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The GKR Protocol and Its Efficient Implementation
Lecturer: Justin Thaler

1 Motivation

The goal in the lecture on LFKN’s #SAT protocol was to develop an interactive proof for an intractable
problem (such as #SAT [LFKN92] or TQBF [Sha92]), in which the verifier ran in polynomial time. The
perspective taken in this lecture is different: it acknowledges that there are no “real world” entities that can
act as the prover in the #SAT and TQBF protocols of earlier lectures, since real world entities cannot solve
large instances of PSPACE-complete problems in the worst case. We would really like a “scaled down”
version of the TQBF protocol of [LFKN92,Sha92], one that is useful for problems that can be solved in the
real world, such as problems in the complexity classes P, or NC (capturing problems solvable by efficient
parallel algorithms), or even L (capturing problems solvable in logarithmic space).

But what is the point of developing verification protocols for such easy problems? Can’t the verifier just
ignore the prover and solve the problem without help? The answer is that this lecture will describe protocols
in which the verifier runs much faster than would be possible without a prover. Specifically, V will run linear
time, doing little more than just reading the input.

Meanwhile, we will require that the prover not do much more than solve the problem of interest. Ideally,
if the problem is solvable by a Random Access Machine or Turing Machine in time T and space s, we want
the prover to run in time O(T ) and space O(s), or as close to it as possible. At a minimum, P should run in
polynomial time.

Can the TQBF and #SAT protocols of prior lectures be scaled down to yield protocols where the verifier
runs in (quasi-)linear time for a “low” complexity class like L? It turns out that it can, but the prover is not
efficient.

Recall that in the TQBF protocol, V ran in time O(S), and P ran in time O(S · 2N), when applied
to a Boolean formula φ of size S over N variables. In principle, this yields an interactive proof for any
problem solvable in space s: given an input x ∈ {0,1}n, V first transforms x to an instance φ of TQBF
(see, e.g., [AB09, Chapter 4] for a lucid exposition of this transformation, which is reminiscent of Savitch’s
Theorem), and then applies the interactive proof for TQBF to φ .

However, the transformation yields a TQBF instance φ over N = O(s · logT ) variables when applied to
a problem solvable in time T and space s. This results in a prover that runs in time in time 2O(s·logT ). This
is superpolynomial (i.e., nΘ(logn)), even if s = O(logn) and t = poly(n). Until 2007, this was the state of the
art in interactive proofs.

2 The GKR Protocol and Its Costs

Goldwasser, Kalai, and Rothblum [GKR08] described a remarkable interactive proof protocol that does
achieve many of the goals set forth above. The protocol is best presented in terms of the (arithmetic) circuit
evaluation problem. In this problem, V and P first agree on a (logspace uniform) arithmetic circuit C of fan-
in 2 over a finite field F, and the goal is to compute the value of the output gate(s) of C. A logspace uniform
circuit is one that possess a succinct implicit description, in the sense that there is a log-space algorithm that
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Communication Rounds V time P time
d ·polylog(S) field elements d ·polylog(S) O(n+d ·polylog(S)) poly(S)

Table 1: Costs of the GKR protocol when applied to any log-space uniform arithmetic circuit C of size S and depth d
over n variables. Section 4.1 describes methods from [CMT12] for reducing P’s runtime to O(S logS), and reducing
the polylog(S) terms in the remaining costs to O(logS).

takes as input any number i ∈ {0, . . . ,S−1}, and outputs the identities of the in-neighbors of the ith gate in
C.

Letting S denote the size (i.e., number of gates) of C and n the number of variables, the key feature of
the GKR protocol is that the prover runs in time poly(S) (we will see that P’s time can even be made nearly
linear in S [CMT12,Tha13]). If S = 2o(n), then this is much better than the TQBF protocol that we saw in an
earlier lecture, where the prover required time exponential in the number of variables over which the TQBF
instance was defined.

Moreover, the costs to the verifier in the GKR protocol grow linearly with the depth d of C, and only
logarithmically with S. Crucially, this means that V can run in time sub-linear in the size of the circuit S.
At first glance, this might seem impossible – how can the verifier make sure the prover correctly evaluated
C if the verifier never even “looks” at all of C? The answer is that C was assumed to have a succinct implicit
description in the sense of being log-space uniform. This enables V to “understand” the structure of C
without ever having to look at every gate individually.

Application: An Interactive Proof for Parallel Algorithms. The complexity class NC consists of lan-
guages solvable by parallel algorithms in time polylog(n) and total work poly(n). Any problem in NC can
solved by a (log-space uniform) arithmetic circuit C of polynomial size and polylogarithmic depth. Applying
the GKR protocol to C yields a polynomial time prover and a linear time verifier.

Application: An Interactive Proof for Space-Bounded Turing Machines. As discussed above, the
TQBF protocol from earlier lectures can be used to give a prover running in time 2O(logs·logT ) and a ver-
ifier running in time O(n ·poly(s)) when applied to a language solvable in time T and space s. In particular,
P’s runtime is superpolynomial even if s = O(logn).

The GKR protocol provides a quantitative improvement on these costs. Specifically, any language L
solvable in time space s and time T is computed by an O(logs)-space uniform circuit C of fan-in 2 and
depth d = O(s · logT ) and size S = poly(2s). Roughly speaking, C works by taking a Turing Machine or
Random Access Machine M computing L, and repeatedly squaring the adjacency matrix of M in order to
determine whether there is a path from the start configuration of M to the accepting configuration of M.
Only O(logT ) invocations of MATMULT are required to determine if a path of length T exists, and each
invocation can be computed in depth O(s), resulting in the O(s · logT ) bound on the depth of C.

Applying the GKR protocol to C, the prover runs in time poly(S) = poly(2s), which is polynomial if
s = O(logn). The verifier runs in time O(n+ d · logS) = O(n+ poly(s, logT )). This is O(n) time if s is
subpolynomial in n and T is subexponential in n.

Notice the above also provides an alternate proof that PSPACE⊆ IP, as the verifier’s runtime is poly(n)
as long as s = poly(n).
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3 Protocol Overview

As described above, P and V first agree on an arithmetic circuit C of fan-in 2 over a finite field F computing
the function of interest. C is assumed to be in layered form, meaning that the circuit can be decomposed into
layers, and wires only connect gates in adjacent layers (if C is not layered it can easily be transformed into
a layered circuit C′ with a small blowup in size). Suppose that C has depth d, and number the layers from 1
to d with layer d referring to the input layer, and layer 1 referring to the output layer.

In the first message, P tells V the (claimed) output(s) of the circuit. The protocol then works its way in
iterations towards the input layer, with one iteration devoted to each layer. We will describe the gates in C as
having values: the value of an addition (multiplication) gate is set to be the sum (product) of its in-neighbors.
The purpose of iteration i is to reduce a claim about the values of the gates at layer i to a claim about the
values of the gates at layer i+1, in the sense that it is safe for V to assume that the first claim is true as long
as the second claim is true. This reduction is accomplished by applying the sum-check protocol.

More concretely, the GKR protocol starts with a claim about the values of the output gates of the circuit,
but V cannot check this claim without evaluating the circuit herself, which is precisely what she wants to
avoid. So the first iteration uses a sum-check protocol to reduce this claim about the outputs of the circuit to
a claim about the gate values at layer 2 (more specifically, to a claim about an evaluation of the multilinear
extension of the gate values at layer 2). Once again, V cannot check this claim herself, so the second iteration
uses another sum-check protocol to reduce the latter claim to a claim about the gate values at layer 3, and so
on. Eventually, V is left with a claim about the inputs to the circuit, and V can check this claim without any
help. This outline is depicted in Figures 1-4.

4 Protocol Details

Notation. Suppose we are given a layered arithmetic circuit C of size S, depth d, and fan-in two. Number
the layers from 0 to d, with 0 being the output layer and d being the input layer. Let Si denote the number
of gates at layer i of the circuit C. Assume Si is a power of 2 and let Si = 2si . The GKR protocol makes use
of several functions, each of which encodes certain information about the circuit.

Number the gates at layer i from 0 to Si− 1, and let Wi : {0,1}si → F denote the function that takes as
input a binary gate label, and outputs the corresponding gate’s value at layer i. As usual, let W̃i denote the
multilinear extension of Wi.

The GKR protocol also makes use of the notion of a “wiring predicate” that encodes which pairs of
wires from layer i+1 are connected to a given gate at layer i in C. Let in1,i, in2,i : {0,1}si →{0,1}si+1 denote
the functions that take as input the label a of a gate at layer i of C, and respectively output the label of the
first and second in-neighbor of gate a. So, for example, if gate a at layer i computes the sum of gates b and
c at layer i+1, then in1,i(a) = b and in2,i(a) = c.

Define two functions, addi and multi, mapping {0,1}si+2si+1 to {0,1}, which together constitute the
wiring predicate of layer i of C. Specifically, these functions take as input three gate labels (a,b,c), and
return 1 iff (b,c) = (in1,i(a), in2,i(a)) and gate a is an addition (respectively, multiplication) gate. As usual,
let ãddi and m̃ulti denote the multilinear extensions of addi and multi.

Detailed Description. The GKR protocol consists of d iterations, one for each layer of the circuit. Each
iteration i starts with P claiming a value for W̃i(ri) for some point in ri ∈ Fsi .

At the start of the first iteration, this claim is derived from the claimed outputs of the circuit. Specifically,
if there are S0 = 2s0 outputs of C, let D : {0,1}s0→F denote the function that maps the label of an output gate
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Figure 1: Start of GKR Protocol.
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Figure 2: Iteration 1 reduces a claim about the output of
C to one about the MLE of the gate values in the previous
layer.
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Figure 3: In general, iteration i reduces a claim about the
MLE of gate values at layer i, to a claim about the MLE of
gate values at layer i+1.
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Figure 4: In the final iteration, P makes a claim about the
MLE of the input. V can check this claim without help,
since V sees the input explicitly.
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to the claimed value of that output. Then the verifier can pick a random point r0 ∈Fs0 at random, and evaluate
D̃(r0) in time O(S0) using Lemma 1.8 of Lecture 4. By the Schwartz-Zippel lemma, if D̃(r0) = W̃0(r0) (i.e.,
if the multilinear extension of the claimed outputs equals the multilinear extension of the correct outputs
when evaluated at a randomly chosen point), then it is safe for the verifier to believe that D̃ = W̃0, and hence
that all of the claimed outputs are correct. Unfortunately, the verifier cannot evaluate W̃0(r0) without help
from the prover.

The purpose of iteration i is to reduce the claim about the value of W̃i(ri) to a claim about W̃i+1(ri+1) for
some ri+1 ∈ Fsi+1 , in the sense that it is safe for V to assume that the first claim is true as long as the second
claim is true. To accomplish this, the iteration applies the sum-check protocol to a specific polynomial
derived from W̃i+1, ãddi, and m̃ulti. Our description of the protocol actually makes use of a simplification
due to Thaler [Tha15].

Applying the Sum-Check Protocol. The GKR protocol exploits an ingenious explicit expression for W̃i(ri),
captured in the following lemma.

Lemma 4.1.

W̃i(z) = ∑
b,c∈{0,1}si+1

ãddi(z,b,c)
(
W̃i(b)+W̃i(c)

)
+ m̃ulti(z,b,c)

(
W̃i(b) ·W̃i(c)

)
(1)

Proof. It is easy to check that the right hand side is a multilinear polynomial in the entries of z, since ãddi and
m̃ulti are multilinear polynomials. (Note that, just as in the matrix multiplication protocol of the preceding
lecture, the function being summed over is quadratic in the entries of b and c, but this quadratic-ness is
“summed away”, leaving a multilinear polynomial only in the variables of z).

Since the multilinear extension of a function with domain {0,1}si is unique, it suffices to check that the
left hand side and right hand side of the expression in the lemma agree for all a ∈ {0,1}si . To this end,
fix any a ∈ {0,1}si , and suppose that gate a in layer i of C is an addition gate (the case where gate a is a
multiplication gate is similar). Since each gate a at layer i has two unique in-neighbors, namely in1(a) and
in2(a);

addi(a,b,c) =

{
1 if (b,c) = (in1(a), in2(a))
0 otherwise

and multi(a,b,c) = 0 for all b,c ∈ {0,1}si+1 .
Hence, since ãddi, m̃ulti, W̃i+1, and W̃i extend addi and multi, Wi+1, and Wi respectively,

∑
b,c∈{0,1}si+1

ãddi(a,b,c)
(
W̃i+1(b)+W̃i+1(c)

)
+ m̃ulti(a,b,c)

(
W̃i+1(b) ·W̃i+1(c)

)
= W̃i+1(in1(a))+W̃ (in2(a)) =Wi+1(in1(a))+Wi+1(in2(a)) =Wi(a) = W̃i(a).

Remark 1. Lemma 4.1 is actually valid using any extensions of addi and multi that are multilinear in the
first si variables.

Remark 2. Goldwasser, Kalai, and Rothblum [GKR08] actually use a slightly more complicated expression
for W̃i(a) than the one in Lemma 4.1. Their expression allowed them to use even more general extensions
of addi and multi (in particular, their extensions do not have to be multilinear in the first si variables).
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However, our use of the multilinear extensions ãddi and m̃ulti turns out to be critical to achieving a prover
runtime that is nearly linear in the circuit size S [CMT12, Tha13], rather than a much larger polynomial in
S as achieved by [GKR08] (cf. Section 4.1 for details).

Therefore, in order to check the prover’s claim about W̃i(ri), the verifier applies the sum-check protocol
to the polynomial

f (i)ri (b,c) = ãddi(ri,b,c)
(
W̃i+1(b)+W̃i+1(c)

)
+ m̃ulti(ri,b,c)

(
W̃i+1(b) ·W̃i+1(c)

)
. (2)

There remains the issue that V can only execute the final check in the sum-check protocol if she can evaluate
the polynomial f (i)ri at a random point ω = (ω1, . . . ,ω2si+1). This is handled as follows.

Let b∗ ∈ Fsi+1 be the first si+1 entries of ω , and c∗ ∈ Fsi+1 the last si+1 entries. Note that b∗, and c∗

may have non-Boolean entries. Evaluating f (i)ri (b∗,c∗) requires evaluating ãddi(ri,b∗,c∗), m̃ulti(ri,b∗,c∗),
W̃i+1(b∗), and W̃i+1(c∗).

For many circuits, particularly those whose wiring pattern display repeated structure, V can evaluate
ãddi(ri,b∗,c∗) and m̃ulti(ri,b∗,c∗) on her own in poly(si,si+1) time as well. For now, assume that V can
indeed perform this evaluation in poly(si,si+1) time, but this issue will be discussed further in Section 4.2.
V cannot however evaluate W̃i+1(b∗), and W̃i+1(c∗) on her own without evaluating the circuit. Instead,

V asks P to simply provide these two values, and uses iteration i+ 1 to verify that these values are as
claimed. However, one complication remains: the precondition for iteration i+ 1 is that P claims a value
for W̃i+1(ri+1) for a single point ri+1 ∈ Fsi+1 . So V needs to reduce verifying both W̃i+1(b∗) and W̃i+1(c∗)
to verifying W̃i+1(ri+1) at a single point ri+1 ∈ Fsi+1 , in the sense that it is safe for V to accept the claimed
values of W̃i+1(b∗) and W̃i+1(c∗) as long as the value of W̃i+1(ri+1) is as claimed. This is done as follows.

Reducing to Verification of a Single Point. Let ` : F→ Fsi+1 be some canonical line passing through b∗
and c∗. For example, we can let ` be the unique line such that `(0) = b∗ and `(1) = c∗. P sends a univariate
polynomial q of degree at most si+1 that is claimed to be W̃i+1 ◦ `, the restriction of W̃i+1 to the line `. V
checks that q(0) = b∗ and q(1) = c∗ (rejecting if this is not the case), picks a random point r∗ ∈ F, and
asks P to prove that W̃i+1(`(r∗)) = q(r∗). By the Schwartz-Zippel Lemma (even its simple special case for
univariate polynomials), as long as V is convinced that W̃i+1(`(r∗)) = q(r∗), it is safe for V to believe that q
does in fact equal W̃i+1 ◦ `, and hence that the values of W̃i+1(b∗) and W̃i+1(c∗) are as claimed by P . This
completes iteration i; P and V then move on to the iteration for layer i+1 of the circuit, whose purpose is
to verify that W̃i+1(ri+1) has the claimed value, where ri+1 := `(r∗).

The Final Iteration. Finally, at the final iteration d, V must evaluate W̃d(rd) on her own. But the vector of
gate values at layer d of C is simply the input x to C. By Lemma 1.8 from Lecture 4, V can compute W̃d(rd)
on her own in O(n) time.

4.1 Discussion of Costs

V’s runtime. Observe that the polynomial f (i)ri defined in Equation (2) is an (2si+1)-variate polynomial of
degree at most 2 in each variable, and so the invocation of the sum-check protocol at iteration i requires 2si+1
rounds, with three field elements transmitted per round. Thus, the total communication cost is O(d logS)
field elements. The time cost to V is O(n+ d logS+ t), where t is the amount of time required for V to
evaluate ãddi and m̃ulti at a random input, for each layer i of C. Here the n term is due to the time required
to evaluate W̃d(rd), and the d logS term is the time required for V to send messages to P and process and
check the messages from P . For now, let us assume that t is a low-order cost, so that V runs in total time
O(n+d logS); we discuss this issue further in Section 4.2.

6



P’s runtime. Analogously to the MATMULT protocol of the previous lecture, we give two increasingly
sophisticated implementations of the prover when the sum-check protocol is applied to the polynomial f (i)ri .
Method 1: f (i)ri is a v-variate polynomial for v = 2si+1. As in the analysis of Method 1 for implementing
the prover in the matrix multiplication protocol from the previous lecture, P can compute the prescribed
method in round j by evaluating f (i)ri at 3 · 2v− j points. It is not hard to see that P can evaluate f (i)ri at any
point in O(Si +Si+1) time using techniques similar to Lemma 1.8 from Lecture 4. This yields a runtime for
P of O(2v · (Si +Si+1)). Over all d layers of the circuit, P’s runtime is bounded by O(S3).

Method 2: Cormode et al. [CMT12] improved on the O(S3) runtime of Method 1 by observing, just
as in the matrix multiplication protocol from the previous lecture, that the 3 · 2v− j points at which P
must evaluate f (i)ri in round j of the sum-check protocol are highly structured, in the sense that their
trailing entries are Boolean. That is, it suffices for P to evaluate f (i)ri (z) for all points z of the form:
z = (r1, . . . ,r j−1,{0,1,2},b j+1, . . . ,bv), where v = 2si+1 and each bk ∈ {0,1}.

For each such point z, the bottleneck in evaluating f (i)ri (z) is in evaluating ãddi(z) and m̃ulti(z). A direct
application of Lemma 1.8 from Lecture 4 implies that each such evaluation can be performed in 2v =O(S2

i+1)
time. However, we can do much better by observing that the functions addi and multi are sparse, in the sense
that addi(a,b,c) = multi(a,b,c) = 0 for all Boolean vectors (a,b,c) ∈ Fv except for the Si vectors of the
form (a, in1,i(a), in2,i(a)) : a ∈ {0,1}si .

Thus, we can write ãddi(z) =∑a∈{0,1}si χ(a,in1,i(a),in2,i(a))(z), where the sum is only over addition gates a at

layer i of C, and similarly for m̃ulti(z). Just as in the analysis of Method 2 for implementing the prover in the
matrix multiplication protocol of the previous lecture, for any input z of the form z=(r1, . . . ,r j−1,{0,1,2},b j+1, . . . ,bv),
it holds that χ(a,in1,i(a),in2,i(a))(z) = 0 unless the last v− j entries of z and (a, in1,i(a), in2,i(a)) are equal (here,

we are exploiting the fact that the trailing entries of z are Boolean). Hence, P can evaluate ãddi(z) at all the
necessary points z in each round of the sum-check protocol with a single pass over the gates at layer i of C:
for each gate a in layer i, P only needs to update ãddi(z)← ãddi(z)+χ(a,in1,i(a),in2,i(a))(z) for the three values
of z whose trailing v− j entries equal the trailing entries of (a, in1,i(a), in2,i(a)).

4.2 Evaluating ãddi and m̃ulti Efficiently

The issue of the verifier efficiently evaluating ãddi and m̃ulti at a random points ω ∈ Fsi+2si+1 is a tricky
one. While there does not seem to be a clean characterization of precisely which circuits have ãddi’s and
m̃ulti’s that can be evaluated in O(logS) time, most circuits that exhibit any kind of repeated structure
satisfy this property. In particular, the papers [CMT12, Tha13] show that the evaluation can be computed
in O(si + si+1) = O(logS) time for a variety of common wiring patterns and specific circuits. This includes
the canonical circuit for simulating a space-bounded machine whose construction was sketched in Section
2. It also includes where the wiring patterns involve basic arithmetic on gate indices, and specific circuits
computing functions such as MATMULT, pattern matching, Fast Fourier Transforms, and various problems
of interest in the streaming literature, like frequency moments and distinct elements. Moreover, we will see
next lecture that ãddi and m̃ulti can be evaluated efficiently for any circuit that operates in a data parallel
manner (and the prover’s runtime can even be reduced to O(S) for such circuits).

In addition, various suggestions have been put forth for what to do when ãddi and m̃ulti cannot be
evaluated in time O(logS). For example, as observed by Cormode et al. [CMT12], these computations
can always be done by V in O(logS) space as long as the circuit is log-space uniform1 which is sufficient

1Log-space uniform roughly means that the circuit C has a very succinct implicit representation. Specifically, for any layer i
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in streaming applications where the space usage of the verifier is paramount [CMT12]. Moreover, these
computations can be done offline before the input is even observed, because they only depend on the wiring
of the circuit, and not on the input [GKR08, CMT12]. [Tha13] observes that if C is data parallel, meaning
that it consists of many independent executions of the same subcomputation (possibly with aggregation of
the results), then these computations take time at most proportional to the size of the sub-computation, and
in particular grows at most logarithmically with the number of subcomputations.

Finally, in [GKR08] Goldwasser, Kalai, and Rothblum considered the option of outsourcing the compu-
tation of ãddi(ri,b∗,c∗) and m̃ulti(ri,b∗,c∗) themselves. In fact, this option plays a central role in obtaining
their result for general log-space uniform circuits. Specifically, GKR’s result for general log-space uniform
circuits are obtained via a two-stage proof. First, they give a protocol for any problem computable in (non-
deterministic) logspace by applying their protocol to the canonical circuit for simulating a space-bounded
Turing machine. This circuit has a highly regular wiring pattern for which ãddi and m̃ulti can be evaluated
in O(logS) time.2

For a general log-space uniform circuit C, it is not known how to identify low-degree extensions of
addi and multi that can be evaluated at ω in polylogarithmic time. Rather, Goldwasser et al. outsource
computation of ãddi(ri,b∗,c∗) and m̃ulti(ri,b∗,c∗) themselves. Since C is log-space uniform,ãddi(ri,b∗,c∗)
and m̃ulti(ri,b∗,c∗) can be computed in logarithmic space, and the protocol for logspace computations
applies directly.

5 Leveraging Data Parallelism for Further Speedups

Data parallel computation refers to any setting in which the same sub-computation is applied independently
to many pieces of data, before possibly aggregating the results. The protocol of this section makes no
assumptions on the sub-computation that is being applied (in particular, it handles sub-computations com-
puted by circuits with highly irregular wiring patterns), but does assume that the sub-computation is applied
independently to many pieces of data. Figure 5 gives a schematic of a data parallel computation.

Data parallel computation is pervasive in real-world computing. For example, consider any counting
query on a database. In a counting query, one applies some function independently to each row of the
database and sums the results. For example, one may ask “How many people in the database satisfy Property
P?” The protocol below allows one to verifiably outsource such a counting query with overhead that depends
minimally on the size of the database, but that necessarily depends on the complexity of the property P. In
later lectures, we will see that data parallel computations are in some sense “universal”, in that efficient
transformations from high-level computer programs to circuits often yield data parallel circuits.

The Protocol and its Costs. Let C be a circuit of size S with an arbitrary wiring pattern, and let C∗ be a
“super-circuit” that applies C independently to B = 2b different inputs before aggregating the results in some
fashion. For example, in the case of a counting query, the aggregation phase simply sums the results of the

and gate label a ∈ {0,1}si , there is a logarithmic-space algorithm that is capable of determining all relevant information about gate
a at layer i of C. That is, the algorithm can output the labels of all of a’s neighbors, and is capable of determining if a is an addition
gate or a multiplication gate.

2In [GKR08], Goldwasser et al. actually use higher degree extensions of addi and multi obtained by arithemetizing a Boolean
formula of size polylog(S) computing these functions. The use of these extensions results in a prover whose runtime is a large
polynomial in S (i.e., O(S4)). Cormode et al. [CMT12] observe that in fact the multilinear extensions of addi and multi can be used
for this circuit, and that with these extensions the prover’s runtime can be brought down to O(S logS).
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Figure 5: Schematic of a data parallel computation.

data parallel phase. Assume that the aggregation step is sufficiently simple that the aggregation itself can be
verified using the techniques of Section 4.1.

If one naively applies the GKR protocol to the super-circuit C∗, V might have to perform an expensive
pre-processing phase to evaluate the wiring predicates ãddi and m̃ulti of C∗ at the necessary locations—
this would require time Ω(B · S). Moreover, when applying the basic GKR protocol to C∗ using the tech-
niques of [CMT12], P would require time Θ(B ·S · log(B ·S)). A different approach was taken by Vu
et al. [VSBW13], who applied the GKR protocol B independent times, once for each copy of C. This
causes both the communication cost and V’s online check time to grow linearly with B, the number of
sub-computations, which is undesirable.

In contrast, the protocol of this section (due to [WJB+17], building on [Tha13]) achieves the best of
both both worlds, in that the overheads for the prover and verifier have no dependence on the number of
inputs B to which C is applied. More specifically, the preprocessing time of the verifier is at most O(S),
independent of B. The prover runs in time O(BS+S logS). Observe that as long as B > logS (i.e., there is a
sufficient amount of data parallelism in the computation), O(BS+S logS) = O(B ·S), and hence the prover
is only a constant factor slower than the time required to evaluate the circuit gate-by-gate with no guarantee
of correctness.

The idea of the protocol is that although each sub-computation C can have a complicated wiring pattern,
the circuit is maximally regular between sub-computations, as the sub-computations do not interact at all. It
is possible to leverage this regularity to minimize the pre-processing time of the verifier, and to significantly
speed up the prover.

5.1 Protocol Details

Let C be an arithmetic circuit over F of depth d and size S with an arbitrary wiring pattern, and let C∗ be
the circuit of depth d and size B ·S obtained by laying B copies of C side-by-side, where B = 2b is a power
of 2. We will use the same notation as in Section 4, using ∗’s to denote quantities referring to C∗. For
example, layer i of C has size Si = 2si and gate values specified by the function Wi, while layer i of C∗ has
size S∗i = 2s∗i = 2b+si and gate values specified by W ∗i .

Consider layer i of C∗. Let a = (a1,a2) ∈ {0,1}si ×{0,1}b be the label of a gate at layer i of C∗, where
a2 specifies which “copy” of C the gate is in, while a1 designates the label of the gate within the copy.
Similarly, let b = (b1,b2) ∈ {0,1}si+1 ×{0,1}b and c = (c1,c2) ∈ {0,1}si+1 ×{0,1}b be the labels of two
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gates at layer i+ 1. The key to achieving the speedups for data parallel circuits relative to the interactive
proof described in Section 4 is to tweak the expression in Proposition 4.1 for W̃i. Specifically, Proposition
4.1 represents W̃ ∗i(z) as a sum over

(
S∗i+1

)2 terms. In this section, we leverage the data parallel structure of
C∗ to represent W̃ ∗i(z) as a sum over S∗i+1 ·Si+1 terms, which is smaller than

(
S∗i+1

)2 by a factor of B.

Lemma 5.1. Let h denote the polynomial Fsi×k→ F defined via h(a1,a2) := ∑b1,c1∈{0,1}si+1 g(a1,a2,b1,c1),
where

g(a1,a2,b1,c1) := ãddi(a1,b1,c1)
(

W̃ ∗i+1(b1,a2)+W̃ ∗i+1(c1,a2)
)
+m̃ulti(a1,b1,c1)·W̃ ∗i+1(b1,a2)·W̃ ∗i+1(c1,a2).

Then h extends W ∗i .

Essentially, Lemma 5.1 says that an addition (respectively, multiplication) gate a = (a1,a2) ∈ {0,1}si+b

is connected to gates b = (b1,b2) ∈ {0,1}si+1+b and c = (c1,c2) ∈ {0,1}si+1+b if and only if a, b, and c are
all in the same copy of C, and a is connected to b and c within the copy.

Lemma 5.2. (Restatement of [Rot09, Lemma 3.2.1].) For any polynomial h : Fsi → F extending Wi, the
following polynomial identity holds:

W̃i(z) = ∑
a∈{0,1}si

β̃si(z,a)h(a). (3)

Proof. It is easy to check that the right hand side of Equation (3) is a multilinear polynomial in z, and that it
agrees with Wi on all Boolean inputs. Thus, the right hand side of Equation (3), viewed as a polynomial in
z, must be the multilinear extension W̃i of Wi.

Combining Lemmas 5.1 and 5.2 implies that for any z ∈ Fs∗i ,

W̃ ∗i (z) = ∑
(a1,a2,b1,c1)∈{0,1}si+b+2si+1

g(i)z (a1,a2,b1,c1), (4)

where
g(i)z (a1,a2,b1,c1) :=

β̃ (z,(a1,a2))·
[
ãddi(a1,b1,c1)

(
W̃ ∗i+1(b1,a2)+W̃ ∗i+1(c1,a2)

)
+ m̃ulti(a1,b1,c1) ·W̃ ∗i+1(b1,a2) ·W̃ ∗i+1(c1,a2)

]
.

Thus, to reduce a claim about W̃ ∗i (ri) to a claim about W̃ ∗i+1(ri+1), it suffices to apply the sum-check

protocol to the polynomial g(i)ri .

Costs for V . To bound V’s runtime, observe that ãddi and m̃ulti can be evaluated at a random point in
Fsi+2si+1 in pre-processing in time O(Si) by enumerating the in-neighbors of each of the Si gates at layer i in
order to apply Lemma 1.8 from Lecture 4. Adding up the pre-processing time across all iterations i of our
protocol, V’s pre-processing time is O(∑i Si) = O(S) as claimed.

Costs for P . The insights that go into implementing the honest prover in time O(B · S+ S logS) build on
ideas related the Method 3 for implementing the prover in the Matrix Multiplication protocol of Lecture 7,
and heavily exploit the fact that Equation (4) represents W̃ ∗i(z) as a sum over just S∗i+1 · Si+1 terms, rather
than the

(
S∗i+1

)2 terms appearing in Equation (4.1).
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Communication Rounds V time P time
O(d · log(B ·S)) O(d · (log(B ·S))) online time: O(B ·n+d · (log(B ·S))) O(B ·S+S · log(S))
field elements pre-processing time: O(S)

Table 2: Costs of the IP of Section 5 when applied to any log-space uniform arithmetic circuit C of size S and depth d
over n variables, that is applied B times in a data parallel manner (cf. Figure 5).
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