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Abstract

We formulate a new approach to understanding the behav-
ior of the min-sum algorithm by exploiting the properties of
graph covers. First, we present a new, natural character-
ization of scaled diagonally dominant matrices in terms of
graph covers; this result motivates our approach because
scaled diagonal dominance is a known sufficient condition
for the convergence of min-sum in the case of quadratic
minimization. We use our understanding of graph covers
to characterize the periodic behavior of the min-sum algo-
rithm on a single cycle. Lastly, we explain how to extend the
single cycle results to understand the 2-periodic behavior
of min-sum for general pairwise MRFs. Some of our tech-
niques apply more broadly, and we believe that by capturing
the notion of indistinguishability, graph covers represent a
valuable tool for understanding the abilities and limitations
of general message-passing algorithms.

1. Introduction

Belief propagation (BP) and its variants perform em-
pirically well in application areas including coding the-
ory, statistical physics, and linear programming, but rigor-
ously characterizing their behavior outside of a few well-
structured instances has proved challenging. In general, BP
is not even guaranteed to converge. However, in the absence
of convergence we have empirically observed BP to exhibit
only two "failure modes": either the messages diverge to £oo
or the messages oscillate. In this paper, we lay the ground-
work for a general understanding of the periodic behavior
of belief propagation. Our primary tool for characterizing
periodicity is the notion of a graph cover.

Graph covers have been used to understand the limits of
message passing algorithms in distributed computation [1],
but have received relatively little attention in the belief prop-
agation community. The best known use of graph covers
with respect to belief propagation appears in the recent work
of Vontobel et al. In [2], the authors show that, when using
max-product to solve linear programming problems, frac-
tional solutions of the original linear program can be viewed
as integer solutions on covers.
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We believe that covers provide important insight into
the periodic behavior of belief propagation. We demonstrate
that for the specific case of minimizing a quadratic func-
tion, we can provably correct certain oscillatory behaviors
to achieve the correct solution. We then use graph covers to
suggest a tantalizing connection between periodicity and the
behavior of min-sum on covers of the original problem.

In addition to providing insight into what are typically
considered the failure modes of the min-sum algorithm,
graph covers allow us to characterize when we should expect
"good" behavior. To this end, we will consider the behavior
of the min-sum algorithm for the unconstrained quadratic
minimization problem:

min lel"x —hTx
x 2
where I € R"*" is a symmetric positive definite with unit
diagonal and x € R.

Quadratic minimization is equivalent to solving I'x = A,
and as a result, arises naturally in a variety of application
areas. From our perspective, quadratic minimization is an
important special case of the min-sum algorithm. Unlike
many of the other applications of min-sum, for quadratic
minimization over the reals we are able to provide closed
form solutions for the message updates. This allows us to
apply tools from the theory of differentiable functions to aid
our understanding of the algorithm’s behavior.

There are several known conditions that are sufficient
to guarantee convergence of the min-sum algorithm for this
problem:

Definition 1.1. T" € R™*" is walk-summable if the spectral
radius p(|I -T7) < 1.

Definition 1.2. T" € R"*" js scaled diagonally dominant if
w >0 € R” such that |Uijlw; > ¥ |Tijw;.

Here, we use |A| to denote the matrix obtained from A
by taking the absolute value of every entry.

Malioutov et al. [3] showed that walk-summability is
a sufficient condition for convergence of min-sum. In [4]
and [5], Moallemi et al. showed that scaled diagonal dom-
inance is a sufficient condition for convergence for both
quadratic and general convex functions. In this work, we
will prove that the seemingly unnatural sufficient conditions



above have a natural interpretation in the context of belief
propagation via graph covers.

2. Preliminaries

Before we proceed to our main theorems, we briefly re-
view the relevant background material pertaining to the min-
sum algorithm and quadratic minimization.

2.1. The Min-Sum Algorithm and Quadratic Mini-
mization

The min-sum algorithm attempts to compute the min-
marginals of an objective function p(xy,...,x,) that can be
written as a sum of self-potentials and edge potentials,

POt n) = ) i) + ) Y (xa)

where o C {1,...,n}.

Every factorization of p has a corresponding graphical
representation known as a factor graph. The factor graph
consists of a node for each of the variables x1, ..., x, and each
of the factors Y, with an edge joining y, to x; if i € .
In this paper we will only need the pair-wise case where
Va,|a| = 2. In this special case, we can simplify the factor
graph by eliminating the factor nodes and simply joining x;
and x; by an edge if y;; is a not identically zero. The min-
sum algorithm is then a message passing algorithm on this
reduced factor graph. On the " iteration of the algorithm,
messages are passed along each edge of the factor graph as
follows:

i () = mingi(x) + i, x;) + Y mh(x)
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We will assume that the initial messages m° are zero. Given

any vector of messages, m, we can construct a set of beliefs
that are intended to estimate the min-marginals:
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We can then estimate the assignment that minimizes the
objective function:

X = argmin 7 (x;)
Xi
For the specific case of minimizing a quadratic function,
equivalently finding the mean of a multivariate Gaussian

probability distribution, we can write the objective function
as:

1
P(X1yeyXy) = ExTFx —h'x
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where I" € R™" is symmetric positive definite. We will as-
sume, without loss of generality, that I" has been normalized
to contain only ones along its diagonal.

Because the minimization is being performed over
quadratic functions, we can explicitly compute the mini-
mization required by the min-sum algorithm at each time
step. In this way, the message update m}_, j can be param-
eterized as a quadratic function of the form df jx§ + b X
where the constants are given by:
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These updates are only valid for I'; + 23} cpi—; aﬁd > 0.
If this is not the case, then d! ;= bt ; = —co. For the initial
constants, we take a?j = b?j =0.

2.2. Definitions of Convergence

There are several notions of convergence that one may
consider:

1. The beliefs converge to a fixed point.
2. The messages converge to a fixed point.
3. The estimates converge to a fixed point.

The standard notion of convergence is to consider conver-
gence of the beliefs. We can see that if the messages con-
verge then the beliefs must also converge, because the be-
liefs are defined as sums of the messages, self-potentials,
and edge potentials. However, there are situations in which
the messages and beliefs are converging, but the estimates
are not. Consider the following objective function:

Example 2.1.
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For this example, the min-sum algorithm oscillates be-
tween the all ones estimate and the all zeros estimate for any
two consecutive time steps. The messages and the beliefs
are converging, but will only reach their fixed point values
in the limit. This situation is a special type of convergence:
if we had infinite precision then the beliefs and the messages
would continue to oscillate in such a way as to produce ex-
actly the same series of alternating estimates. Because of
this example, we will break with the standard definition of
convergence in favor of a notion of periodic convergence.
Let T'(m) denote the action of one step of the algorithm on
the message m.



Definition 2.2. The min-sum algorithm converges to a so-
lution of period k if there exist messages m', ...,m* and esti-
mates X', ...,X* for each s € {1,....k}
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Recall that x} is the unigue value that minimizes the be-
lief 7. If 7/ is degenerate then the limiting operation is ill-
defined.

Denote the algorithm’s one step action on a vector of
messages m as T (m). Notice that if the messages m! ..., mk
are a fixed point of period k then they must satisfy T (i) =
i1 mod k‘

1-periodic convergence of the messages is not equiva-
lent to obtaining a fixed point set of messages in the limit.
This is because convergence toward a fixed point message
requires convergence of the messages but not the estimates.
However, in both 1-periodic convergence and convergence
to a fixed point set of messages, we obtain fixed point be-
liefs. For a set of fixed point beliefs, we have the following
result from Wainwright et al. [6]:

Theorem 2.3. If the min-sum algorithm converges to a set
of fixed point beliefs T* such that Vi, there exists a unique x;
that minimizes t;. Then x* is a local optimum of the objec-
tive function.

For the convex quadratic minimization problem, local
optima correspond to global optima. So, if the beliefs con-
verge and we can extract a unique estimate then this estimate
is guaranteed to be the optimal solution.

2.3. Graph Covers

Definition 2.4. A graph H covers a graph G if there exists a
graph homomorphism ¢ : H — G such that ¢ is an isomor-
phism on dv for all vertices v € H. If ¢(v) = u then we say
that v € H is a copy of u € G. We say that H is a k-cover of
G if every vertex of G has k copies in H.

If H covers the factor graph G then H has the same local
properties as G. For any cover H of G and any set of initial
messages on G, there exists a choice of initial messages on
H such that the messages passed by min-sum are identical
on both graphs: for every node v € G the messages received
and sent by this node at time ¢ are exactly the same as the
messages sent and received at time ¢ by any copy of v in
H. As aresult, if we use the min-sum algorithm to deduce
an assignment for v, the algorithm run on the graph H must
deduce the same assignment for each copy of v.

3. Quadratic Minimization and Covers

Let G be the factor graph for pg(x1,...,x,) = 3x7Ix —
hTx. G has a node i for each variable x; and an edge joining
itOjifF,'j #£0.

Let H be a k-cover of G, and let pgy (X11,...,X1%, ... Xpk) =
%xTFx — h” x be the corresponding objective function. With-
out loss of generality we can assume that py can be written
with

' Py ' Pin
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where, for i # j, P is a k X k permutation matrix and P; is
the k x k identity matrix.

Definition 3.1. Let I'g be the quadratic term of objective
Sfunction pg with factor graph G. We say that I'y covers I'g
if H covers G and Iy is the quadratic term of the objective
function pp.

For the quadratic minimization problem, the factor
graphs for min-sum and their covers share many of the same
properties. Most notably, we can transform critical points on
covers to critical points of the original problem. Let H and
G be as above. We have the following lemma:

Lemma 3.2. Suppose I = h for x¥ € R"*. If x € R" is

given by x; = % le‘-:l Xy 4 then I'x = h. Conversely, suppose

[x = h. If X is given by x; = X[y then I¥ =h

Notice that these solutions correspond to critical points
of the cover and the original problem. Similarly, we can
transform eigenvectors of covers to either eigenvectors of
the original problem or the zero vector.

Lemma 3.3. Suppose Ix' = Ax’. If x € R" is given by
X; = % ZIJ‘-ZI x;{iﬂ. then either Tx = Ax or I'x = 0. Conversely,

suppose Tx = Ax. If X' is given by x; = x; x| then Ix = Ax.

These lemmas demonstrate that we can scale critical
points and eigenvectors of covers to critical points and eigen-
vectors (or the zero vector) of the original problem, and we

can duplicate critical points and eigenvectors of the original
problem to obtain critical points and eigenvectors of covers.

4. Graph Covers and Diagonal Dominance

Example 4.1. Consider the following pair of matrices:

—
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I is positive definite, but T has negative eigenvalues.

The example illustrates that there exist positive definite
matrices that are covered by matrices which are not posi-
tive definite. This observation seems to be problematic for



the convergence of the min-sum algorithm. The messages
passed by the min-sum algorithm are exactly the same for
each variable of I" and their copies in I'.

One reasonable conjecture might be that if we are given
a I such that I" and all of its covers are positive definite then
the min-sum algorithm converges to the correct solution. We
show that this is indeed the case by demonstrating that this
condition is equivalent to the known sufficient conditions for
the convergence of min-sum described in [3] and [4].

Theorem 4.2. Let I be a symmetric matrix with unit diago-
nal. The following are equivalent:

1. T is walk-summable.

2. TUis scaled diagonally dominant.

3. All covers of T are positive definite.
4. All 2-covers of T are positive definite.

Proof.

Without loss of generality, assume that the graph corre-
sponding to I" is connected. If not, the quadratic minimiza-
tion breaks into several smaller quadratic minimizations and
we can repeat this entire argument for each of the pieces
separately.

e (1=-2) By assumption, |/ —I| is irreducible. Let A be
an eigenvalue of |I —I'| with eigenvector x > 0 whose
existence is guaranteed by the Perron-Frobenius theo-
rem. For any row i, we have:

Xi > /lx,- = Z ‘F,‘j‘x]'
J#i

Since I';; = 1 this is the definition of scaled diagonal
dominance with w = x.

e (2=3) If I is scaled diagonally dominant then so is
every one of its covers. Scaled diagonal dominance
implies that a matrix is symmetric positive definite.
Therefore, all covers must be symmetric positive def-
inite.

o (3 = 4) Trivial.

e (4=1) Let T be any connected 2-cover of I'. Recall
that I" has the form of equation 1.

By assumption, |I — I and |I —T'| are both irreducible.

Observe that by the Perron-Frobenius theorem there ex-
ists an eigenvector x > 0 € R” of | —I'| with eigen-
value p(|I —T]). Let y € R?" be constructed by dupli-
cating the values of x so that y»; = y2i11 = x; for each
i €{0...n}. By Lemma 3.3, y is an eigenvector of |1 —T'|
with eigenvalue equal to p(|I —I'|). By the Perron-
Frobenius theorem, |/ — I'| has a unique positive eigen-
vector, with eigenvalue equal to the spectral radius. Be-

cause y > 0, we must have p(|/ —T'|) = p(\I—f|).

We will now construct a specific cover I such that T
is positive definite iff I" is walk-summable. To do this,
we’ll choose the F;; as in Equation 1 such that P;; =1

ifI; <O0and P; = <(1) (1)> otherwise. Now define

z € R?" by setting z; = (—1)icy;, where the constant ¢
ensures that ||z|| = 1.

Consider the following:

ZTFZ = ZriiZiz“rZZFU[ZZhZzHl]Pz’j[ 22j :|
i

5= 2j+1
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Recall that y is the eigenvector of |I — f‘| corresponding
to the largest eigenvalue and ||cy|| = 1. By definition
and the above,

p(I-T]) = p(I-TJ)

ey |1 —Tley
c3yTy

2 Tijlc?yiy,

i>j

Combining all of the above we see that Tz =1-
p(|I—T|). Now, I positive definite implies that z Tz >
0, s0 1 —p(JI —TJ) > 0. In other words, I' is walk-
summable.

O

From the theorem, we can immediately infer the follow-
ing:

1. If " is scaled diagonally dominant then all covers of I
are also positive definite. In this case it does not matter
that min-sum cannot distinguish between I" and its cov-
ers; for by converging to a global minimum for I', the
algorithm also converges to a global minimum for any
cover of T.

2. If T is not scaled diagonally dominant then at least one
of its 2-covers has an eigenvalue that is less than or
equal to zero. In this case I has a finite minimum, but
the 2-cover does not. Therefore if the the min-sum al-
gorithm converges, it must produce an incorrect answer
on either I" or one of its covers because min-sum cannot
distinguish between the two.

This theorem has several important consequences. First,
it provides us with a new characterization of scaled diago-
nal dominance and walk-summability, which offers an intu-
itive explanation for why these appear as sufficient condi-
tions for the convergence of the min-sum algorithm. Sec-
ond, although this characterization is specific to the case
of quadratic minimization, we might expect similar require-
ments on covers to be sufficient for convergence of the min-
sum algorithm in other problem domains such as convex



minimization, linear programming, etc. Lastly, as scaled di-
agonal dominance is a well-studied property of matrices, the
theorem may also be of independent interest. For example,
this intuition may explain why scaled diagonal dominance is
also a sufficient condition for convergence and correctness
of the related Gauss-Seidel and Jacobi algorithms.

5. Weak Scaled Diagonal Dominance

We can weaken the strict inequalities in our previous
definitions to obtain a weaker version of Theorem 4.2. Con-
sider the following definitions:

Definition 5.1. T" € R"*" is weakly walk-summable if the
spectral radius p(|[ —T7|) < 1.

Definition 5.2. I is weakly scaled diagonally dominant if
Iw € R™" > 0 such that |Uyilw; > ¥4 [Tijlw;.

Theorem 5.3. Let I be a symmetric matrix with unit diago-
nal. The following are equivalent:

1. T is weakly walk-summable.

2. Tis weakly scaled diagonally dominant.

3. All covers of T are positive semi-definite.
4. All 2-covers of T are positive semi-definite.

The proof of this theorem is almost identical to the proof
of Theorem 4.2 and those details will not be repeated here.

Weak scaled diagonal dominance is a somewhat spe-
cial case. If I' is weakly scaled diagonally dominant but
not scaled diagonally dominant then we know that the ob-
jective function is covered by quadratic objective functions
that have an infinite number of critical points. To see this,
note that the minima of the quadratic equation must satisfy
I'x = h. The two-cover I' constructed in the proof of The-
orem 4.2 has 0 as an eigenvalue, and Agherefore there are in-
finitely many vectors in the kernel of I'. Because I'x = / has
at least one solution, I'y = 4 must have infinitely many.

Theorem 2.3 implies that if the min-sum algorithm con-
verges, it must converge to a critical point. If I" is weakly
scaled diagonally dominant, we may suspect that the pres-
ence of multiple critical points on covers could present diffi-
culties for convergence. Specifically, observe that Example
2.1 is weakly scaled diagonally dominant. In that example,
both the messages and beliefs are converging, but the beliefs
are converging to the constant zero function. This means that
we cannot easily recover the minimum from the fixed point
beliefs using Theorem 2.3. However, as we will demon-
strate below, we can still extract meaningful estimates from
the min-sum algorithm in this case.

6. Periodic Behavior

As mentioned earlier, we have empirically observed that
when min-sum fails to converge, it exhibits only two failure

modes: either the messages diverge to oo, or they oscillate
with some period. When periodicity is encountered in the
estimates, one of several approaches is typically used in an
attempt to recover the correct behavior. The first approach
is to damp the messages. The second approach is to average
the estimates (or the beliefs). For the quadratic minimization
problem, we will show that this second approach provides a
correct solution. First, we need the following lemma:

-1
Lemma 6.1. af»j < aﬁj forallt > 1.

Proof. This result follows trivially by induction. Note that
Li +2Y keai-j aﬁafl > 0 if the update rule is applied. Other-
wise a! ;= oo, O

Theorem 6.2. If the min-sum algorithm converges k-
periodically to a set of messages m', ...,m* and a set of esti-
mates X', ...,X* then the vector x* € R" given by

| NGRS .
* . 1+s =
Xi=lm-) XX =-) xj
1 [0 k ; 2 k ; 1
S= S=
is the unique minimizer of the objective function.

Proof. Define m* = %):ﬁ:l m®. Observe that, because the
d ; are monotonic decreasing, we can infer that T(m*)=m".
So, m* is a fixed point of the message updates. Let 7* denote
the corresponding fixed point beliefs.

Notice that 7(x;) need not have a unique minimum.
Even so, if we can demonstrate that x* minimizes 7 for
each i and ’L';} for each i and j then we can guarantee that
x* is locally optimal in the sense of [6]. Let m' be the
messages at time ¢ of the algorithm. Observe that m* =
lim, oo + ¥ mk"+$. Similarly, all of the fixed point beliefs
are (possibly degenerate) quadratic functions, and they can
be written as the limit of quadratic functions with unique
minima:

o T (xi) =limyeo £ X5, T (1))

T Lyvk kits
° ‘L';;.(x,-,xj) = lim; EZS:I Tij (x,-,xj)

In general, one cannot exchange limits and derivatives,
but for quadratic functions, we can (for a discussion of this,
see Appendix A). Now, either 7 is a constant function in
which case x7 trivially minimizes it, or 7;" is a parabola with
a unique minimum. In the latter case, we have
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where the second equality follows by monotonicity of the a;;
and the third equality follows from Appendix A.

From the above, we can infer that x] is a critical point of
7¥. Now, consider minimizing ’L'l-’} (xi,x;). Again, either ’L'l?kj is
a constant function in which case (x;,x}) trivially minimizes
it, or 7; is a quadratic function with at least one minima.
Using an argument similar to the one presented above, we
can show that (x},x}) minimizes 7;j*.

O

This theorem is strictly stronger than the result of Wain-
wright et al. [6] even if the messages approach a fixed point.
Recall that in Example 2.1 the messages are converging to
a set of fixed point messages, but the corresponding fixed
point beliefs 7% have 77(x;) = 0 for all i. Because the 7/
do not have unique minimum, we cannot apply Theorem 2.3
to obtain a local optima. However, the estimates in this in-
stance oscillate between 0 and 1 allowing us to apply Theo-
rem 6.2 to obtain a globally optimal solution.

We should note that Theorem 6.2 cannot be used to fix
periodicity for arbitrary objective functions. There are many
application areas where the averaging procedure does not
result in a correct set of fixed point messages (for example
see [7], [8], and [9]).

6.1. The Single Cycle Case

Because Theorem 6.2 uses a scaling operation similar to
Lemma 3.2 we might suspect that there is a relationship be-
tween graph covers and periodicity. For quadratic minimiza-
tion, this is indeed the case when the factor graph consists of
a single cycle.

Lemma 6.3. For the single cycle case, if the min-sum algo-
rithm converges to a set of k-periodic messages then there is
a corresponding 1-periodic solution on some k-cover of the
original graph.

Proof. Let H be a connected k-cover of our original cycle.
H must be a single cycle. Starting at some node i € H and
proceeding clockwise around H, place the fixed point mes-
sages in order from 1 to k, restarting the process at 1 every k
nodes. Repeat the same placement technique in the counter
clockwise direction. We can see that this corresponds to a
1-periodic set of messages and estimates. 0

If the beliefs are not converging to a degenerate solu-
tion, Lemma 6.3 provides an alternate proof of Theorem 6.2
in the single-cycle case that does make any explicit refer-
ence to the messages themselves. The one-periodic solution
on the k-cover H constructed in Lemma 6.3 defines a fixed
point set of beliefs on H. As long as there is a unique x; min-
imizing each belief 7", the corresponding estimates must be
globally optimal on H by Theorem 2.3 and convexity. By
Lemma 3.2, we can scale the solution on H down to a solu-
tion on the original graph.

6.2. 2-Periodic Solutions

As observed in the previous section, we can use graph
covers to understand the behavior of min-sum in the single
cycle case. For the quadratic minimization problem on gen-
eral graphs the algorithm may still converge to the correct
solution even if the original matrix is not weakly scaled di-
agonally dominant. However, even in the more general case,
we can apply our observations from the single cycle case
to show that 2-periodic solutions always correspond to a 1-
periodic solution on some 2-cover of the original problem.

Lemma 6.4. If the min-sum algorithm converges to a 2-
periodic solution then there is a corresponding I-periodic
solution on some 2-cover of the original graph.

Proof. Every graph G has a bipartite 2-cover (A,B). Con-
sider messages m' and m? corresponding to consecutive time
steps in the min-sum algorithm. Define the messages m for
the 2-cover (A, B) as follows:

| my ificAand jE€B
T ml ifieBandjeA

m is a 1-periodic solution on (A, B). O

Observe that the construction of this lemma and Lemma
6.3 apply more generally: for the min-sum algorithm on any
pairwise MRF we still have that every 2-periodic solution
corresponds to a 1-periodic solution on a 2-cover. For arbi-
trary pairwise MRFs, we have no guarantee that fixed point
beliefs on the 2-cover are globally optimal. However, they
remain locally optimal in the sense of [6]. In this sense, we
conjecture that periodicity can always be explained by look-
ing at covers of the original MRF.
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A. Uniform Convergence and Quadratics

In this section we discuss the mathematical results relat-
ing to uniform convergence. Most notably, when a sequence
of functions f, converges uniformly to a function f then f
must have minima at the same place as the limit of the f;,.
We make use of this observation without much discussion in
Theorem 6.2.

Definition A.1. A sequence of functions f, : D — R con-
verges uniformly to f: D — R if Ve > 0 there exists an N
such that for alln > N and all x € D, | f,(x) — f(x)] < &.

We state the following standard results without proof:

Lemma A.2. A sequence of functions f, : D — R converges
uniformly to f : D — R if and only if

lim sup|f, () — £(x)| = 0
n—°xeD

Lemma A.3. If a sequence of functions f, : D — R con-
verges uniformly to f : D — R then the

lim argmin f,,(x) C argmin f(x)
X

n—oo X

For any bounded region in D C R, if the coefficients of

the messages m} ; are converging pointwise to m;;, then m’ ;

converges uniformly to m;; on D. Similarly, the derivatives

of ml-*j are converging uniformly to the derivatives of mj‘j on

D. As aresult, we can use Lemma A.3 to exchange argmins
and limits.



