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Introduction

Some Learning Scenarios

SPAM Classification

Lots of SPAM messages—annoying to deal with unimportant emails in Inbox

Very costly if an important mail gets marked as spam

False positives much worse than false negatives

Detecting Network Failures

Failure to detect very costly; incorrect detection relatively small cost

False negative errors very harmful

Medical Diagnosis
All kinds of errors are bad!

Want to have (almost) no errors, at the cost of sometimes predicting “don’t know”

We call these reliable learning problems!
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Introduction

Prior Work

Minimize asymmetric loss function:

min
f∈F

false−(f ) + 1000false+(f )

Classical Statistics: Neyman-Pearson Lemma
Framed in language of hypothesis testing

Lots of other work: cautious classifiers, abstaining classifiers
[Domingos ’99], [Elkan ’01], [Bartlett, Wegkamp ’08], [El-Yaniv, Wiener ’10]

Question: What is the computational complexity for these problems?
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Framework Agnostic Learning Framework

PAC Learning Framework [Valiant 1984]

x1, . . . , xm from D over {−1, 1}n

Labels yi = f (xi ) for some f in class F ,
e.g. linear separators, DNF

Goal: Find hypothesis:
h : {−1, 1}n → {−1, 1}, s.t.

err(h) = Pr
x∼D

[h(x) 6= f (x)] ≤ ε

Want learning algorithm to succeed for all
distributions D
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Framework Agnostic Learning Framework

Agnostic Learning [Haussler ’92, Kearns, Schapire, Sellie ’94]

Generalization of Valiant’s PAC framework

(x1, y1), . . . , (xm, ym) from D over
{−1, 1}n × {−1, 1}

Goal: For some class F , (say linear
separators), find h : {−1, 1}n → {−1, 1}
such that

err(h) ≤ min
f∈F

err(f ) + ε
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Framework Positive Reliable Learning

Positive Reliable Learning [Kalai, K., Mansour ’09]

Like in the agnostic setting:
(x1, y1), . . . , (xm, ym) from D over
{−1, 1}n × {−1, 1}

Goal: For some class F , find
h : {−1, 1}n → {−1, 1} such that:

false+(h) ≤ ε
false−(h) ≤ min

f∈F +
false−(f ) + ε,

where F + denotes the classifiers in F for
which false+(f ) = 0
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{−1, 1}n × {−1, 1}

Goal: For some class F , find
h : {−1, 1}n → {−1, 1} such that:

false+(h) ≤ ε
false−(h) ≤ min

f∈F +
false−(f ) + ε,

where F + denotes the classifiers in F for
which false+(f ) = 0

Models situations, such as SPAM classification, where false positives are very harmful

Negative Reliable Learning is defined analogously
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Framework Fully Reliable Learning

Fully Reliable Learning [Kalai, K., Mansour 2009]

  

Like in the agnostic setting:
(x1, y1), . . . , (xm, ym) from D over
{−1, 1}n × {−1, 1}

Goal: For some class F , find
h : {−1, 1}n → {−1, 1, ?} such that:

err(h) ≤ ε

Pr[h(x) =?] ≤ opt + ε
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Fully Reliable Learning [Kalai, K., Mansour 2009]

  

?
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f +(x) = f−(x), and g(x) =? otherwise

opt = min
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err(g)=0

Pr
x∼D

[g(x) =?]

Models situations such as medical diagnosis, where abstaining is preferred to making
errors
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Framework Fully Reliable Learning

Prior Results

Theorem [Kalai, K., Mansour 2009]

If F is agnostically learnable, then F is positive and negative reliably learnable.
In fact, disjunctions of functions in F are positive reliably learnable.

Theorem [Kalai, K., Mansour 2009]

If F is positive and negative reliably learnable, then F is fully reliably learnable.

Reliable learning no harder than agnostic learning

Some evidence that positive/negative realiable learning easier than agnostic
learning

Is fully reliable learning strictly easier than agnostic learning?
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Main Results Polynomial Approximations

General Approach

ERM: Find a function f ∈ F that minimizes appropriate zero-one loss

PAC Learning: ∀i , f (xi ) = yi

Agnostic Learning:

f ∗ = argminf∈F

m∑
i=1

I(f (xi ) 6= yi )

Positive Reliable Learning: Find f such that

∀i , yi = −1, f (xi ) = −1,

and subject to above f minimizes∑
i:yi =+1

I(f (xi ) = −1)
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Main Results Polynomial Approximations

General Approach

Problems are typically not convex, computationally hard

Consider larger class H such that

For each f ∈ F , some h ∈ H “approximates” f

Find h in H that empirically minimizes a suitable loss function

(Various types of) polynomial approximations give suitable algorithms

Focus on distribution-independent learning

VK & JT June 15, 2014 13 / 23



Main Results Polynomial Approximations

Polynomial Threshold Approximations

  

-1

+1
f

Want polynomial p such that

sign(p(x)) = f (x)

Suffices for PAC learning

Linear Programming: Find p s.t.

∀i , p(xi )yi ≥ 0

Yields some of best known results

DNF learning in 2Õ(n1/3) time
[Klivans, Servedio 2001]
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Main Results Polynomial Approximations

Pointwise Approximations

  

-1

+1
f

Want polynomial p such that

∀x ∈ {−1, 1}n, |f (x)− p(x)| ≤ ε

Suffices (required?) for agnostic learning

L1 Regression: Find p that minimizes∑
i

|p(xi )− yi |

[Kalai, Klivans, Mansour, Servedio 2005]

Pointwise approximations typically requires
much larger degree compared to threshold
approximations
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Main Results Polynomial Approximations

One-sided Approximations

  

-1

+1
f

Want polynomial p such that

∀x s.t. f (x) = −1, |f (x)− p(x)| ≤ ε

and

∀x s.t. f (x) = +1, p(x) ≥ 1− ε

Call this positive one-sided polynomial
approximation

Theorem: Suffices for positive-reliable
learning

One-sided approximate degree can be
much lower than approximate degree
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Main Results Polynomial Approximations

One-sided Approximations

  

-1

+1

p f

Want polynomial p such that

∀x s.t. f (x) = −1, |f (x)− p(x)| ≤ ε

and

∀x s.t. f (x) = +1, p(x) ≥ 1− ε

Call this positive one-sided polynomial
approximation

Theorem: Suffices for positive-reliable
learning

One-sided approximate degree can be
much lower than approximate degree

Introduced recently in [Bun, Thaler 2013], [Sherstov 2014] to prove lower bounds in complexity
theory
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Main Results Learning Results

Main Result

Theorem
Any class F that has positive one-sided polynomial approximations of degree d and
weight W , can be learned by an algorithm with:

Running time nO(d)

Sample complexity polynomial in n, W , 1/ε

An analogous result is true for negative reliable learning.

Convex Program:

Find a polynomial p that minimizes,
∑

i:yi =+1

(1− p(xi ))+ (hinge loss)

subject to: ∀i such that yi = −1, p(xi ) ≤ −1 + ε
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Main Results Learning Results

Proof Sketch

  

For positive examples: hinge loss

Convex loss function (objective)

For negative examples: (almost)
zero-one loss

Posed as constraints
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Main Results Learning Results

Proof Sketch

  

For positive examples: hinge loss

Convex loss function (objective)

  

For negative examples: (almost)
zero-one loss

Posed as constraints

Existence of one-sided approximating polynomial implies that good solution to the
convex program gives a good positive reliable classifier

VK & JT June 15, 2014 18 / 23



Main Results One-sided Approximations

One-sided approximations for low-weight thresholds

Consider the class of functions of the form:

f (x) = sign

(
n∑

i=1

wixi

)
,

where wi are integers. Let W =
∑

i |wi | denote the total weight.

Theorem

The class of threshold functions of weight W has (positive and negative) one-sided
approximation degree Õ(

√
W )

Proof using Chebychev polynomials

Majority has (pointwise) approximate-degree Ω(n).

Majorities can be positive, negative and fully reliably learned in time 2Õ(
√

n)

Current best known algorithm for agnostic learning majority has running time 2O(n).
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f (x) = sign

(
n∑

i=1

wixi

)
,

where wi are integers. Let W =
∑

i |wi | denote the total weight.

Theorem

The class of threshold functions of weight W has (positive and negative) one-sided
approximation degree Õ(

√
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Main Results One-sided Approximations

One-sided approximations: Composition Results

Theorem

Let F be a class of functions that has positive one-sided polynomial approximations
of degree d and weight W , then if

g = f1 ∨ f2 ∨ · · · ∨ fm

g has positive one-sided polynomial approximation of degree d and weight mW

Thus, disjunctions of majority are positive reliably learnable

Analogously, conjunctions of majority are negative reliably learnable

Weight vs degree tradeoff in (one-sided) polynomial approximation results in
sample complexity vs running time tradeoff
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Conclusion

Polynomial approximations play a fundamental role in learning!

PAC Learning

  

-1

+1
f

p

Agnostic Learning

  

-1

+1p

f

Reliable Learning

  

-1

+1

p f

Algorithmic application of one-sided polynomial approximations

Previously only used for lower-bounds in complexity theory

Evidence that (fully) reliable learning easier than agnostic learning
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Conclusion

Open Questions

What can be said about one-sided degree of thresholds with larger weight?
For halfspaces with weight 2Ω(n), one-sided approximate degree is Ω(n).

Other applications of one-sided polynomial approximations?

Thank you!
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