Distribution-Independent Reliable Learning

Varun Kanade  Justin Thaler gy
UC Berkeley Yahoo Labs

June 15, 2014




Introduction

Outline

0 Introduction

VK & JT June 15, 2014 2/23



Introduction

Some Learning Scenarios

SPAM Classification

@ Lots of SPAM messages—annoying to deal with unimportant emails in Inbox
@ Very costly if an important mail gets marked as spam
@ False positives much worse than false negatives

VK & JT June 15, 2014

3/23



Introduction

Some Learning Scenarios

SPAM Classification

@ Lots of SPAM messages—annoying to deal with unimportant emails in Inbox
@ Very costly if an important mail gets marked as spam
@ False positives much worse than false negatives

Detecting Network Failures

@ Failure to detect very costly; incorrect detection relatively small cost
@ False negative errors very harmful

VK & JT June 15, 2014

3/23



Introduction

Some Learning Scenarios

SPAM Classification

@ Lots of SPAM messages—annoying to deal with unimportant emails in Inbox
@ Very costly if an important mail gets marked as spam
@ False positives much worse than false negatives

Detecting Network Failures

@ Failure to detect very costly; incorrect detection relatively small cost
@ False negative errors very harmful

Medical Diagnosis
@ All kinds of errors are bad!
@ Want to have (almost) no errors, at the cost of sometimes predicting “don’t know’

We call these reliable learning problems!
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Prior Work

@ Minimize asymmetric loss function:

rfnip false_(f) 4+ 1000false (f)
€

@ Classical Statistics: Neyman-Pearson Lemma
e Framed in language of hypothesis testing

@ Lots of other work: cautious classifiers, abstaining classifiers
[Domingos '99], [Elkan '01], [Bartlett, Wegkamp '08], [El-Yaniv, Wiener ’10]

@ Question: What is the computational complexity for these problems?
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e Framework
@ Agnostic Learning Framework
@ Positive Reliable Learning
@ Fully Reliable Learning
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@ Xi,...,Xm from Dover {—1,1}"

@ Labels y; = f(x;) for some fin class F,
e.g. linear separators, DNF

@ Goal: Find hypothesis:
h:{-1,1}" = {-1,1}, st

err(h) = Pr[h(x) # f(x)] < ¢
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@ Xi,...,Xm from Dover {—1,1}"

@ Labels y; = f(x;) for some fin class F,
e.g. linear separators, DNF

@ Goal: Find hypothesis:
h:{-1,1}" = {-1,1}, st

err(h) = Pr[h(x) # f(x)] < ¢

@ Want learning algorithm to succeed for all
distributions D
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Agnostic Learning [Haussler '92, Kearns, Schapire, Sellie '94]

@ Generalization of Valiant’'s PAC framework
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Agnostic Learning [Haussler '92, Kearns, Schapire, Sellie '94]

@ Generalization of Valiant’'s PAC framework

@ (X1,%1),...,(Xm, ym) from D over
{=1,1}" x {-1,1}

@ Goal: For some class F, (say linear
separators), find h: {—1,1}" — {—1,1}
such that

err(h) < r;glp err(f) + €
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@ Like in the agnostic setting:
(X1, %), - -+, (Xm, ym) from D over
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@ Goal: For some class F, find
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falser(h) <e
false_ (h) < min false_(f) + ¢,
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where F' denotes the classifiers in F for
which false, (f) = 0
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Positive Reliable Learning [Kalai, k., Mansour 09]

@ Like in the agnostic setting:
(X1, 1) -, (Xm, ym) from D over

{=1,1}" x {-1,1}

@ Goal: For some class F, find
h:{-1,1}" — {—1,1} such that:

falser(h) <e
false_ (h) < min false_ (f) + €,
feF+

where F* denotes the classifiers in F for
which false, (f) = 0

Models situations, such as SPAM classification, where false positives are very harmful

Negative Reliable Learning is defined analogously
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Fully Reliable Learning [kalai, K., Mansour 2009]

@ Like in the agnostic setting:
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{-1,1}" x {-1,1}

VK & JT June 15, 2014 9/23



Fully Reliable Learning [kalai, K., Mansour 2009]

@ Like in the agnostic setting:
(X1, %), - -+, (Xm, ym) from D over

{=1,1}" x {-1,1}

@ Goal: For some class F, find
h:{=1,1}" — {—1,1,7} such that:

err(h) <e

Pr{h(x) =?] < opt + ¢

For each (f*,f~) inclass F, define g : {—1,1}" — {-1,+1,7}, as g(x) = f"(x), if
fr(x) = f~(x), and g(x) =? otherwise

= i :?
opt= min Prlig(x)=7]
err(g)=0
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Fully Reliable Learning [kalai, K., Mansour 2009]

@ Like in the agnostic setting:
(X1, %), - -+, (Xm, ym) from D over

{=1,1}" x {-1,1}

@ Goal: For some class F, find
h:{-=1,1}" = {=1,1,7} such that:

err(h) <e

Prih(x) =7] < opt + ¢

For each (f*,f~) inclass F, define g : {—1,1}" — {—1,+1,7}, as g(x) = f"(x), if
fr(x) = f~(x), and g(x) =? otherwise
opt= min Pr[g(x) =7]

g,s.t. x~D
err(g)=0

Models situations such as medical diagnosis, where abstaining is preferred to making
errors
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Prior Resulis

Theorem [Kalai, K., Mansour 2009]

If F is agnostically learnable, then F is positive and negative reliably learnable.
In fact, disjunctions of functions in F are positive reliably learnable.
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Prior Resulis

Theorem [Kalai, K., Mansour 2009]

If F is agnostically learnable, then F is positive and negative reliably learnable.
In fact, disjunctions of functions in F are positive reliably learnable.

Theorem [Kalai, K., Mansour 2009]

If F is positive and negative reliably learnable, then F is fully reliably learnable.

@ Reliable learning no harder than agnostic learning

@ Some evidence that positive/negative realiable learning easier than agnostic
learning

@ Is fully reliable learning strictly easier than agnostic learning?
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Q Main Results
@ Polynomial Approximations
@ Learning Results
@ One-sided Approximations
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Main Results Polynomial Approximations

General Approach

@ ERM: Find a function f € F that minimizes appropriate zero-one loss
@ PAC Learning: Vi, f(X;) = yi

@ Agnostic Learning:

f* = argmin, . > "I(f(x;) # yi)

i=1

@ Positive Reliable Learning: Find f such that

Vi,y/ = —1,f(X,‘) = —1,

and subject to above f minimizes

3 I(f(x) = 1)

iyj=-+1
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Main Results Polynomial Approximations

General Approach

@ Problems are typically not convex, computationally hard

@ Consider larger class H such that

e Foreach f € F, some h € H “approximates” f
e Find hin H that empirically minimizes a suitable loss function

@ (Various types of) polynomial approximations give suitable algorithms

@ Focus on distribution-independent learning
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Main Results Polynomial Approximations

Polynomial Threshold Approximations

@ Want polynomial p such that

sign(p(x)) = f(x)

+1
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Main Results Polynomial Approximations

Polynomial Threshold Approximations

@ Want polynomial p such that

sign(p(x)) = £(x)
@ Suffices for PAC learning
41 @ Linear Programming: Find p s.t.

Vi, p(xi)y; 2 0

@ Yields some of best known results

DNF learning in 2°""®) time
[Klivans, Servedio 2001]

Degree d approximations gives algorithms with running time O(n°)

Sample complexity related to weight of approximating polynomial
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Main Results Polynomial Approximations

Pointwise Approximations

@ Want polynomial p such that
vx € {=1,1}", [f(x) — p(x)| < €

@ Suffices (required?) for agnostic learning
@ L1 Regression: Find p that minimizes

f
[+ p 2_Ip(x) =i
[Kalai, Klivans, Mansour, Servedio 2005]
-1 WJ
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Main Results Polynomial Approximations

Pointwise Approximations

@ Want polynomial p such that
vx € {_17 1}17’ |f(x) - p(x)| S €

@ Suffices (required?) for agnostic learning
@ L1 Regression: Find p that minimizes

£
; p +1 Z lp(X:) — yil
[Kalai, Klivans, Mansour, Servedio 2005]
-1 @ Pointwise approximations typically requires

much larger degree compared to threshold
approximations

Degree d approximations gives algorithms with running time O(n°).

Sample complexity related to weight of polynomial approximation
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Main Results Polynomial Approximations

One-sided Approximations

@ Want polynomial p such that

vx s.t. f(x) = —1,|f(x) — p(X)] < e
and

f vxs.t f(x)=+1,p(x) >1—¢
+1
@ Call this positive one-sided polynomial
approximation
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Main Results Polynomial Approximations

One-sided Approximations

@ Want polynomial p such that

vx s.t. f(x) = —1,|f(x) — p(x)| < e

and
p f vxs.t f(x)=+1,p(x) >1—¢
: +1
/ @ Call this positive one-sided polynomial
approximation

1 AAA / @ Theorem: Suffices for positive-reliable

learning

@ One-sided approximate degree can be
much lower than approximate degree

Introduced recently in [Bun, Thaler 2013], [Sherstov 2014] to prove lower bounds in complexity
theory -
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Main Results Learning Results

Main Result

Theorem
Any class F that has positive one-sided polynomial approximations of degree d and
weight W, can be learned by an algorithm with:

@ Running time n°@
@ Sample complexity polynomial in n, W, 1/e
An analogous result is true for negative reliable learning.
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Main Results Learning Results

Main Result

Theorem
Any class F that has positive one-sided polynomial approximations of degree d and
weight W, can be learned by an algorithm with:

@ Running time n°@
@ Sample complexity polynomial in n, W, 1/e
An analogous result is true for negative reliable learning.

Convex Program:
Find a polynomial p that minimizes, Z (1 = p(xi))+ (hinge loss)

iyj=+1

subjectto: Vi suchthaty,= -1, p(x) < —1+e
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Proof Sketch

@ For positive examples: hinge loss
@ Convex loss function (objective)
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Proof Sketch

@ For negative examples: (almost)

@ For positive examples: hinge loss
P P zero-one loss

@ Convex loss function (objective) o Posed as constraints

Existence of one-sided approximating polynomial implies that good solution to the
convex program gives a good positive reliable classifier
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Main Results One-sided Approximations

One-sided approximations for low-weight thresholds

Consider the class of functions of the form:

f(x) = sign <i w,-x,-> ;
i=1

where w; are integers. Let W = 3, |w;| denote the total weight.
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Main Results One-sided Approximations

One-sided approximations for low-weight thresholds

Consider the class of functions of the form:

f(x) = sign (i w,-x,-> ;
i=1

where w; are integers. Let W = 3, |w;| denote the total weight.

Theorem

The class of threshold functions of weight W has (positive and negative) one-sided
approximation degree O(v W)

@ Proof using Chebychev polynomials

@ Majority has (pointwise) approximate-degree Q(n).

@ Majorities can be positive, negative and fully reliably learned in time 2°(v")

@ Current best known algorithm for agnostic learning majority has running time 2°(.
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Main Results One-sided Approximations

One-sided approximations: Composition Results

Theorem

Let F be a class of functions that has positive one-sided polynomial approximations
of degree d and weight W, then if

g=fVhV-- Vi

g has positive one-sided polynomial approximation of degree d and weight mW
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Main Results One-sided Approximations

One-sided approximations: Composition Results

Theorem

Let F be a class of functions that has positive one-sided polynomial approximations

of degree d and weight W, then if
g=hHVhV---Viy

g has positive one-sided polynomial approximation of degree d and weight mW

@ Thus, disjunctions of majority are positive reliably learnable
@ Analogously, conjunctions of majority are negative reliably learnable

@ Weight vs degree tradeoff in (one-sided) polynomial approximation results in
sample complexity vs running time tradeoff
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Conclusion

Polynomial approximations play a fundamental role in learning!

PAC Learning Agnostic Learning Reliable Learning
+1 4 W ’ ! +1

@ Algorithmic application of one-sided polynomial approximations
@ Previously only used for lower-bounds in complexity theory
@ Evidence that (fully) reliable learning easier than agnostic learning

VK & JT

June 15, 2014 22/23



Conclusion

Open Questions

@ What can be said about one-sided degree of thresholds with larger weight?
o For halfspaces with weight 22(", one-sided approximate degree is Q(n).

@ Other applications of one-sided polynomial approximations?

Thank you!
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