-264, 2012.

[15] M. Luby, M. Mitzenmacher, and M. A. Shokrollahi. Analysis of
random processes via and-or tree evaluation. In Proceedings of the
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
364–373, 1998.

[16] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman. Efficient
erasure correcting codes. IEEE Transactions on Information Theory,
47(2):569-584, 2001.

[17] G. Lueker and M. Molodowitch. More analysis of double hashing,
Combinatorica, 13(1):83-96, 1993.

[18] M. Mitzenmacher. Tight thresholds for the pure literal rule. DEC SRC
Technical Note 11, 1997.

[19] M. Mitzenmacher. Some open questions related to cuckoo hashing.
In Proceedings of the European Symposium on Algorithms, pp. 1-10,
2009.

[20] M. Mitzenmacher. Balanced Allocations and Double Hashing.
arXiv:1209.5360.

[21] M. Mitzenmacher and G. Varghese. Biff (Bloom filter) codes: Fast
error correction for large data sets. In Proceedings of the IEEE
International Symposium on Information Theory, pp. 483-487, 2012.

[22] M. Molloy. Cores in random hypergraphs and boolean formulas. In
Random Structures & Algorithms, 27(1):124–135, 2005.

[23] A. Pagh and F. Rodler. Cuckoo hashing. Journal of Algorithms,
51(2):122-144, 2004.

[24] M. Pǎtraşcu and M. Thorup. The power of simple tabulation hashing.
In Proceedings of the 43rd Annual ACM Symposium on Theory of
Computing, pp.1-10, 2011.

[25] B. Pittel, J. Spencer, and N. Wormald. Sudden emergence of a giant
k-core in a random graph. Journal of Combinatorial Theory Series B,
67(1):111-151, 1996.

[26] N.C. Wormald. Differential equations for random processes and
random graphs. The Annals of Applied Probability 5 (1995) pp. 1217–
1235.

