The Power of Randomness: Fingerprinting and Freivalds' Algorithm *Lecturer: Justin Thaler*

1 Fingerprinting

1.1 The Setting

Alice and Bob live across the country from each other. They each hold a very large file, each consisting of n characters (for concreteness, suppose that these are ASCII characters, so there are m = 128 possible characters). Let us denote Alice's file as the sequence of characters (a_1, \ldots, a_n) , and Bob's as (b_1, \ldots, b_n) . Their goal is to determine whether their files are *equal*, i.e., whether $a_i = b_i$ for all $i = 1, \ldots, n$. Since the files are large, they would like to minimize the *communication*, i.e., Alice would like to send as little information about her file to Bob as possible.

A trivial solution to this problem is for Alice to send her entire file to Bob, and Bob can check whether $a_i = b_i$ for all i = 1, ..., n. But this requires Alice to send all n characters to Bob, which is prohibitive if n is very large. It turns out that no *deterministic* procedure can send less information than this trivial solution.

However, we will see that if Alice and Bob are allowed to execute a *randomized* procedure (which might output the wrong answer with some tiny probability, say at most 0.0001), then they can get away with a much smaller amount of communication.

1.2 Reed-Solomon Fingerprinting

1.2.1 The Communication Protocol

The High-Level Idea. The rough idea is that Alice is going to pick a hash function h at random from a (small) family of hash functions \mathcal{H} . We will think of h(x) as a very short "fingerprint" of x. By fingerprint, we mean that h(x) is a "nearly unique identifier" for x, in the sense that for any $y \neq x$, the fingerprints of x and y differ with high probability over the random choice of h, i.e.,

for all
$$x \neq y$$
, $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \le 0.0001$.

Rather than sending a to Bob in full, Alice sends h and h(a) to Bob. Bob checks whether h(a) = h(b). If $h(a) \neq h(b)$, then Bob knows that $a \neq b$, while if h(a) = h(b), then Bob can be very confident that a = b. **The Details.** To make the above outline concrete, fix a prime number $p > \max\{m, n^2\}$, and let \mathbb{F}_p denote the set of integers modulo p. For the remainder of this section, we assume that all arithmetic is done *modulo* p without further mention. So, for example, if p = 17, then $2 \cdot 3^2 + 4 = 22 \pmod{17} = 5$.

p without further mention. So, for example, if p = 17, then $2 \cdot 3^2 + 4 = 22 \pmod{17} = 5$. For each $r \in \mathbb{F}_p$, define $h_r(a_1, \ldots, a_n) = \sum_{i=1}^n a_i \cdot r^i$. The family \mathcal{H} of hash functions we will consider is

$$\mathcal{H} = \{h_r \colon r \in \mathbb{F}_p\}$$

Intuitively, each hash function h_r interprets its input (a_1, \ldots, a_n) as the coefficients of a degree n polynomial, and outputs the polynomial evaluated at r.

That is, Alice picks a random element r from \mathbb{F}_p , computes $v = h_r(a)$, and sends v and r to Bob. Bob outputs EQUAL if $v = h_r(b)$, and outputs NOT-EQUAL otherwise.

The Power of Randomness: Fingerprinting and Freivalds' Algorithm-1

1.2.2 The Analysis

We now prove that this protocol outputs the correct answer with very high probability. In particular:

- If $a_i = b_i$ for all i = 1, ..., n, then Bob outputs EQUAL for every possible choice of r.
- If there is even one *i* such that $a_i \neq b_i$, then Bob outputs NOT-EQUAL with probability at least 1 n/p, which is at least 1 1/n by choice of $p > n^2$.

The first property is easy to see: if a = b, then obviously $h_r(a) = h_r(b)$ for every possible choice of r. The second property relies on the following crucial fact, whose validity we justify later in Section 1.2.5.

Fact 1. For any two distinct (i.e., unequal) polynomials p_a, p_b of degree at most n with coefficients in \mathbb{F}_p , $p_a(x) = p_b(x)$ for at most n values of x in \mathbb{F}_p .

Let $p_a(x) = \sum_i a_i \cdot x^i$ and similarly $p_b(x) = \sum_i b_i \cdot x^i$. Observe that both p_a and p_b are polynomials in x of degree at most n. And the value v that Alice sends to Bob in the communication protocol is precisely $p_a(r)$, and Bob compares this value to $p_b(r)$.

By Fact 1, there are at most n values of r such that $p_a(r) = p_b(r)$. Since r is chosen at random from \mathbb{F}_p , the probability that Alice picks such an r is thus at most n/p. Hence, Bob outputs NOT-EQUAL with probability at least 1 - n/p (where the probability is over the random choice of r).

1.2.3 Cost of the Protocol

Alice sends only two elements of \mathbb{F}_p , namely v and r, to Bob in the above protocol. In terms of bits, this is $O(\log n)$ bits assuming $p \le n^c$ for a constant c. This is an *exponential improvement* over the $n \cdot \log m$ bits sent in the deterministic protocol. This is an impressive demonstration of the power of randomness.

1.2.4 Discussion

We refer to the above protocol Reed-Solomon fingerprinting because $p_a(r)$ is actually a random entry in an *error-corrected encoding* of the vector (a_1, \ldots, a_n) called the Reed-Solomon encoding. Several other fingerprinting methods are known. Indeed, all that we really require of the hash family \mathcal{H} used in the protocol above is that for any $x \neq y$, $\Pr_{h \in \mathcal{H}}[h(x) = h(y)]$ is small. Many hash families are known to satisfy this property, but Reed-Solomon fingerprinting will prove particularly relevant in our study of probabilistic proof systems owing to its algebraic structure.

A few sentences on finite fields. For prime p, \mathbb{F}_p is an example of a *field*, which is any set equipped with addition, subtraction, multiplication, and division operations. So, for example, the set of real numbers is a field, because for any two reals numbers c and d, c+d, c-d, $c \cdot d$, and (assuming $d \neq 0$) c/d are themselves all real numbers. The same holds for the set of complex numbers, and the set of rational numbers. In contrast, the set of integers is *not* a field, since dividing two integers does not necessarily yield another integer.

 \mathbb{F}_p is also a field (a *finite* one). Here, the field operations are simply addition, subtraction, multiplication, and division modulo p. What we mean by division modulo p requires some explanation: for every $a \in \mathbb{F}_p$, there is a unique element $a^{-1} \in \mathbb{F}_p$ such that $a \cdot a^{-1} = 1$. For example, if p = 5 and a = 3, then $a^{-1} = 2$, since $3 \cdot 2 \pmod{5} = 6 \pmod{5} = 1$. Division by a in \mathbb{F}_p refers to multiplication by a^{-1} . So if p = 5, then in \mathbb{F}_p , $4/3 = 4 \cdot 3^{-1} = 4 \cdot 2 = 3$.

The Power of Randomness: Fingerprinting and Freivalds' Algorithm-2

1.2.5 Establishing Fact 1

Fact 1 is implied by (in fact, equivalent to) the following fact.

Fact 2. Any non-zero polynomial of degree at most n over any field has at most n roots.

A simple proof of Fact 2 can be found online at [hp]. To see that Fact 2 implies Fact 1, observe that if $p_a \neq p_b$ are polynomials of degree at most n, and $p_a(x) = p_b(x)$ for more than n values of $x \in \mathbf{F}_p$, then $p_a - p_b$ is a nonzero polynomial of degree at most n with with more than n roots.

2 Freivalds' Algorithm

2.1 The Setting

Suppose we are given as input two $n \times n$ matrices A and B over \mathbb{F}_p , where $p > n^2$ is a prime number. Our goal is to compute the product matrix $A \cdot B$.

Asymptotically, the fastest known algorithm for accomplishing this task is very complicated, and runs in time $O(n^{2.3728639})$ time [LG14]. Moreover, the algorithm is not practical.

But for the purposes of a course on probabilistic proof systems, the relevant question is not how fast can we multiply two matrices—it's how efficiently can one *verify* that two matrices were multiplied correctly. In particular, can verifying the output of a matrix multiplication problem be done faster than the fastest known algorithm for actually multiplying the matrices? The answer, given by Freivalds in 1977 [Fre77], is yes.

Formally, suppose someone hands us a matrix C, and we want to check whether or not $C = A \cdot B$. Here is a very sample randomized algorithm that will let us perform this check in $O(n^2)$ time (this is only a constant factor more time than what is required to simply read the matrices A, B, and C).

2.2 The Algorithm

First, choose a random $r \in \mathbb{F}_p$, and let $x = (r, r^2, \dots, r^n)$. Then compute y = Cx and $z = A \cdot Bx$, outputting YES if y = z and NO otherwise.

2.3 Runtime

We claim that the entire algorithm runs in time $O(n^2)$. It is easy to see that generating the vector $x = (r, r^2, \ldots, r^n)$ can be done with O(n) total multiplications (r^2 can be computed as $r \cdot r$, then r^3 can be computed as $r \cdot r^2$, then r^4 as $r \cdot r^3$, and so on). Since multiplying an $n \times n$ matrix by an n-dimensional vector can be done in $O(n^2)$ time, the remainder of the algorithm runs in $O(n^2)$ time: computing y involves multiplying C by the vector x, and computing $A \cdot Bx$ involves multiplying B by y to get a vector w = By, and then multiplying A by w to compute $A \cdot Bx$.

2.4 Analysis

Let $D = A \cdot B$. We claim that the above algorithm satisfies the following two conditions:

- If C = D, then the algorithms outputs YES for every possible choice of r.
- If there is even one (i, j) ∈ [n] × [n] such that C_{i,j} ≠ D_{i,j}, then Bob outputs NO with probability at least 1 − n/p.

The Power of Randomness: Fingerprinting and Freivalds' Algorithm-3

The first property is easy to see: if C = D, then clearly Cx = Dx for all vectors x.

The see the second property, suppose that $C \neq D$, and let C_i and D_i denote the *i*th row of C and D respectively. Obviously, since $C \neq D$, there is some row *i* such that $C_i \neq D_i$. Observe that $(Cx)_i$ is precisely $p_{C_i}(r)$, the Reed-Solomon fingerprint of C_i as in the previous section. Similarly, $(A \cdot B \cdot x)_i = p_{D_i}(r)$. Hence, by the analysis of the previous lecture, the probability that $(Cx)_i \neq (A \cdot B \cdot x)_i \geq 1 - n/p$, and in this event the algorithm outputs NO.

2.5 Discussion

Whereas fingerprinting saved communication compared to a deterministic protocol, Freivalds' algorithm saves *runtime* compared to the best known deterministic algorithm. We can think of Freivalds' algorithm as our first probabilistic proof system: here, the proof is simply the answer C itself, and the $O(n^2)$ -time verification procedure simply checks whether $Cx = A \cdot Bx$.

Freivalds actually described his algorithm with a perfectly random vector $x \in \mathbb{F}_p^n$, rather than $x = (r, r^2, \ldots, r^n)$ for a random $r \in \mathbb{F}_p$. We chose $x = (r, r^2, \ldots, r^n)$ to ensure that $(Cx)_i$ is a Reed-Solomon fingerprint of row i of C, thereby allowing us to invoke the analysis from Section 1.

References

- [Fre77] Rusins Freivalds. Probabilistic machines can use less running time. In *IFIP congress*, volume 839, page 842, 1977. [p. 2: The Power of Randomness: Fingerprinting and Freivalds' Algorithm-3]
- [hp] Dan Petersen (https://math.stackexchange.com/users/677/dan petersen). How to prove that a polynomial of degree n has at most n roots? Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/25831 (version: 2011-03-08). [p. 2: The Power of Randomness: Fingerprinting and Freivalds' Algorithm-3]
- [LG14] François Le Gall. Powers of tensors and fast matrix multiplication. In *Proceedings of the 39th international symposium on symbolic and algebraic computation*, pages 296–303. ACM, 2014. [p. 2: The Power of Randomness: Fingerprinting and Freivalds' Algorithm-3]