
COSC 544 Probabilistic Proof Systems 11/21/17

A PCP of Quasilinear Size for Arithmetic Circuit-SAT
Lecturer: Justin Thaler

1 The Goal of This Lecture

We have seen previously (Lecture 15, Section 1) that known MIPs can fairly directly yield a PCP of polyno-
mial size for simulating a (non-deterministic) Random Access Machine (RAM), in which the verifier runs in
linear time. But the polynomial proof length and prover runtime may be quite large. This section describes
how to use techniques tailored specifically to the PCP model to reduce the PCP length to T ·polylog(T) for
simulating a RAM that runs in time T , while maintaining a verifier runtime of n ·polylog(T).

The PCP described here originates in work of Ben-Sasson and Sudan [BS08]. Their work gave a PCP
of size Õ(T) in which the verifier runs in time poly(n) and makes only makes a polylogarithmic number
of queries to the proof oracle. Subsequent work by Ben-Sasson et al. [BGH+05] reduced the verifier’s
time to n ·polylog(T). Finally, Ben-Sasson et al. [BSCGT13] showed how to actually generate the PCP in
T · polylog(T) time using FFT techniques, and the factors hidden by the Õ notation. This PCP system is
fairly involved, so we elide some details in this survey.

1.1 Step 1: Reduce to checking that a polynomial vanishes on designated a subspace.

In Ben-Sasson and Sudan’s PCP, the prover (or more precisely, the proof string π) claims to be holding a
low-degree extension Z of a correct transcript W for the computation being simulated, just like in the MIP of
Lecture 14. And just as in the MIP, the first step of Ben-Sasson and Sudan’s PCP is to construct a polynomial
gx,y,Z such that Z extends a correct transcript for {C,x,y}⇐⇒ gx,y,Z(a) = 0 for all a in a certain set H.

The process of constructing the polynomial gx,y,Z used in the PCP bears much resemblance to the “RAMs
=⇒ Circuit-SAT instance {C,x,y} =⇒ multivariate polynomial gx,y,Z” sequence of transformations used
in the MIP of Lecture 14. For example, De Bruijn graphs again play a central role in the construction
used in the PCP, for the same reasons as in the MIP: they can be used for sorting, while maintaining an
“algebraically regular” structure. This structure allows for keeping the degree of gx,y,Z low while still keeping
gx,y,Z “efficiently evaluate-able” in the sense that the verifier can compute gx,y,Z(r) at any point r, if given
Z’s values at a handful of points derived from r.

The details, however, are different and somewhat more involved than the construction in the MIP. We
elide several of these details here, and focus on highlighting the primary differences between the construc-
tions in the PCP and the MIP.

Most importantly, in the PCP, gx,y,Z is a univariate polynomial. The PCP views a correct transcript as
a univariate function W : [S]→ F rather than as a v-variate function mapping {0,1}v to F for v = logS as
in the MIP. Hence, any extension Z of W is a univariate polynomial, and gx,y,Z is defined to be a univariate
polynomial too. (The reason for using univariate polynomials is that it allows the PCP to utilize low-degree
testing techniques in Steps 2 and 3 below that are tailored to univariate rather than multivariate polynomials.
It is not currently known how to obtain PCPs of quasilinear length based on multivariate techniques.). Note
that even the lowest-degree extension Z of W may have degree |S|−1, which is much larger than the degrees
of the multivariate polynomials that we’ve used in previous lectures, and gx,y,Z will inherit this degree.

1

Communication Queries V time P time
polylog(S) bits polylog(S) O(n ·polylog(S)) O(S ·polylog(S))

Table 1: Costs of PCP from Section 1 when run on a non-deterministic circuit C of size S. The PCP is due to Ben-
Sasson and Sudan [BS08], as refined by Ben-Sasson et al. [BGH+05] and [BSCGT13]. The stated bound on P’s time
assumes P knows a witness w for C.

The univariate nature of gx,y,Z forces several additional differences in its construction, compared to the
multivariate polynomial used in the MIP. In particular, in the univariate setting, gx,y,Z is specifically defined
over a field GF[2`] of characteristic 2. The structure of fields of characteristic 2 are exploited multiple times
in the construction of gx,y,Z and in the PCP as a whole. For example:

• The construction of gx,y,Z exploits the fact that there is a way to assign labels from F = GF[2`] to
nodes in a De Bruijn1 graph such that, for each node v, the labels of the neighbors of v are affine (i.e.,
degree 1) functions of the label of v. (Just as in Lecture 11, the reason this holds boils down to the fact
that the neighbors of a node with label v are simple bit-shifts of v. When v is an element of GF[2`], a
bit-shift of v is an affine function of v.).

This is crucial for ensuring that the degree of gx,y,Z is not much larger than the degree of Z itself. In
particular, the gx,y,Z : F→ F used in the PCP has the form

gx,y,Z(z) = A(z,Z(N1(z)), . . . ,Z(Nk(z))), (1)

where (N1(z), . . . ,Nk(z)) denotes the neighbors of node z in the De Bruijn graph, and A is a certain
“constraint polynomial” of polylogarithmic degree. Since N1, . . . ,Nk are affine over GF[2`], deg(gx,y,Z)
is at most a polylogarithmic factor larger than the degree of Z itself.

• The set H on which gx,y,Z should vanish if Z extends a correct transcript is chosen to ensure that
the polynomial hH(z) = ∏α∈H(z−α) is sparse (having O(polylog(S)) non-zero coefficients). The
sparsity of hH ensures that it can be evaluated an any point in polylogarithmic time, even though H is
a very large set (of size Ω(S)). This will be crucial to allowing the verifier to run in polylogarithmic
time in Step 2 of the PCP, discussed below. It turns out that if F has characteristic O(1) and H is a
linear subspace of F, then hH(z) has sparsity O(logS) as desired.

The final difference worth highlighting is that the field GF[2`] over which gx,y,Z is defined must be small
in the PCP. In particular, F must be of size O(S ·polylog(S)), since the proof length will be at least as large as
|F|. This is in contrast to the MIP setting, where the field size was not critical (so long as it was sufficiently
large to ensure negligible soundness error).

1.1.1 Step 2: Reducing to Checking that a Related Polynomial is Low-Degree

We have already seen the reduction described in this section, in Lemma 1.1 of Lecture 18. We recall the
reduction for the reader’s convenience.

Lemma 1.1 ([BS08]). A degree d univariate polynomial gx,y,Z(z) vanishes on H if and only if the polynomial
hH(z) := ∏α∈H(z−α) divides gx,y,Z(z), i.e., iff there exists a polynomial h∗ with deg(h∗)≤ d−|H| such that
gx,y,Z(z) = hH(z) ·h∗(z).

1Recall that we saw De Brujin graphs in the Lecture 11 notes, where they used to “resort” the trace of a random access
machine’s execution from time order into memory order.

2

Proof. See Lemma 1.1 of Lecture 18.

So to convince V that gx,y,Z vanishes on H, the proof merely needs to convince V that gx,y,Z(z) = hH(z) ·
h∗(z) for some polynomial h∗ of degree d−|H|. To be convinced of this, V can pick a random point r ∈ F
and check that

gx,y,Z(r) = hH(r) ·h∗(r). (2)

Indeed, if gx,y,Z 6= hH ·h∗, then this equality will fail with probability 999
1000 as long as |F| is at least 1000 times

larger than the degrees of gx,y,Z and hH ·h∗.
A PCP convincing V that Equation (2) holds consists of four parts. The first part contains the evaluations

of Z(z) for all z ∈ F. The second part contains a proof πZ that Z has degree at most |H|−1, and hence that
gx,y,Z has degree at most d = |H| · polylog(S). The third part contains the evaluation of h∗(z) for all z ∈ F.
The fourth part purportedly contains a proof πh∗ that h∗(z) has degree at most d−|H|, and hence that hH ·h∗
has degree at most d.

Let us assume that the verifier can efficiently check πZ and πh∗ to confirm that Z and h∗(z) have the
claimed degrees (this will be the purpose of Step 3 below). V can evaluate gx,y,Z(r) in quasilinear time after
making a constant number of queries to the first part of the proof specifying Z. V can compute h∗(r) with
a single query to the third part of the proof. Finally, V can evaluate hH(r) without help in polylogarithmic
time as described in Step 1. The verifier can then check that gx,y,W (r) = h∗(r) ·hH(r).

In actuality, Step 3 will not be able to guarantee that πZ and πh∗ are exactly equal to low-degree poly-
nomials, but will be able to guarantee that, if the verifier’s checks all pass, then they are each close to some
low-degree polynomial Y and h′ respectively. One can then argue that gx,y,Y vanishes on H, analogously to
the proof of Theorem 2.2 in the context of the MIP from Lecture 14.

1.1.2 Step 3: A PCP for Checking that a Univariate Polynomial Has Low-Degree

Overview. The meat of the PCP construction is in this third step. The construction is recursive. The basic
idea is to reduce the problem of checking that a univariate polynomial G1 has degree at most d to the problem
of checking that a related bivariate polynomial Q over F has degree at most

√
d in each variable. It is known

(cf. Lemma 1.3 below) how the latter problem can in turn be reduced back to a univariate problem, that is,
to checking that a related univariate polynomial G2 over F as degree at most

√
d. Recursing `= O(log logn)

times results in checking that a polynomial G` has constant degree, which can be done with constantly many
queries to the proof. We fill in some of the details of this outline below.

The precise soundness and completeness guarantees of this step are as follows. If G1 indeed has degree
at most d, then there is a proof π that is always accepted. Meanwhile, the soundness guarantee is that there is
some universal constant k satisfying the following property: if a proof π is accepted with probability 1− ε ,
then there is a polynomial G of degree at most d such that G1 agrees with G at a 1− ε · logk(S) fraction of
points in F (we say that G and G1 are δ -far, for δ = ε · logk(S).)

The claimed polylogarithmic query complexity of the PCP as a whole comes by repeating the base
protocol, say, m= log2k(S) times and rejecting if any run of the protocol ever rejects. If a proof π is accepted
by the m-fold repetition with probability 1− ε , then it is accepted by the base protocol with probability at
least 1− ε/ logk m, implying that G is ε-far from a degree d polynomial G1.

Reducing Bivariate Low-Degree Testing on Product Sets to Univariate Testing. The bivariate low-
degree testing technique described here is due to Spielman and Polishchuk [PS94]. Assume that Q is a

3

bivariate polynomial defined on a product set A×B⊆ F×F, claimed to have degree d in each variable. (In
all recursive calls of the protocol, A and B will in fact both be subspaces of F). The goal is to reduce this
claim to checking that a related univariate polynomial G2 over F has degree at most d.

Definition 1.2. For a set U ⊆ F×F, partial bivariate function Q : U → F, and nonnegative integers d1,d2,
define δ d1,d2(Q) to be the fractional distance of Q from a polynomial of degree d1 in its first variable and d2
in its second variable. Formally,

δ
d1,d2(Q) := min

f : U→F,degx(f)≤d1,degy(f)≤d2

δ (Q, f).

Let δ d1,∗(Q) and δ ∗,d2(Q) denote the fractional distances when the degree in one of the variables is unre-
stricted.

Lemma 1.3. (Bivariate test on a product set [PS94]). There exists a universal constant c0 ≥ 1 such that the
following holds. For every A,B ⊆ F and integers d1 ≤ |A|/4, d2 ≤ |B|/8 and function Q : A×B→ F, it is
the case that δ d1,d2(Q)≤ c0 ·

(
δ d1,∗(Q)+δ ∗,d2(Q)

)
.

The proof of Lemma 1.3 is not long, but we omit it from the survey for brevity.
Lemma 1.3 implies that, to test if a bivariate polynomial Q defined on a product set has degree at most d

in each variable, it is sufficient to pick a variable i ∈ {1,2}, then pick a random value r ∈ F and test whether
the univariate polynomial Q(r, ·) or Q(·,r) obtained by restricting the ith coordinate of Q to r has degree at
most d.

To be precise, if the above test passes with probability 1− ε , then
(
δ d,∗(Q)+δ ∗,d(f)

)
/2 = ε , and

Lemma 1.3 implies that δ d,d(Q)≤ 2 ·c0 ·ε . Note that Q(r, ·) and Q(·,r) are typically called a “random row”
or “random column” of Q, respectively, and the above procedure is referred to as a “random row or column
test”.

Note that δ d,d(f) may be larger than the acceptance probability ε by only a constant factor c1 = 2c0.
Ultimately, the PCP will will recursively apply the “Reducing Bivariate Low-Degree Testing to Univariate
Testing” technique O(log logn) times, and each step may cause δ d1,d2(Q) to blow up, relative to the rejection
probability ε , by a factor of c1. This is why the final soundness guarantee states that, if the recursive test
as a whole accepts a proof with probability 1− ε , then the input polynomial G1 is δ -close to a degree d
polynomial, where δ = ε · cO(log logS)

1 = ε ·polylog(S).

Reducing Univariate Low-Degree Testing to Bivariate Testing on a Lower Degree Polynomial. Let
G1 be a univariate polynomial defined on a linear subspace L of F (In all recursive calls of the protocol, the
domain of G1 will indeed be a subspace L of F). Our goal in this step is to reduce testing that G1 has degree
at most d to testing that a related bivariate polynomial Q has degree at most

√
d in each variable. It is okay

to assume that the number of vectors in L is at most a constant factor larger than d, as this will be the case
every time this step is applied.

Lemma 1.4. [BS08] Given any pair of polynomials G1(z), q(z), there exists a unique bivariate polynomial
Q(x,y) with degx(Q)< deg(G1) and degy(Q) = bdeg(G1)/deg(q)c such that G1(z) = Q(z,q(z)).

Sketch. Divide G1(z) by (y−q(z)) to represent G1(z) as:

G1(z) = Q0(z,y) · (y−q(z))+Q(z,y). (3)

By the basic properties of division in this ring, degy(Q) = bdeg(G1)/deg(q)c, and degz(Q) < deg(q). To
complete the proof, set y = q(z) and notice that the first summand on the right-hand side of Equation (3)
vanishes.

4

By Lemma 1.4, to establish that G1 has degree at most d, it suffices for a proof to establish that P =
Q(z,q(z)), where the degree of Q in each variable is at most

√
d. Thus, as a first (dumb) attempt, the proof

could specify Q’s value on all points in L×F. Then V can check that G1(z) = Q(z,q(z)), by picking a
random r ∈ L and checking that G1(r) = Q(r,q(r)). If this check passes, it is safe for V to believe that
G1(z) = Q(z,q(z)), as long as Q is indeed low-degree in each variable, and we have indeed reduced testing
that G1 has degree ≈ d to testing that Q has degree at most

√
d in each variable.

The problem with the dumb attempt is that the proof has length |L| · |F|, which is far too large; we need
a proof of size Õ(|L|). A second attempt might be to have the proof specify Q’s value on all points in the set
T := {(z,q(z)) : : z ∈ L}. This would allow V to check that G1(z) = Q(z,q(z)) by picking a random r ∈ L
and checking that G1(r) = Q(r,q(r)). While this shortens the proof to an appropriate size, the problem is
that T is not a product set, so Lemma 1.3 cannot be applied to check that Q has low-degree in each variable.

To get around this issue, Ben-Sasson and Sudan ingeniously choose the polynomial q(z) in such a way
that there is a set B of points, of size O(|L|), at which it suffices to specify Q’s values. Specifically, they
choose q(z) = ∏α∈L0(z−α), where L0 is a linear subspace of L containing

√
d vectors. Then q(z) is not

just a polynomial of degree
√

d, it is also a linear map on L, with kernel equal to L0. This has the effect of
ensuring that q(z) takes on just |L|/|L0| distinct values, as z ranges over L.

Ben-Sasson and Sudan use this property to show that, although T is not a product set, it is possible
to add O(L) additional points S to T to ensure that B := S ∪T contains within it a large subset that is
product. So P need only provide Q’s evaluation on the points in B: since T ⊆ B, the verifier can check
that G1(z) = Q(z,q(z)) by picking a random r ∈ L and checking that G1(r) = Q(r,q(r)), and since there is a
large product set within S ∪T , Lemma 1.3 can be applied.

References

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Short
pcps verifiable in polylogarithmic time. In 20th Annual IEEE Conference on Computational
Complexity (CCC 2005), 11-15 June 2005, San Jose, CA, USA, pages 120–134. IEEE Com-
puter Society, 2005.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM J.
Comput., 38(2):551–607, 2008.

[BSCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete effi-
ciency of probabilistically-checkable proofs. In STOC, pages 585–594, 2013.

[PS94] Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs. In
Frank Thomson Leighton and Michael T. Goodrich, editors, Proceedings of the Twenty-Sixth
Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal, Québec,
Canada, pages 194–203. ACM, 1994.

5

	The Goal of This Lecture
	Step 1: Reduce to checking that a polynomial vanishes on designated a subspace.
	Step 2: Reducing to Checking that a Related Polynomial is Low-Degree
	Step 3: A PCP for Checking that a Univariate Polynomial Has Low-Degree

