
The Polynomial Method Strikes Back: Tight
Quantum Query Bounds Via Dual Polynomials

Justin Thaler (Georgetown)

Joint work with:
Mark Bun (Princeton)

Robin Kothari (MSR Redmond)

Boolean Functions

Boolean function f : {−1, 1}n → {−1, 1}

ANDn(x) =

{
−1 (TRUE) if x = (−1)n

1 (FALSE) otherwise

Approximate Degree

A real polynomial p ε-approximates f if

|p(x)− f(x)| < ε ∀x ∈ {−1, 1}n

d̃egε(f) = minimum degree needed to ε-approximate f

d̃eg(f) := deg1/3(f) is the approximate degree of f

Example 1: The Approximate Degree of ANDn

Example: What is the Approximate Degree of ANDn?

d̃eg(ANDn) = Θ(
√
n).

Upper bound: Use Chebyshev Polynomials.

Markov’s Inequality: Let G(t) be a univariate polynomial s.t.
deg(G) ≤ d and maxt∈[−1,1] |G(t)| ≤ 1. Then

max
t∈[−1,1]

|G′(t)| ≤ d2.

Chebyshev polynomials are the extremal case.

Example: What is the Approximate Degree of ANDn?

d̃eg(ANDn) = O(
√
n).

After shifting a scaling, can turn degree O(
√
n) Chebyshev

polynomial into a univariate polynomial Q(t) that looks like:

!"#$%&'()*+*&',*

Define n-variate polynomial p via p(x) = Q(
∑n

i=1 xi/n).

Then |p(x)−ANDn(x)| ≤ 1/3 ∀x ∈ {−1, 1}n.

Example: What is the Approximate Degree of ANDn?

[NS92] d̃eg(ANDn) = Ω(
√
n).

Lower bound: Use symmetrization.

Suppose |p(x)−ANDn(x)| ≤ 1/3 ∀x ∈ {−1, 1}n.

There is a way to turn p into a univariate polynomial psym

that looks like this:

!"#$%&'()*+*&',*

Claim 1: deg(psym) ≤ deg(p).

Claim 2: Markov’s inequality =⇒ deg(psym) = Ω(n1/2).

Why Care about Approximate Degree?

Applications of d̃eg Upper Bounds

Upper bounds on d̃egε(f) yield efficient learning algorithms.

ε ≈ 1/3: Agnostic Learning [KKMS05]

ε ≈ 1− 2−n
δ
: Attribute-Efficient Learning [KS04, STT12]

ε→ 1 (i.e., threshold degree, deg±(f)): PAC learning [KS01]

Upper bounds on d̃eg1/3(f) also:

Imply fast algorithms for differentially private data release
[TUV12, CTUW14].
Underly the best known lower bounds on formula complexity
and graph complexity [Tal2014, 2016a, 2016b]

Applications of d̃eg Upper Bounds

Upper bounds on d̃egε(f) yield efficient learning algorithms.

ε ≈ 1/3: Agnostic Learning [KKMS05]

ε ≈ 1− 2−n
δ
: Attribute-Efficient Learning [KS04, STT12]

ε→ 1 (i.e., threshold degree, deg±(f)): PAC learning [KS01]

Upper bounds on d̃eg1/3(f) also:

Imply fast algorithms for differentially private data release
[TUV12, CTUW14].

Underly the best known lower bounds on formula complexity
and graph complexity [Tal2014, 2016a, 2016b]

Applications of d̃eg Upper Bounds

Upper bounds on d̃egε(f) yield efficient learning algorithms.

ε ≈ 1/3: Agnostic Learning [KKMS05]

ε ≈ 1− 2−n
δ
: Attribute-Efficient Learning [KS04, STT12]

ε→ 1 (i.e., threshold degree, deg±(f)): PAC learning [KS01]

Upper bounds on d̃eg1/3(f) also:

Imply fast algorithms for differentially private data release
[TUV12, CTUW14].
Underly the best known lower bounds on formula complexity
and graph complexity [Tal2014, 2016a, 2016b]

This Talk: Two Focuses Involving d̃eg Lower Bounds

Focus 1: A nearly optimal bound on the approximate degree
of AC0, and its applications [BT17].

Focus 2: Proving tight quantum query lower bounds for
specific functions [BKT17].

First Focus: Approximate Degree of AC0

Approximate degree is a key tool for understanding AC0.

At the heart of the best known bounds on the complexity of
AC0 under measures such as:

Multi-Party (Quantum) Communication Complexity
Approximate Rank
Sign-rank ≈ Unbounded Error Communication (UPP)
Discrepancy≈Margin complexity
Majority-of-Threshold circuit size
Threshold-of-Majority circuit size
and more.

Problem 1: Is there a function on n variables that
is in AC0, and has approximate degree Ω(n)?

First Focus: Approximate Degree of AC0

Approximate degree is a key tool for understanding AC0.

At the heart of the best known bounds on the complexity of
AC0 under measures such as:

Multi-Party (Quantum) Communication Complexity
Approximate Rank
Sign-rank ≈ Unbounded Error Communication (UPP)
Discrepancy≈Margin complexity
Majority-of-Threshold circuit size
Threshold-of-Majority circuit size
and more.

Problem 1: Is there a function on n variables that
is in AC0, and has approximate degree Ω(n)?

Approximate Degree of AC0: Details

Best known result: Ω̃(n2/3) for the Element Distinctness
function (Aaronson and Shi, 2004).

Our result: For any constant δ > 0, a function in AC0 with
approximate degree Ω(n1−δ).

More precisely, circuit depth is O(log(1/δ)).
Lower bound also applies to DNFs of polylogarithmic width
(and quasipolynomial size).

Approximate Degree of AC0: Details

Best known result: Ω̃(n2/3) for the Element Distinctness
function (Aaronson and Shi, 2004).

Our result: For any constant δ > 0, a function in AC0 with
approximate degree Ω(n1−δ).

More precisely, circuit depth is O(log(1/δ)).

Lower bound also applies to DNFs of polylogarithmic width
(and quasipolynomial size).

Approximate Degree of AC0: Details

Best known result: Ω̃(n2/3) for the Element Distinctness
function (Aaronson and Shi, 2004).

Our result: For any constant δ > 0, a function in AC0 with
approximate degree Ω(n1−δ).

More precisely, circuit depth is O(log(1/δ)).
Lower bound also applies to DNFs of polylogarithmic width
(and quasipolynomial size).

Applications

Nearly optimal Ω(n1−δ) lower bounds on quantum
communication complexity of AC0.

Essentially optimal (quadratic) separation of certificate
complexity and approximate degree.

Better secret sharing schemes with reconstruction in AC0.

Second Focus: Quantum Query Complexity

In the quantum query model, a quantum algorithm is given
query access to the bits of an input x.

Goal: compute some function f of x while minimizing the
number of queried bits.

Most quantum algorithms were discovered in or can easily be
described in the query setting.

Connecting d̃eg and Quantum Query Complexity

Let A be a quantum algorithm making at most T queries.

[BBC+01] there is a polynomial p of degree 2T such that

p(x) = Pr[A(x) = 1].

So A computes f to error ε =⇒ 2p(x)− 1 approximates f to
error 2ε.
So d̃eg(f) is a lower bound on the quantum query complexity
of f .

This is called the polynomial method in quantum query
complexity.

Our Results

Problem Prior Upper Bound Our Lower Bound Prior Lower Bound

k-distinctness O(n3/4−1/(2k+2−4)) Ω̃(n3/4−1/(2k)) Ω̃(n2/3)

Image Size Testing O(
√
n logn) Ω̃(

√
n) Ω̃(n1/3)

k-junta Testing O(
√
k log k) Ω̃(

√
k) Ω̃(k1/3)

SDU O(
√
n) Ω̃(

√
n) Ω̃(n1/3)

Shannon Entropy Õ(
√
n) Ω̃(

√
n) Ω̃(n1/3)

Our lower bounds on quantum query complexity and d̃eg vs. prior work.

Problem Prior Upper Bound Our Upper and Lower Bounds Prior Lower Bound

Surjectivity Õ(n3/4) Õ(n3/4) and Ω̃(n3/4) Ω̃(n2/3)

Our bounds on the approximate degree of Surjectivity vs. prior work.

Lower Bound Methods in Quantum Query Complexity

Since 2002, the positive-weights adversary method, and the
newer negative-weights adversary method have been tools of
choice for proving quantum query lower bounds.

Negative-weights method can prove a tight lower bound for
any function [Rei11, LMR+11].
But is often challenging to apply to specific functions.

Quantum query bounds proved via approximate degree “lift”
to communication lower bounds [She11].

Not known to hold for adversary methods.

Ruminations on the Polynomial Method

Intuitively, how do we resolve questions that have resisted
adversary methods?

A key fact exploited in our analysis is:

Fact (1)

Any polynomial p : {−1, 1}n → R satisfying the following conditions
requires degree Ω(n1/4):{

|p(x)−ORn(x)| ≤ 1/3 if |x| ≤ n1/4

|p(x)| ≤ exp(|x| · n−1/4) if |x| > n1/4.

Fact (1) is “non-quantum” because any quantum query
algorithm always produces polynomials bounded in [0, 1].

Reasoning about such “non-quantum” polynomials seems
difficult to capture by adversary methods.

Prior Work: The Method of Dual Polynomials and
the AND-OR Tree

Beyond Symmetrization

Symmetrization is “lossy”: in turning an n-variate poly p into
a univariate poly psym, we throw away information about p.

Challenge Problem: What is d̃eg(AND-ORn)?

1/2

1/2

1/2

History of the AND-OR Tree

Theorem

d̃eg(AND-ORn) = Θ(n1/2).

Tight Upper Bound of O(n1/2)

[HMW03] via quantum algorithms
[BNRdW07] different proof of O(n1/2 · log n) (via error reduction+composition)
[She13] different proof of tight upper bound (via robustification)

Tight Lower Bound of Ω(n1/2)

[BT13] and [She13] via the method of dual polynomials

History of the AND-OR Tree

Theorem

d̃eg(AND-ORn) = Θ(n1/2).

Tight Upper Bound of O(n1/2)

[HMW03] via quantum algorithms
[BNRdW07] different proof of O(n1/2 · log n) (via error reduction+composition)
[She13] different proof of tight upper bound (via robustification)

Tight Lower Bound of Ω(n1/2)

[BT13] and [She13] via the method of dual polynomials

History of the AND-OR Tree

Theorem

d̃eg(AND-ORn) = Θ(n1/2).

Tight Upper Bound of O(n1/2)

[HMW03] via quantum algorithms
[BNRdW07] different proof of O(n1/2 · log n) (via error reduction+composition)
[She13] different proof of tight upper bound (via robustification)

Tight Lower Bound of Ω(n1/2)

[BT13] and [She13] via the method of dual polynomials

Linear Programming Formulation of Approximate Degree

What is best error achievable by any degree d approximation of f?
Primal LP (Linear in ε and coefficients of p):

minp,ε ε

s.t. |p(x)− f(x)| ≤ ε for all x ∈ {−1, 1}n

deg p ≤ d

Dual LP:

maxψ
∑

x∈{−1,1}n
ψ(x)f(x)

s.t.
∑

x∈{−1,1}n
|ψ(x)| = 1

∑
x∈{−1,1}n

ψ(x)q(x) = 0 whenever deg q ≤ d

Dual Characterization of Approximate Degree

Theorem: degε(f) > d iff there exists a “dual polynomial”
ψ : {−1, 1}n → R with

(1)
∑

x∈{−1,1}n
ψ(x)f(x) > ε “high correlation with f”

(2)
∑

x∈{−1,1}n
|ψ(x)| = 1 “L1-norm 1”

(3)
∑

x∈{−1,1}n
ψ(x)q(x) = 0, when deg q ≤ d “pure high degree d”

A lossless technique. Strong duality implies any approximate
degree lower bound can be witnessed by dual polynomial.

Example: 2−n · PARITYn witnesses the fact that
d̃egε(PARITYn) = n for any ε < 1.

Dual Characterization of Approximate Degree

Theorem: degε(f) > d iff there exists a “dual polynomial”
ψ : {−1, 1}n → R with

(1)
∑

x∈{−1,1}n
ψ(x)f(x) > ε “high correlation with f”

(2)
∑

x∈{−1,1}n
|ψ(x)| = 1 “L1-norm 1”

(3)
∑

x∈{−1,1}n
ψ(x)q(x) = 0, when deg q ≤ d “pure high degree d”

A lossless technique. Strong duality implies any approximate
degree lower bound can be witnessed by dual polynomial.

Example: 2−n · PARITYn witnesses the fact that
d̃egε(PARITYn) = n for any ε < 1.

Goal: Construct an explicit dual polynomial
ψAND-OR for AND-OR

Constructing a Dual Polynomial

By [NS92], there are dual polynomials

ψOUT for d̃eg (ANDn1/2) = Ω(n1/4) and

ψIN for d̃eg (ORn1/2) = Ω(n1/4)

Both [She13] and [BT13] combine ψOUT and ψIN to obtain a
dual polynomial ψAND-OR for AND-OR.

The combining method was proposed in earlier work by [SZ09,
Lee09, She09].

The Combining Method [SZ09, She09, Lee09]

ψAND-OR(x1, . . . , xn1/2) := C · ψOUT(. . . , sgn(ψIN(xi)), . . .)

n1/2∏
i=1

|ψIN(xi)|

(C chosen to ensure ψAND-OR has L1-norm 1).

Must verify:

1 ψAND-OR has pure high degree ≥ n1/4 · n1/4 = n1/2.

2 ψAND-OR has high correlation with AND-OR.

1/2

1/2

1/2

The Combining Method [SZ09, She09, Lee09]

ψAND-OR(x1, . . . , xn1/2) := C · ψOUT(. . . , sgn(ψIN(xi)), . . .)

n1/2∏
i=1

|ψIN(xi)|

(C chosen to ensure ψAND-OR has L1-norm 1).

Must verify:

1 ψAND-OR has pure high degree ≥ n1/4 · n1/4 = n1/2.

2 ψAND-OR has high correlation with AND-OR.

1/2

1/2

1/2

The Combining Method [SZ09, She09, Lee09]

ψAND-OR(x1, . . . , xn1/2) := C · ψOUT(. . . , sgn(ψIN(xi)), . . .)

n1/2∏
i=1

|ψIN(xi)|

(C chosen to ensure ψAND-OR has L1-norm 1).

Must verify:

1 ψAND-OR has pure high degree ≥ n1/4 · n1/4 = n1/2.X[She09]

2 ψAND-OR has high correlation with AND-OR. [BT13, She13]

1/2

1/2

1/2

Recent Progress on the Complexity of AC0:
Applying the Method of Dual Polynomials to

Block-Composed Functions

(Negative) One-Sided Approximate Degree

Negative one-sided approximate degree is an intermediate
notion between approximate degree and threshold degree.

A real polynomial p is a negative one-sided ε-approximation
for f if

|p(x)− 1| < ε ∀x ∈ f−1(1)

p(x) ≤ −1 ∀x ∈ f−1(−1)

õdeg−,ε(f) = min degree of a negative one-sided
ε-approximation for f .

Examples: õdeg−,1/3(ANDn) = Θ(
√
n); õdeg−,1/3(ORn) = 1.

Recent Theorems

Theorem (BT13, She13)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then d̃eg1/2(F) ≥ d ·

√
t.

Theorem (BT14)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then d̃eg1−2−t(F) ≥ d.

Theorem (She14)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then deg±(F) = Ω(min{d, t}).

Theorem (BCHTV16)

Let f be a Boolean function with d̃eg1/2(f) ≥ d. Let
F = GAPMAJt(f, . . . , f). Then deg±(F) ≥ Ω(min{d, t}).

Recent Theorems

Theorem (BT13, She13)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then d̃eg1/2(F) ≥ d ·

√
t.

Theorem (BT14)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then d̃eg1−2−t(F) ≥ d.

Theorem (She14)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then deg±(F) = Ω(min{d, t}).

Theorem (BCHTV16)

Let f be a Boolean function with d̃eg1/2(f) ≥ d. Let
F = GAPMAJt(f, . . . , f). Then deg±(F) ≥ Ω(min{d, t}).

Recent Theorems

Theorem (BT13, She13)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then d̃eg1/2(F) ≥ d ·

√
t.

Theorem (BT14)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then d̃eg1−2−t(F) ≥ d.

Theorem (She14)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then deg±(F) = Ω(min{d, t}).

Theorem (BCHTV16)

Let f be a Boolean function with d̃eg1/2(f) ≥ d. Let
F = GAPMAJt(f, . . . , f). Then deg±(F) ≥ Ω(min{d, t}).

Recent Theorems

Theorem (BT13, She13)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then d̃eg1/2(F) ≥ d ·

√
t.

Theorem (BT14)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then d̃eg1−2−t(F) ≥ d.

Theorem (She14)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then deg±(F) = Ω(min{d, t}).

Theorem (BCHTV16)

Let f be a Boolean function with d̃eg1/2(f) ≥ d. Let
F = GAPMAJt(f, . . . , f). Then deg±(F) ≥ Ω(min{d, t}).

Reminder

Problem 1: Is there a function on n variables that
is in AC0, and has approximate degree Ω(n)?

Our Techniques

Hardness Amplification in AC0

Hardness Amplification in AC0

1–2-t
1–2-t Theorem Template: If f is “hard” to

approximate by low-degree polynomials,
then F = g ¢ f is “even harder” to
approximate by low-degree polynomials

g

f f

x1 xn

…

1–2-t “Block Composition Barrier”

Robust approximations, i.e.,
 deg(g ¢ f) ≤ O(deg(g) � deg(f))
imply that block composition cannot increase approximate
degree as a function of n

~ ~ ~

Around the Block-Composition Barrier

Around the Block Composition Barrier

Prior work:
•  Hardness amplification “from the top”
•  Block composed functions

This work:
•  Hardness amplification “from the bottom”

•  Non-block-composed functions

g

f f

x1 xn

…

f

g g…

A General Hardness Amplification Result

Theorem (Strong Hardness Amplification Within AC0)

Let f : {−1, 1}n → {−1, 1}
be computed by an AC0 circuit of depth k, and

d̃eg(f) ≥ d.
Then there exists an F on O(n log2 n) variables that

is computed by an AC0 circuit of depth k + 3, and

d̃eg(F) ≥ n1/2 · d1/2

Remarks:

E.g.: If f = AND, then d̃eg(F) ≥ n3/4.

Recursive application yields Ω(n1−δ) bound for AC0 function.

Analogous result holds for monotone DNF.

A General Hardness Amplification Result

Theorem (Strong Hardness Amplification Within AC0)

Let f : {−1, 1}n → {−1, 1}
be computed by an AC0 circuit of depth k, and

d̃eg(f) ≥ d.
Then there exists an F on O(n log2 n) variables that

is computed by an AC0 circuit of depth k + 3, and

d̃eg(F) ≥ n1/2 · d1/2

Remarks:

E.g.: If f = AND, then d̃eg(F) ≥ n3/4.

Recursive application yields Ω(n1−δ) bound for AC0 function.

Analogous result holds for monotone DNF.

Idea of the Hardness Amplification Construction

Idea of the Hardness-Amplifying Construction

Consider the function SURJECTIVITY : {−1, 1}n → {−1, 1}.
Let n = N logR. SURJ interprets its input x as a list of N
numbers (x1, . . . , xN) from a range [R].
SURJR,N (x) = −1 if and only if every element of the range
[R] appears at least once in the list.

When we apply Main Theorem to f = ANDR, the “harder”
function F is precisely SURJR,N .

We show that d̃eg(SURJR,N) = Θ̃(R1/4 ·N1/2).

If R = Θ(N), this is Θ̃(n3/4).

For convenience: let’s change the domain and range of all
Boolean functions to {0, 1}n and {0, 1}.

Idea of the Hardness-Amplifying Construction

Consider the function SURJECTIVITY : {−1, 1}n → {−1, 1}.
Let n = N logR. SURJ interprets its input x as a list of N
numbers (x1, . . . , xN) from a range [R].
SURJR,N (x) = −1 if and only if every element of the range
[R] appears at least once in the list.

When we apply Main Theorem to f = ANDR, the “harder”
function F is precisely SURJR,N .

We show that d̃eg(SURJR,N) = Θ̃(R1/4 ·N1/2).

If R = Θ(N), this is Θ̃(n3/4).

For convenience: let’s change the domain and range of all
Boolean functions to {0, 1}n and {0, 1}.

Resolving the Approximate Degree of SURJ

The Õ(R1/4 ·N 1/2) Upper Bound For SURJ: First Try

Let’s start with how to achieve a (loose) bound of

d̃eg(SURJR,N) = Õ(R1/2 ·N1/2).

Let

yij =

{
1 if xj = i

0 otherwise

Then

SURJ(x)=ANDR(ORN (y1,1, . . . , y1,N), . . . ,ORN (yR,1 . . . , yR,N)).

The Õ(R1/4 ·N 1/2) Upper Bound For SURJ: First Try

Let’s start with how to achieve a (loose) bound of

d̃eg(SURJR,N) = Õ(R1/2 ·N1/2).

Let

yij =

{
1 if xj = i

0 otherwise

Then

SURJ(x)=ANDR(ORN (y1,1, . . . , y1,N), . . . ,ORN (yR,1 . . . , yR,N)).

SURJ Illustrated (R = 3, N = 6)

x1	 x2	 x3	 x4	 x5	 x6	

y11	 y12	 y13	 y14	 y15	 y16	 y21	 y22	 y23	 y24	 y25	 y26	 y31	 y32	 y33	 y34	 y35	 y36	

AND	

OR	 OR	 OR	

(Each	xj	in	[R])	

SURJ Illustrated (R = 3, N = 6)

0	 1	 0	 1	 0	 0	 1	 0	 1	 0	 0	 0	 0	 0	 0	 0	 1	 1	

AND	

OR	 OR	 OR	

2	 1	 2	 1	 3	 3	

The Upper Bound For SURJ: First Try

Let’s start with how to achieve a (loose) bound of

d̃eg(SURJR,N) = Õ(R1/2 ·N1/2).

Let

yij =

{
1 if xj = i

0 otherwise

Then

SURJ(x)=ANDR(ORN (y1,1, . . . , y1,N), . . . ,ORN (yR,1 . . . , yR,N)).

Let p be a degree O(R1/2 ·N1/2) polynomial approximating
ANDR(ORN , . . . ,ORN).
Then p(y1,1, . . . , y1,N , . . . , yR,1, . . . , yR,N) approximates
SURJ, with degree O(deg(p) · logR) = O(R1/2 ·N1/2 · logR).

The Upper Bound For SURJ: First Try

Let’s start with how to achieve a (loose) bound of

d̃eg(SURJR,N) = Õ(R1/2 ·N1/2).

Let

yij =

{
1 if xj = i

0 otherwise

Then

SURJ(x)=ANDR(ORN (y1,1, . . . , y1,N), . . . ,ORN (yR,1 . . . , yR,N)).

Let p be a degree O(R1/2 ·N1/2) polynomial approximating
ANDR(ORN , . . . ,ORN).
Then p(y1,1, . . . , y1,N , . . . , yR,1, . . . , yR,N) approximates
SURJ, with degree O(deg(p) · logR) = O(R1/2 ·N1/2 · logR).

The Upper Bound For SURJ: Second Try

Fix R = N/2. We’ll show d̃eg(SURJR,N) = Õ(R1/4 ·N1/2).

We’ll want to think of polynomials as computing the
probability that a query algorithm outputs 1.

E.g., we can think of our “first try” as composing an query
algorithm for computing ANDR with R copies of a query
algorithm computing ORN .

We’ll approximate SURJ via a “two-stage” construction.

Stage 1

Consider a query algorithm that samples O(n3/4) inputs.

Any range item appearing in the sample definitely has
frequency at least 1, so we can just “remove it from
consideration.”

Stage 2 just needs to determine whether all range items not
appearing in the sample have frequency at least 1.

Let SURJunsamp be the function we need to compute in Stage
2.

Stage 1 Illustrated (R = 3, N = 6)

2	 1	 2	 1	 3	 3	

0	 1	 0	 1	 0	 0	 1	 0	 1	 0	 0	 0	 0	 0	 0	 0	 1	 1	

AND	

OR	 OR	 OR	

2	 2	

Sample	of	size	n3/4		

Stage 1 Illustrated (R = 3, N = 6)

2	 1	 2	 1	 3	 3	

0	 1	 0	 1	 0	 0	 1	 0	 1	 0	 0	 0	 0	 0	 0	 0	 1	 1	

AND	

OR	 OR	

2	 2	

Sample	of	size	n3/4		

Stage 2

Key observation: any range item with frequency larger than
T = n1/2 will appear in the sample at least once, with
probability 1− exp(−n1/4).

i.e., if a range item doesn’t appear in the sample, we are really
confident that it does not have a very high frequency.

So Stage 2 only needs an approximation p to SURJunsamp that
is accurate under the assumption that no range item has
frequency higher than T .

If p is fed an input in which some range item has frequency
higher than T , then p is allowed to be exponentially large on
that input.
Specifically, if b unsampled range items have frequency larger
than T , then it is okay for |p(x)| to be as large as exp(n1/4 · b).

Stage 2

Key observation: any range item with frequency larger than
T = n1/2 will appear in the sample at least once, with
probability 1− exp(−n1/4).

i.e., if a range item doesn’t appear in the sample, we are really
confident that it does not have a very high frequency.

So Stage 2 only needs an approximation p to SURJunsamp that
is accurate under the assumption that no range item has
frequency higher than T .

If p is fed an input in which some range item has frequency
higher than T , then p is allowed to be exponentially large on
that input.
Specifically, if b unsampled range items have frequency larger
than T , then it is okay for |p(x)| to be as large as exp(n1/4 · b).

Stage 2

Key observation: any range item with frequency larger than
T = n1/2 will appear in the sample at least once, with
probability 1− exp(−n1/4).

i.e., if a range item doesn’t appear in the sample, we are really
confident that it does not have a very high frequency.

So Stage 2 only needs an approximation p to SURJunsamp that
is accurate under the assumption that no range item has
frequency higher than T .

If p is fed an input in which some range item has frequency
higher than T , then p is allowed to be exponentially large on
that input.

Specifically, if b unsampled range items have frequency larger
than T , then it is okay for |p(x)| to be as large as exp(n1/4 · b).

Stage 2

Key observation: any range item with frequency larger than
T = n1/2 will appear in the sample at least once, with
probability 1− exp(−n1/4).

i.e., if a range item doesn’t appear in the sample, we are really
confident that it does not have a very high frequency.

So Stage 2 only needs an approximation p to SURJunsamp that
is accurate under the assumption that no range item has
frequency higher than T .

If p is fed an input in which some range item has frequency
higher than T , then p is allowed to be exponentially large on
that input.
Specifically, if b unsampled range items have frequency larger
than T , then it is okay for |p(x)| to be as large as exp(n1/4 · b).

Stage 2 Illustrated (R = 3, N = 6)

2	 1	 2	 1	 3	 3	

0	 1	 0	 1	 0	 0	 1	 0	 1	 0	 0	 0	 0	 0	 0	 0	 1	 1	

AND	

OR	 OR	

2	 2	

Sample	of	size	n3/4		

Only	approximate	the	
remaining	OR	gates	on	
inputs	of	Hamming	
weight	at	most	n1/2.	

Stage 2 Details

Lemma (Chebyshev polynomials)

There is a polynomial q of degree Õ(n1/4) such that

|q(x)−ORn(x)| � 1/n for all |x| ≤ n1/2.

|q(x)| ≤ exp
(
Õ(n1/4)

)
otherwise.

Theorem

For x = (x1, . . . , xR), let b(x1, . . . , xR)=#{i : |xi| > n1/2}. There
is a polynomial q of degree Õ(R1/2 ·N1/4) such that:

|q(x)−ANDR ◦ORN (x)| ≤ 1/3 if b(x) = 0.

|p(x)| ≤ exp
(
Õ(b(x) · n1/4)

)
otherwise.

Proof.

Let h approximate ANDR, and let p = h ◦ q.

Lower Bound Analysis for SURJ

Lower Bound Analysis for SURJ

Recall: to approximate SURJR,N , it is sufficient to
approximate the block-composed function
ANDR(ORN , . . . ,ORN) on N ·R bits, on inputs of
Hamming weight exactly N .

SURJ Illustrated (R = 3, N = 6)

x1	 x2	 x3	 x4	 x5	 x6	

y11	 y12	 y13	 y14	 y15	 y16	 y21	 y22	 y23	 y24	 y25	 y26	 y31	 y32	 y33	 y34	 y35	 y36	

AND	

OR	 OR	 OR	

(Each	xj	in	[R])	

Lower Bound Analysis for SURJ

Recall: to approximate SURJR,N , it is sufficient to
approximate the block-composed function
ANDR(ORN , . . . ,ORN) on N ·R bits, on inputs of
Hamming weight exactly N .

Step 1: Show the converse.
i.e., to approximate SURJ(x), it is necessary to approximate
ANDR(ORN , . . . ,ORN), under the promise that the input
has Hamming weight at most∗ N .

Follows from a symmetrization argument (Ambainis 2003).
∗To get “at most N” rather than “equal to N”, we need to
introduce a dummy range item that is ignored by the function.

Lower Bound Analysis for SURJ

Recall: to approximate SURJR,N , it is sufficient to
approximate the block-composed function
ANDR(ORN , . . . ,ORN) on N ·R bits, on inputs of
Hamming weight exactly N .

Step 1: Show the converse.

i.e., to approximate SURJ(x), it is necessary to approximate
ANDR(ORN , . . . ,ORN), under the promise that the input
has Hamming weight at most∗ N .

Follows from a symmetrization argument (Ambainis 2003).
∗To get “at most N” rather than “equal to N”, we need to
introduce a dummy range item that is ignored by the function.

Lower Bound Analysis for SURJ

Recall: to approximate SURJR,N , it is sufficient to
approximate the block-composed function
ANDR(ORN , . . . ,ORN) on N ·R bits, on inputs of
Hamming weight exactly N .

Step 1: Show the converse.
i.e., to approximate SURJ(x), it is necessary to approximate
ANDR(ORN , . . . ,ORN), under the promise that the input
has Hamming weight at most∗ N .

Follows from a symmetrization argument (Ambainis 2003).
∗To get “at most N” rather than “equal to N”, we need to
introduce a dummy range item that is ignored by the function.

Lower Bound Analysis for SURJ

Recall: to approximate SURJR,N , it is sufficient to
approximate the block-composed function
ANDR(ORN , . . . ,ORN) on N ·R bits, on inputs of
Hamming weight exactly N .

Step 1: Show the converse.
i.e., to approximate SURJ(x), it is necessary to approximate
ANDR(ORN , . . . ,ORN), under the promise that the input
has Hamming weight at most∗ N .

Follows from a symmetrization argument (Ambainis 2003).
∗To get “at most N” rather than “equal to N”, we need to
introduce a dummy range item that is ignored by the function.

SURJ Illustrated (R = 3, N = 6)

x1	 x2	 x3	 x4	 x5	 x6	

y11	 y12	 y13	 y14	 y15	 y16	 y21	 y22	 y23	 y24	 y25	 y26	 y31	 y32	 y33	 y34	 y35	 y36	

AND	

OR	 OR	 OR	

(Each	xj	in	[R])	

Lower Bound Analysis for SURJ

Let n = N logR.

Recall: to approximate SURJ : {−1, 1}n → {−1, 1}, it is
sufficient to approximate the block-composed function
ANDR(ORN , . . . ,ORN) on N ·R bits, on inputs of
Hamming weight exactly N .

Step 1: Show the converse.
To approximate SURJ(x), it is necessary to approximate
ANDR(ORN , . . . ,ORN), under the promise that the input
has Hamming weight at most∗ N .

Follows from a symmetrization argument (Ambainis 2003).
∗To get “at most N” rather than “equal to N”, we need to
introduce a dummy range item that is ignored by the function.

Step 2: Prove that for some N = O(R), this promise problem
requires degree & Ω(R3/4).

Builds on the “dual combining technique” used earlier to
analyze AND-ORn (with no promise).

Lower Bound Analysis for SURJ

Let n = N logR.

Recall: to approximate SURJ : {−1, 1}n → {−1, 1}, it is
sufficient to approximate the block-composed function
ANDR(ORN , . . . ,ORN) on N ·R bits, on inputs of
Hamming weight exactly N .

Step 1: Show the converse.
To approximate SURJ(x), it is necessary to approximate
ANDR(ORN , . . . ,ORN), under the promise that the input
has Hamming weight at most∗ N .

Follows from a symmetrization argument (Ambainis 2003).
∗To get “at most N” rather than “equal to N”, we need to
introduce a dummy range item that is ignored by the function.

Step 2: Prove that for some N = O(R), this promise problem
requires degree & Ω(R3/4).

Builds on the “dual combining technique” used earlier to
analyze AND-ORn (with no promise).

Lower Bound Analysis for SURJ

Let n = N logR.

Recall: to approximate SURJ : {−1, 1}n → {−1, 1}, it is
sufficient to approximate the block-composed function
ANDR(ORN , . . . ,ORN) on N ·R bits, on inputs of
Hamming weight exactly N .

Step 1: Show the converse.
To approximate SURJ(x), it is necessary to approximate
ANDR(ORN , . . . ,ORN), under the promise that the input
has Hamming weight at most∗ N .

Follows from a symmetrization argument (Ambainis 2003).
∗To get “at most N” rather than “equal to N”, we need to
introduce a dummy range item that is ignored by the function.

Step 2: Prove that for some N = O(R), this promise problem
requires degree & Ω(R3/4).

Builds on the “dual combining technique” used earlier to
analyze AND-ORn (with no promise).

Overview of Step 2

Prove That For Some N = O(R), Approximating ANDR ◦ORN

Under the Promise That The Input Has Hamming Weight At
Most N Requires Degree & R3/4.

Attempt 1

For some N = O(R), want a dual witness for
ANDR(ORN , . . . ,ORN) that only places mass on inputs
of Hamming weight at most N .

Attempt 1: Use the dual witness for ANDR(ORN , . . . ,ORN)
from prior work [She09, Lee09, BT13, She13].

ψAND-OR(y1, . . . , yR) := C · ψAND(. . . , sgn(ψOR(yj)), . . .)

R∏
j=1

|ψOR(yj)|

(C chosen to ensure ψAND-OR has L1-norm 1).

Must verify:

1 ψAND-OR has pure high degree≥R1/2 ·N1/2 =Ω(N).

2 ψAND-OR well-correlated with AND-OR.

3 ψAND-OR places mass only on inputs of Hamming weight ≤ N .

ANDR

ORN ORN

y yR

Attempt 1

For some N = O(R), want a dual witness for
ANDR(ORN , . . . ,ORN) that only places mass on inputs
of Hamming weight at most N .

Attempt 1: Use the dual witness for ANDR(ORN , . . . ,ORN)
from prior work [She09, Lee09, BT13, She13].

ψAND-OR(y1, . . . , yR) := C · ψAND(. . . , sgn(ψOR(yj)), . . .)

R∏
j=1

|ψOR(yj)|

(C chosen to ensure ψAND-OR has L1-norm 1).

Must verify:

1 ψAND-OR has pure high degree≥R1/2 ·N1/2 =Ω(N).

2 ψAND-OR well-correlated with AND-OR.

3 ψAND-OR places mass only on inputs of Hamming weight ≤ N .

ANDR

ORN ORN

y yR

Attempt 1

For some N = O(R), want a dual witness for
ANDR(ORN , . . . ,ORN) that only places mass on inputs
of Hamming weight at most N .

Attempt 1: Use the dual witness for ANDR(ORN , . . . ,ORN)
from prior work [She09, Lee09, BT13, She13].

ψAND-OR(y1, . . . , yR) := C · ψAND(. . . , sgn(ψOR(yj)), . . .)

R∏
j=1

|ψOR(yj)|

(C chosen to ensure ψAND-OR has L1-norm 1).

Must verify:

1 ψAND-OR has pure high degree≥R1/2 ·N1/2 =Ω(N).

2 ψAND-OR well-correlated with AND-OR.

3 ψAND-OR places mass only on inputs of Hamming weight ≤ N .

ANDR

ORN ORN

y yR

Attempt 1

For some N = O(R), want a dual witness for
ANDR(ORN , . . . ,ORN) that only places mass on inputs
of Hamming weight at most N .

Attempt 1: Use the dual witness for ANDR(ORN , . . . ,ORN)
from prior work [She09, Lee09, BT13, She13].

ψAND-OR(y1, . . . , yR) := C · ψAND(. . . , sgn(ψOR(yj)), . . .)

R∏
j=1

|ψOR(yj)|

(C chosen to ensure ψAND-OR has L1-norm 1).

Must verify:

1 ψAND-OR has pure high degree≥R1/2 ·N1/2 =Ω(N).X[She09]

2 ψAND-OR well-correlated with AND-OR.X[BT13, She13]

3 ψAND-OR places mass only on inputs of Hamming weight ≤ N .X

ANDR

ORN ORN

y yR

Patching Attempt 1

Goal: Fix Property 3 without destroying Properties 1 or 2.

Fact (cf. Razborov and Sherstov 2008): Suppose∑
|y|>N

|ψAND-OR(y)| � R−D.

Then we can “post-process” ψAND-OR to “zero out” any mass
it places it inputs of Hamming weight larger than N .
While ensuring that the resulting dual witness still has pure
high degree min{D,PHD(ψAND-OR)}.

Patching Attempt 1

Goal: Fix Property 3 without destroying Properties 1 or 2.

Fact (cf. Razborov and Sherstov 2008): Suppose∑
|y|>N

|ψAND-OR(y)| � R−D.

Then we can “post-process” ψAND-OR to “zero out” any mass
it places it inputs of Hamming weight larger than N .
While ensuring that the resulting dual witness still has pure
high degree min{D,PHD(ψAND-OR)}.

Patching Attempt 1

New Goal: Show that, for D ≈ R3/4,∑
|y|>N

|ψAND-OR(y)| � R−D. (1)

Recall:

ψAND-OR(y1, . . . , yR) := C · ψAND(. . . , sgn(ψOR(yj)), . . .)

R∏
j=1

|ψOR(yj)|

A dual witness ψOR for OR can be made “weakly” biased
toward low Hamming weight inputs.

Specifically, can ensure:
PHD(ψOR) ≥ n1/4.

For all t,
∑
|yi|=t |ψOR(yi)| ≤ t−2 · exp(−t/n1/4). (2)

|ψAND-OR(y1,. . ., yR)| resembles product distribution:
∏R
j=1|ψOR(yj)|

So it is exponentially more biased toward low Hamming weight
inputs than ψOR itself.

Intuition: By (2): the mass that
∏R
j=1|ψOR(yj)| places on inputs of

Hamming weight > N is dominated by inputs with |yi| = N1/4 for
at least N3/4 values of i.
Also by (2), each |yi| = N1/4 contributes a factor of 1/poly(N).So total mass on these inputs is exp(−Ω(N3/4)).

Patching Attempt 1

New Goal: Show that, for D ≈ R3/4,∑
|y|>N

|ψAND-OR(y)| � R−D. (1)

Recall:

ψAND-OR(y1, . . . , yR) := C · ψAND(. . . , sgn(ψOR(yj)), . . .)

R∏
j=1

|ψOR(yj)|

A dual witness ψOR for OR can be made “weakly” biased
toward low Hamming weight inputs.

Specifically, can ensure:
PHD(ψOR) ≥ n1/4.

For all t,
∑
|yi|=t |ψOR(yi)| ≤ t−2 · exp(−t/n1/4). (2)

|ψAND-OR(y1,. . ., yR)| resembles product distribution:
∏R
j=1|ψOR(yj)|

So it is exponentially more biased toward low Hamming weight
inputs than ψOR itself.

Intuition: By (2): the mass that
∏R
j=1|ψOR(yj)| places on inputs of

Hamming weight > N is dominated by inputs with |yi| = N1/4 for
at least N3/4 values of i.
Also by (2), each |yi| = N1/4 contributes a factor of 1/poly(N).So total mass on these inputs is exp(−Ω(N3/4)).

Patching Attempt 1

New Goal: Show that, for D ≈ R3/4,∑
|y|>N

|ψAND-OR(y)| � R−D. (1)

Recall:

ψAND-OR(y1, . . . , yR) := C · ψAND(. . . , sgn(ψOR(yj)), . . .)

R∏
j=1

|ψOR(yj)|

A dual witness ψOR for OR can be made “weakly” biased
toward low Hamming weight inputs.

Specifically, can ensure:
PHD(ψOR) ≥ n1/4.

For all t,
∑
|yi|=t |ψOR(yi)| ≤ t−2 · exp(−t/n1/4). (2)

|ψAND-OR(y1,. . ., yR)| resembles product distribution:
∏R
j=1|ψOR(yj)|

So it is exponentially more biased toward low Hamming weight
inputs than ψOR itself.

Intuition: By (2): the mass that
∏R
j=1|ψOR(yj)| places on inputs of

Hamming weight > N is dominated by inputs with |yi| = N1/4 for
at least N3/4 values of i.
Also by (2), each |yi| = N1/4 contributes a factor of 1/poly(N).So total mass on these inputs is exp(−Ω(N3/4)).

Patching Attempt 1

New Goal: Show that, for D ≈ R3/4,∑
|y|>N

|ψAND-OR(y)| � R−D. (1)

Recall:

ψAND-OR(y1, . . . , yR) := C · ψAND(. . . , sgn(ψOR(yj)), . . .)

R∏
j=1

|ψOR(yj)|

A dual witness ψOR for OR can be made “weakly” biased
toward low Hamming weight inputs.

Specifically, can ensure:
PHD(ψOR) ≥ n1/4.

For all t,
∑
|yi|=t |ψOR(yi)| ≤ t−2 · exp(−t/n1/4). (2)

|ψAND-OR(y1,. . ., yR)| resembles product distribution:
∏R
j=1|ψOR(yj)|

So it is exponentially more biased toward low Hamming weight
inputs than ψOR itself.

Intuition: By (2): the mass that
∏R
j=1|ψOR(yj)| places on inputs of

Hamming weight > N is dominated by inputs with |yi| = N1/4 for
at least N3/4 values of i.
Also by (2), each |yi| = N1/4 contributes a factor of 1/poly(N).

So total mass on these inputs is exp(−Ω(N3/4)).

Patching Attempt 1

New Goal: Show that, for D ≈ R3/4,∑
|y|>N

|ψAND-OR(y)| � R−D. (1)

Recall:

ψAND-OR(y1, . . . , yR) := C · ψAND(. . . , sgn(ψOR(yj)), . . .)

R∏
j=1

|ψOR(yj)|

A dual witness ψOR for OR can be made “weakly” biased
toward low Hamming weight inputs.

Specifically, can ensure:
PHD(ψOR) ≥ n1/4.

For all t,
∑
|yi|=t |ψOR(yi)| ≤ t−2 · exp(−t/n1/4). (2)

|ψAND-OR(y1,. . ., yR)| resembles product distribution:
∏R
j=1|ψOR(yj)|

So it is exponentially more biased toward low Hamming weight
inputs than ψOR itself.

Intuition: By (2): the mass that
∏R
j=1|ψOR(yj)| places on inputs of

Hamming weight > N is dominated by inputs with |yi| = N1/4 for
at least N3/4 values of i.

Also by (2), each |yi| = N1/4 contributes a factor of 1/poly(N).

So total mass on these inputs is exp(−Ω(N3/4)).

General Hardness Amplification Within AC0

General Hardness Amplification Within AC0

Recall: When we apply our hardness amplification to
f = ANDR, the “harder” function F is precisely SURJ.

For a general function f , what is the “harder” function F?

First Attempt: Amplifying Hardness of
f:{−1, 1}R→{−1, 1} (R=3,N=6)

2	 1	 2	 1	 3	 3	

0	 1	 0	 1	 0	 0	 1	 0	 1	 0	 0	 0	 0	 0	 0	 0	 1	 1	

f	

OR	 OR	 OR	

Hardness-Amplifying Construction: Second Attempt

First attempt at handling general f fails when f = OR.

F (x) = ORR(ORN (y1,1, . . . , y1,N), . . . ,ORN (yR,1 . . . , yR,N))
has (exact) degree 0.

Let R′ = R logR. For f : {−1, 1}R → {−1, 1}, the real∗

definition of F is:

F (x)=(f◦ANDlogR)(ORN (y1,1,. . . ,y1,N),. . . ,ORN (yR′,1,. . ., yR′,N))

∗This is still a slight simplification. Also need to introduce a dummy

range item that is ignored by F .

Hardness-Amplifying Construction: Second Attempt

First attempt at handling general f fails when f = OR.

F (x) = ORR(ORN (y1,1, . . . , y1,N), . . . ,ORN (yR,1 . . . , yR,N))
has (exact) degree 0.

Let R′ = R logR. For f : {−1, 1}R → {−1, 1}, the real∗

definition of F is:

F (x)=(f◦ANDlogR)(ORN (y1,1,. . . ,y1,N),. . . ,ORN (yR′,1,. . ., yR′,N))

∗This is still a slight simplification. Also need to introduce a dummy

range item that is ignored by F .

Future Directions

Resolve the quantum query complexity of k-distinctness,
counting triangles, graph collision, etc.

Prove an Ω(nk/(k+1)) lower bound on approximate degree of
the k-sum function?

Its quantum query complexity is known to be Θ(nk/(k+1)).

An Ω(n) lower bound on the approximate degree of AC0?

A sublinear upper bound for DNFs of polynomial size? Or
even polynomial size AC0 circuits?

Either result would yield new circuit lower bounds (namely, for
AC0 ◦MOD2 circuits).

Extend our bounds on d̃egε(f) from ε = 1/3 to ε much closer
to 1.

We believe our techniques can extend to give a Ω(n1−δ) lower
bound on the threshold degree of AC0.

Thank you!

Analysis of the Dual Witness for the AND-OR Tree

1/2

1/2

1/2

The Combining Method [SZ09, She09, Lee09]

ψAND-OR(x1, . . . , xn1/2) := C · ψOUT(. . . , sgn(ψIN(xi)), . . .)

n1/2∏
i=1

|ψIN(xi)|

(C chosen to ensure ψAND-OR has L1-norm 1).

Must verify:

1 ψAND-OR has pure high degree ≥ n1/4 · n1/4 = n1/2.

2 ψAND-OR has high correlation with AND-OR.

1/2

1/2

1/2

The Combining Method [SZ09, She09, Lee09]

ψAND-OR(x1, . . . , xn1/2) := C · ψOUT(. . . , sgn(ψIN(xi)), . . .)

n1/2∏
i=1

|ψIN(xi)|

(C chosen to ensure ψAND-OR has L1-norm 1).

Must verify:

1 ψAND-OR has pure high degree ≥ n1/4 · n1/4 = n1/2.

2 ψAND-OR has high correlation with AND-OR.

1/2

1/2

1/2

The Combining Method [SZ09, She09, Lee09]

ψAND-OR(x1, . . . , xn1/2) := C · ψOUT(. . . , sgn(ψIN(xi)), . . .)

n1/2∏
i=1

|ψIN(xi)|

(C chosen to ensure ψAND-OR has L1-norm 1).

Must verify:

1 ψAND-OR has pure high degree ≥ n1/4 · n1/4 = n1/2.X[She09]

2 ψAND-OR has high correlation with AND-OR. [BT13, She13]

1/2

1/2

1/2

Pure High Degree Analysis [She09]

ψAND-OR(x1, . . . , xn1/2) := C · ψOUT(. . . , sgn(ψIN(xi)), . . .)

n1/2∏
i=1

|ψIN(xi)|

Intuition: Consider ψOUT(y1, y2, y3) = y1y2. Then
ψAND-OR(x1, x2, x3) equals:

C · sgn(ψIN(x1)) · sgn(ψIN(x2)) ·
3∏
i=1

|ψIN(xi)|

= ψIN(x1) · ψIN(x2) · |ψIN(x3)|

Each term of ψAND-OR is the product of PHD(ψOUT)
polynomials over disjoint variable sets, each of pure high
degree at least PHD(ψIN).

So ψAND-OR has pure high degree at least
PHD(ψOUT) · PHD(ψIN).

Pure High Degree Analysis [She09]

ψAND-OR(x1, . . . , xn1/2) := C · ψOUT(. . . , sgn(ψIN(xi)), . . .)

n1/2∏
i=1

|ψIN(xi)|

Intuition: Consider ψOUT(y1, y2, y3) = y1y2. Then
ψAND-OR(x1, x2, x3) equals:

C · sgn(ψIN(x1)) · sgn(ψIN(x2)) ·
3∏
i=1

|ψIN(xi)|

= ψIN(x1) · ψIN(x2) · |ψIN(x3)|

Each term of ψAND-OR is the product of PHD(ψOUT)
polynomials over disjoint variable sets, each of pure high
degree at least PHD(ψIN).

So ψAND-OR has pure high degree at least
PHD(ψOUT) · PHD(ψIN).

(Sub)Goal: Show ψAND-OR has high correlation with
AND-OR

Correlation Analysis

ψAND-OR(x1, . . . , xn1/2) := C · ψOUT(. . . , sgn(ψIN(xi)), . . .)

n1/2∏
i=1

|ψIN(xi)|

Idea: Show∑
x∈{−1,1}n

ψAND-OR(x) ·AND-ORn(x) ≈
∑

y∈{−1,1}n1/2
ψOUT(y) ·ANDn1/2(y).

Intuition: We are feeding sgn(ψIN(xi)) into ψOUT.

ψIN is correlated with ORn1/2 , so sgn(ψIN(xi)) is a “decent
predictor” of ORn1/2 .

But there are errors. Need to show errors don’t “build up”.

Correlation Analysis

Goal: Show∑
x∈{−1,1}n

ψAND-OR(x) ·AND-ORn(x) ≈
∑

y∈{−1,1}n1/2
ψOUT(y) ·ANDn1/2(y).

Case 1: Consider any y = (sgnψIN(x1), . . . , sgnψIN(xn1/2)) 6=
All-True.

There is some coordinate of y that equals FALSE. Only need
to “trust” this coordinate to force AND-ORn to evaluate to
FALSE on (x1, . . . , xn1/2). So errors do not build up!

Correlation Analysis

Case 2: Consider y = All-True.

ANDn1/2(y)=AND-ORn(x1, . . . , xn1/2) only if all
coordinates of y are “error-free”.

Fortunately, ψIN has a special one-sided error property:

If sgn(ψIN(xi)) = −1, then ORn1/2(xi) is guaranteed to
equal -1.

Summary of Correlation Analysis

Two Cases.

In first case (feeding at least one FALSE into ψOUT), errors
did not build up, because we only needed to “trust” the
FALSE value.

In second case (all values fed into ψOUT are TRUE), we
needed to trust all values. But we could do this because ψIN

had one-sided error.

One-Sided Approximate Degree

A real polynomial p is a one-sided ε-approximation for f if

|p(x)− 1| < ε ∀x ∈ f−1(−1)

p(x) ≥ 1 ∀x ∈ f−1(1)

õdeg−,ε(f) = min degree of a one-sided ε-approximation for f .

õdeg−(f) := õdeg−,1/3(f) is the one-sided approximate degree
of f .

Dual Formulation of õdeg−

Primal LP (Linear in ε and coefficients of p):

minp,ε ε

s.t. |p(x)− 1| ≤ ε for all x ∈ f−1(−1)

p(x) ≥ 1 for all x ∈ f−1(1)

deg p ≤ d

Dual LP:

maxψ
∑

x∈{−1,1}n
ψ(x)f(x)

s.t.
∑

x∈{−1,1}n
|ψ(x)| = 1

∑
x∈{−1,1}n

ψ(x)q(x) = 0 whenever deg q ≤ d

ψ(x) ≥ 0 ∀x ∈ f−1(1)

Proof that õdeg−(ANDn) = Ω(
√
n)

We argued that the symmetrization of any 1/3-approximation to
ANDn had to look like this:

!"#$%&'()*+*&',*

Andris Ambainis, Aleksandrs Belovs, Oded Regev, and Ronald
de Wolf.
Efficient quantum algorithms for (gapped) group testing and
junta testing.
In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 903–922. Society
for Industrial and Applied Mathematics, 2016.

Scott Aaronson and Yaoyun Shi.
Quantum lower bounds for the collision and the element
distinctness problems.
J. ACM, 51(4):595–605, 2004.

Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca,
and Ronald de Wolf.
Quantum lower bounds by polynomials.
J. ACM, 48(4):778–797, 2001.

Aleksandrs Belovs.
Learning-graph-based quantum algorithm for k-distinctness.
In Foundations of Computer Science (FOCS), 2012 IEEE 53rd
Annual Symposium on, pages 207–216. IEEE, 2012.

Sergey Bravyi, Aram Wettroth Harrow, and Avinatan
Hassidim.
Quantum algorithms for testing properties of distributions.
IEEE Trans. Information Theory, 57(6):3971–3981, 2011.

Harry Buhrman, Ilan Newman, Hein Röhrig, and Ronald
de Wolf.
Robust polynomials and quantum algorithms.
Theory Comput. Syst., 40(4):379–395, 2007.

Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and
Mario Szegedy.

Quantum query complexity of state conversion.
In Proceedings of the 52nd Symposium on Foundations of
Computer Science (FOCS 2011), pages 344–353, 2011.

Tongyang Li and Xiaodi Wu.
Quantum query complexity of entropy estimation.
arXiv preprint arXiv:1710.06025, 2017.

Ben W Reichardt.
Reflections for quantum query algorithms.
In Proceedings of the twenty-second annual ACM-SIAM
symposium on Discrete Algorithms, pages 560–569. Society for
Industrial and Applied Mathematics, 2011.

Alexander A. Sherstov.
The pattern matrix method.
SIAM J. Comput., 40(6):1969–2000, 2011.
Preliminary version in STOC 2008.

Alexander A. Sherstov.
Approximating the AND-OR Tree.
Theory of Computing, 9(20):653–663, 2013.

Alexander A. Sherstov, 2017.
Personal communication.

