Distribution-Independent Reliable Learning

Varun Kanade Justin Thaler
UC Berkeley Yahoo Labs

June 15, 2014

Outline

- Introduction
- Framework
 - Agnostic Learning Framework
 - Positive Reliable Learning
 - Fully Reliable Learning
- Main Results
 - Polynomial Approximations
 - Learning Results
 - One-sided Approximations
- Conclusion

Some Learning Scenarios

SPAM Classification

- Lots of SPAM messages—annoying to deal with unimportant emails in Inbox
- Very costly if an important mail gets marked as spam
- False positives much worse than false negatives

Detecting Network Failures

- Failure to detect very costly; incorrect detection relatively small cost
- False negative errors very harmful

Medical Diagnosis

- All kinds of errors are bad!
- Want to have (almost) no errors, at the cost of sometimes predicting "don't know"

We call these reliable learning problems

Some Learning Scenarios

SPAM Classification

- Lots of SPAM messages—annoying to deal with unimportant emails in Inbox
- Very costly if an important mail gets marked as spam
- False positives much worse than false negatives

Detecting Network Failures

- Failure to detect very costly; incorrect detection relatively small cost
- False negative errors very harmful

Medical Diagnosis

- All kinds of errors are bad!
- Want to have (almost) no errors, at the cost of sometimes predicting "don't know"

We call these reliable learning problems!

Some Learning Scenarios

SPAM Classification

- Lots of SPAM messages—annoying to deal with unimportant emails in Inbox
- Very costly if an important mail gets marked as spam
- False positives much worse than false negatives

Detecting Network Failures

- Failure to detect very costly; incorrect detection relatively small cost
- False negative errors very harmful

Medical Diagnosis

- All kinds of errors are bad!
- Want to have (almost) no errors, at the cost of sometimes predicting "don't know"

We call these reliable learning problems!

VK & JT

Prior Work

• Minimize asymmetric loss function:

$$\min_{f \in F} \mathrm{false}_{-}(f) + 1000 \mathrm{false}_{+}(f)$$

- Classical Statistics: Neyman-Pearson Lemma
 - Framed in language of hypothesis testing
- Lots of other work: cautious classifiers, abstaining classifiers
 [Domingos '99], [Elkan '01], [Bartlett, Wegkamp '08], [El-Yaniv, Wiener '10]
- Question: What is the computational complexity for these problems?

Outline

- Introduction
- Framework
 - Agnostic Learning Framework
 - Positive Reliable Learning
 - Fully Reliable Learning
- Main Results
 - Polynomial Approximations
 - Learning Results
 - One-sided Approximations
- 4 Conclusion

- $\mathbf{x}_1, \dots, \mathbf{x}_m$ from *D* over $\{-1, 1\}^n$
- Labels $y_i = f(\mathbf{x}_i)$ for some f in class F, e.g. linear separators, DNF
- Goal: Find hypothesis: $h: \{-1,1\}^n \to \{-1,1\}, \text{ s.t.}$ $\operatorname{err}(h) = \Pr_{\mathbf{x} \in \mathcal{P}}[h(\mathbf{x}) \neq f(\mathbf{x})] \leq \epsilon$
- Want learning algorithm to succeed for all distributions D

- $\mathbf{x}_1, ..., \mathbf{x}_m$ from *D* over $\{-1, 1\}^n$
- Labels y_i = f(x_i) for some f in class F,
 e.g. linear separators, DNF
- Goal: Find hypothesis: $h: \{-1,1\}^n \to \{-1,1\}, \text{ s.t.}$ $\operatorname{err}(h) = \Pr_{\mathbf{x} \sim D}[h(\mathbf{x}) \neq f(\mathbf{x})] \leq \epsilon$
- Want learning algorithm to succeed for all distributions D

- $\mathbf{x}_1, \dots, \mathbf{x}_m$ from *D* over $\{-1, 1\}^n$
- Labels $y_i = f(\mathbf{x}_i)$ for some f in class F, e.g. linear separators, DNF
- Goal: Find hypothesis: $h: \{-1, 1\}^n \to \{-1, 1\}, \text{ s.t.}$ $\operatorname{err}(h) = \Pr_{\mathbf{x} \sim D}[h(\mathbf{x}) \neq f(\mathbf{x})] \leq \epsilon$
- Want learning algorithm to succeed for all distributions D

- $\mathbf{x}_1, \dots, \mathbf{x}_m$ from *D* over $\{-1, 1\}^n$
- Labels y_i = f(x_i) for some f in class F,
 e.g. linear separators, DNF
- Goal: Find hypothesis: $h: \{-1,1\}^n \to \{-1,1\}$, s.t.

$$\operatorname{err}(h) = \Pr_{\mathbf{x} \sim D}[h(\mathbf{x}) \neq f(\mathbf{x})] \leq \epsilon$$

Want learning algorithm to succeed for all distributions D

- $\mathbf{x}_1, \dots, \mathbf{x}_m$ from *D* over $\{-1, 1\}^n$
- Labels y_i = f(x_i) for some f in class F,
 e.g. linear separators, DNF
- <u>Goal</u>: Find hypothesis: $h: \{-1,1\}^n \to \{-1,1\}$, s.t.

$$\operatorname{err}(h) = \Pr_{\mathbf{x} \sim D}[h(\mathbf{x}) \neq f(\mathbf{x})] \leq \epsilon$$

Want learning algorithm to succeed for all distributions D

Agnostic Learning [Haussler '92, Kearns, Schapire, Sellie '94]

Generalization of Valiant's PAC framework

•
$$(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$$
 from D over $\{-1, 1\}^n \times \{-1, 1\}$

• Goal: For some class F, (say linear separators), find $h: \{-1,1\}^n \to \{-1,1\}$ such that

$$\operatorname{err}(h) \leq \min_{f \in F} \operatorname{err}(f) + \epsilon$$

◆ロ > ◆部 > ◆注 > ◆注 > 注 り < ②</p>

Agnostic Learning [Haussler '92, Kearns, Schapire, Sellie '94]

- Generalization of Valiant's PAC framework
- $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ from *D* over $\{-1, 1\}^n \times \{-1, 1\}$
- Goal: For some class F, (say linear separators), find $h: \{-1,1\}^n \to \{-1,1\}$ such that

$$\operatorname{err}(h) \leq \min_{f \in F} \operatorname{err}(f) + \epsilon$$

Agnostic Learning [Haussler '92, Kearns, Schapire, Sellie '94]

- Generalization of Valiant's PAC framework
- \bullet $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ from D over $\{-1,1\}^n \times \{-1,1\}$
- Goal: For some class F, (say linear separators), find $h: \{-1, 1\}^n \to \{-1, 1\}$ such that

$$\operatorname{err}(h) \leq \min_{f \in F} \operatorname{err}(f) + \epsilon$$

- Like in the agnostic setting: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ from D over $\{-1, 1\}^n \times \{-1, 1\}$
- Goal: For some class F, find $h: \{-1,1\}^n \to \{-1,1\}$ such that

$$false_{+}(h) \le \epsilon$$

$$false_{-}(h) \le \min_{f \in F^{+}} false_{-}(f) + \epsilon$$

where F^+ denotes the classifiers in F for which $false_+(f)=0$

- Like in the agnostic setting: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ from D over $\{-1, 1\}^n \times \{-1, 1\}$
- Goal: For some class F, find $h: \{-1,1\}^n \to \{-1,1\}$ such that

$$false_{+}(h) \le \epsilon$$

$$false_{-}(h) \le \min_{f \in F^{+}} false_{-}(f) + \epsilon$$

where F^+ denotes the classifiers in F for which $false_+(f) = 0$

- Like in the agnostic setting: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ from D over $\{-1,1\}^n \times \{-1,1\}$
- Goal: For some class F, find $h: \{-1,1\}^n \to \{-1,1\}$ such that:

$$\begin{aligned} & \text{false}_+(h) \le \epsilon \\ & \text{false}_-(h) \le \min_{f \in F^+} \text{false}_-(f) + \epsilon, \end{aligned}$$

where F^+ denotes the classifiers in F for which false₊(f) = 0

- Like in the agnostic setting: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ from D over $\{-1,1\}^n \times \{-1,1\}$
- Goal: For some class F, find $h: \{-1,1\}^n \to \{-1,1\}$ such that:

$$\begin{aligned} & \text{false}_+(h) \le \epsilon \\ & \text{false}_-(h) \le \min_{f \in F^+} \text{false}_-(f) + \epsilon, \end{aligned}$$

where F^+ denotes the classifiers in F for which false₊(f) = 0

- Like in the agnostic setting: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ from D over $\{-1,1\}^n \times \{-1,1\}$
- Goal: For some class F, find $h: \{-1,1\}^n \to \{-1,1\}$ such that:

$$\begin{aligned} & \text{false}_+(h) \le \epsilon \\ & \text{false}_-(h) \le \min_{f \in F^+} \text{false}_-(f) + \epsilon, \end{aligned}$$

where F^+ denotes the classifiers in F for which false₊(f) = 0

Models situations, such as SPAM classification, where false positives are very harmful

- Like in the agnostic setting: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ from D over $\{-1,1\}^n \times \{-1,1\}$
- Goal: For some class F, find $h: \{-1, 1\}^n \to \{-1, 1\}$ such that:

$$false_{+}(h) \le \epsilon$$

$$false_{-}(h) \le \min_{f \in F^{+}} false_{-}(f) + \epsilon,$$

where F^+ denotes the classifiers in F for which false₊(f) = 0

Models situations, such as SPAM classification, where false positives are very harmful Negative Reliable Learning is defined analogously

Fully Reliable Learning [Kalai, K., Mansour 2009]

- Like in the agnostic setting: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ from D over $\{-1, 1\}^n \times \{-1, 1\}$
- Goal: For some class F, find $h: \{-1,1\}^n \to \{-1,1,?\} \text{ such tha}$ $\operatorname{err}(h) \le \epsilon$ $\Pr[h(\mathbf{x}) = ?] \le \operatorname{opt} + \epsilon$

VK & JT

Fully Reliable Learning [Kalai, K., Mansour 2009]

- Like in the agnostic setting: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ from D over $\{-1, 1\}^n \times \{-1, 1\}$
- Goal: For some class F, find $h: \{-1,1\}^n \to \{-1,1,?\}$ such that:

$$err(h) \leq \epsilon$$

$$\Pr[h(\mathbf{x}) = ?] \le \mathrm{opt} + \epsilon$$

For each (f^+, f^-) in class F, define $g : \{-1, 1\}^n \to \{-1, +1, ?\}$, as $g(\mathbf{x}) = f^+(\mathbf{x})$, if $f^+(\mathbf{x}) = f^-(\mathbf{x})$, and $g(\mathbf{x}) = f^+(\mathbf{x})$ otherwise

$$opt = \min_{\substack{g,s.t.\\ err(g)=0}} \Pr_{\mathbf{x} \sim D}[g(\mathbf{x}) = ?]$$

Fully Reliable Learning [Kalai, K., Mansour 2009]

- Like in the agnostic setting: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ from D over $\{-1, 1\}^n \times \{-1, 1\}$
- Goal: For some class F, find $h: \{-1,1\}^n \to \{-1,1,?\}$ such that:

$$\operatorname{err}(h) \leq \epsilon$$

$$\Pr[h(\mathbf{x}) = ?] \le \mathrm{opt} + \epsilon$$

For each (f^+, f^-) in class F, define $g : \{-1, 1\}^n \to \{-1, +1, ?\}$, as $g(\mathbf{x}) = f^+(\mathbf{x})$, if $f^+(\mathbf{x}) = f^-(\mathbf{x})$, and $g(\mathbf{x}) = ?$ otherwise

$$\mathrm{opt} = \min_{\substack{g, s.t.\\ \mathrm{err}(g) = 0}} \Pr_{\mathbf{x} \sim \mathcal{D}}[g(\mathbf{x}) = ?]$$

Models situations such as medical diagnosis, where abstaining is preferred to making errors

VK & JT June 15, 2014 9 / 23

Prior Results

Theorem [Kalai, K., Mansour 2009]

If F is <u>agnostically learnable</u>, then F is <u>positive and negative reliably learnable</u>. In fact, disjunctions of functions in F are positive reliably learnable.

Theorem [Kalai, K., Mansour 2009]

If *F* is positive and negative reliably learnable, then *F* is fully reliably learnable.

- Reliable learning no harder than agnostic learning
- Some evidence that positive/negative realiable learning easier than agnostic learning
- Is fully reliable learning strictly easier than agnostic learning?

Prior Results

Theorem [Kalai, K., Mansour 2009]

If F is <u>agnostically learnable</u>, then F is <u>positive and negative reliably learnable</u>. In fact, disjunctions of functions in F are positive reliably learnable.

Theorem [Kalai, K., Mansour 2009]

If F is positive and negative reliably learnable, then F is fully reliably learnable.

- Reliable learning no harder than agnostic learning
- Some evidence that positive/negative realiable learning easier than agnostic learning
- Is fully reliable learning strictly easier than agnostic learning?

Prior Results

Theorem [Kalai, K., Mansour 2009]

If F is <u>agnostically learnable</u>, then F is <u>positive and negative reliably learnable</u>. In fact, disjunctions of functions in F are positive reliably learnable.

Theorem [Kalai, K., Mansour 2009]

If F is positive and negative reliably learnable, then F is fully reliably learnable.

- Reliable learning no harder than agnostic learning
- Some evidence that positive/negative realiable learning easier than agnostic learning
- Is fully reliable learning strictly easier than agnostic learning?

Outline

- Introduction
- Framework
 - Agnostic Learning Framework
 - Positive Reliable Learning
 - Fully Reliable Learning
- Main Results
 - Polynomial Approximations
 - Learning Results
 - One-sided Approximations
- 4 Conclusion

- ERM: Find a function $f \in F$ that minimizes appropriate <u>zero-one</u> loss
- PAC Learning: $\forall i, f(\mathbf{x}_i) = y_i$
- Agnostic Learning:

$$f^* = \operatorname{argmin}_{f \in F} \sum_{i=1}^m \mathbb{I}(f(\mathbf{x}_i) \neq y_i)$$

• Positive Reliable Learning: Find f such that

$$\forall i, y_i = -1, f(\mathbf{x}_i) = -1,$$

and subject to above f minimizes

$$\sum_{i:y_i=+1} \mathbb{I}(f(\mathbf{x}_i)=-1)$$

- ERM: Find a function $f \in F$ that minimizes appropriate <u>zero-one</u> loss
- PAC Learning: $\forall i, f(\mathbf{x}_i) = y_i$
- Agnostic Learning:

$$f^* = \operatorname{argmin}_{f \in F} \sum_{i=1}^m \mathbb{I}(f(\mathbf{x}_i) \neq y_i)$$

Positive Reliable Learning: Find f such that

$$\forall i, y_i = -1, f(\mathbf{x}_i) = -1,$$

and subject to above f minimizes

$$\sum_{i:y_i=+1} \mathbb{I}(f(\mathbf{x}_i)=-1)$$

- ERM: Find a function $f \in F$ that minimizes appropriate <u>zero-one</u> loss
- PAC Learning: $\forall i, f(\mathbf{x}_i) = y_i$
- Agnostic Learning:

$$f^* = \operatorname{argmin}_{f \in F} \sum_{i=1}^m \mathbb{I}(f(\mathbf{x}_i) \neq y_i)$$

• Positive Reliable Learning: Find f such that

$$\forall i, y_i = -1, f(\mathbf{x}_i) = -1,$$

and subject to above f minimizes

$$\sum_{i:y_i=+1} \mathbb{I}(f(\mathbf{x}_i)=-1)$$

◆□▶ ◆□▶ ◆■▶ ◆■ ◆○○○

- Problems are typically not convex, computationally hard
- Consider larger class H such that
 - For each $f \in F$, some $h \in H$ "approximates" f
 - Find h in H that empirically minimizes a suitable loss function
- (Various types of) polynomial approximations give suitable algorithms
- Focus on distribution-independent learning

Want polynomial p such that

$$\operatorname{sign}(p(\mathbf{x})) = f(\mathbf{x})$$

- Suffices for PAC learning
- Linear Programming: Find *p* s.t.

$$\forall i, p(x_i)y_i \geq 0$$

Yields some of best known results
 DNF learning in 2^{O(n^{1/3})} time
 [Klivans, Servedio 2001]

• Want polynomial *p* such that

$$\mathrm{sign}(p(\mathbf{x})) = f(\mathbf{x})$$

- Suffices for PAC learning
- Linear Programming: Find p s.t.

$$\forall i, p(x_i)y_i \geq 0$$

Yields some of best known results
 DNF learning in 2^{O(n^{1/3})} time
 [Klivans, Servedio 2001]

Want polynomial p such that

$$\operatorname{sign}(p(\mathbf{x})) = f(\mathbf{x})$$

- Suffices for PAC learning
- Linear Programming: Find *p* s.t.

$$\forall i, p(x_i)y_i \geq 0$$

Yields some of best known results
 DNF learning in 2^{O(n^{1/3})} time
 [Klivans, Servedio 2001]

• Want polynomial *p* such that

$$\operatorname{sign}(p(\mathbf{x})) = f(\mathbf{x})$$

- Suffices for PAC learning
- Linear Programming: Find p s.t.

$$\forall i, p(x_i)y_i \geq 0$$

Yields some of best known results
 DNF learning in 2^{O(n^{1/3})} time
 [Klivans, Servedio 2001]

Polynomial Threshold Approximations

Want polynomial p such that

$$\operatorname{sign}(p(\mathbf{x})) = f(\mathbf{x})$$

- Suffices for PAC learning
- Linear Programming: Find p s.t.

$$\forall i, p(x_i)y_i \geq 0$$

Yields some of best known results
 DNF learning in 2^{Õ(n¹/³)} time
 [Klivans, Servedio 2001]

Polynomial Threshold Approximations

Want polynomial p such that

$$\operatorname{sign}(p(\mathbf{x})) = f(\mathbf{x})$$

- Suffices for PAC learning
- <u>Linear Programming</u>: Find *p* s.t.

$$\forall i, p(x_i)y_i \geq 0$$

Yields some of best known results
 DNF learning in 2^{Õ(n¹/³)} time
 [Klivans, Servedio 2001]

Degree d approximations gives algorithms with <u>running time</u> $O(n^d)$

Sample complexity related to weight of approximating polynomial

4 D > 4 D > 4 E > 4 E > E = 900

Pointwise Approximations

Want polynomial p such that

$$\forall \mathbf{x} \in \{-1,1\}^n, |f(\mathbf{x}) - p(\mathbf{x})| \le \epsilon$$

- Suffices (required?) for agnostic learning
- L1 Regression: Find *p* that minimizes

$$\sum_{i} |p(\mathbf{x}_i) - y_i|$$

[Kalai, Klivans, Mansour, Servedio 2005]

 Pointwise approximations typically requires much larger degree compared to threshold approximations

Pointwise Approximations

Want polynomial p such that

$$\forall \mathbf{x} \in \{-1,1\}^n, |f(\mathbf{x}) - p(\mathbf{x})| \leq \epsilon$$

- Suffices (required?) for agnostic learning
- L1 Regression: Find p that minimizes

$$\sum_{i} |p(\mathbf{x}_i) - y_i|$$

[Kalai, Klivans, Mansour, Servedio 2005]

 Pointwise approximations typically requires much larger degree compared to threshold approximations

Pointwise Approximations

Want polynomial p such that

$$\forall \mathbf{x} \in \{-1,1\}^n, |f(\mathbf{x}) - p(\mathbf{x})| \leq \epsilon$$

- Suffices (required?) for agnostic learning
- L1 Regression: Find p that minimizes

$$\sum_{i} |p(\mathbf{x}_i) - y_i|$$

[Kalai, Klivans, Mansour, Servedio 2005]

 Pointwise approximations typically requires much larger degree compared to threshold approximations

Degree d approximations gives algorithms with running time $O(n^d)$.

Sample complexity related to weight of polynomial approximation

◆ロト ◆部 → ◆重 → ◆重 → り ○ ○ ○

One-sided Approximations

Want polynomial p such that

$$\forall \mathbf{x} \text{ s.t. } f(\mathbf{x}) = -1, |f(\mathbf{x}) - p(\mathbf{x})| \le \epsilon$$

and

$$\forall \mathbf{x} \text{ s.t. } f(\mathbf{x}) = +1, p(\mathbf{x}) \geq 1 - \epsilon$$

- Call this positive one-sided polynomial approximation
- Theorem: Suffices for positive-reliable learning
- One-sided approximate degree can be much lower than approximate degree

One-sided Approximations

Want polynomial p such that

$$\forall \mathbf{x} \text{ s.t. } f(\mathbf{x}) = -1, |f(\mathbf{x}) - p(\mathbf{x})| \leq \epsilon$$

and

$$\forall \mathbf{x} \text{ s.t. } f(\mathbf{x}) = +1, p(\mathbf{x}) \geq 1 - \epsilon$$

- Call this positive one-sided polynomial approximation
- Theorem: Suffices for positive-reliable learning
- One-sided approximate degree can be much lower than approximate degree

One-sided Approximations

Want polynomial p such that

$$\forall \mathbf{x} \text{ s.t. } f(\mathbf{x}) = -1, |f(\mathbf{x}) - p(\mathbf{x})| \le \epsilon$$

and

$$\forall \mathbf{x} \text{ s.t. } f(\mathbf{x}) = +1, p(\mathbf{x}) \geq 1 - \epsilon$$

- Call this positive one-sided polynomial approximation
- Theorem: Suffices for positive-reliable learning
- One-sided approximate degree can be much lower than approximate degree

Introduced recently in [Bun, Thaler 2013], [Sherstov 2014] to prove $\underline{lower\ bounds}$ in complexity theory

Main Result

Theorem

Any class F that has positive one-sided polynomial approximations of degree d and weight W, can be learned by an algorithm with:

- Running time $n^{O(d)}$
- Sample complexity polynomial in n, W, $1/\epsilon$

An analogous result is true for negative reliable learning.

Convex Program:

Find a polynomial p that minimizes, $\sum_{i:y_i=+1} (1-p(\mathbf{x}_i))_+$ (hinge loss)

subject to: $\forall i$ such that $y_i = -1$, $p(x_i) \le -1 + \epsilon$

Main Result

Theorem

Any class F that has positive one-sided polynomial approximations of degree d and weight W, can be learned by an algorithm with:

- Running time $n^{O(d)}$
- Sample complexity polynomial in n, W, $1/\epsilon$

An analogous result is true for negative reliable learning.

Convex Program:

Find a polynomial p that minimizes, $\sum_{i:y_i=+1} (1 - p(\mathbf{x}_i))_+$ (hinge loss)

subject to: $\forall i$ such that $y_i = -1$, $p(x_i) \le -1 + \epsilon$

Proof Sketch

- For positive examples: hinge loss
- Convex loss function (objective)

- For negative examples: (almost) zero-one loss
- Posed as constraints

Proof Sketch

- For positive examples: hinge loss
- Convex loss function (objective)

- For negative examples: (almost) zero-one loss
- Posed as constraints

Proof Sketch

- For positive examples: hinge loss
- Convex loss function (objective)

- For negative examples: (almost) zero-one loss
- Posed as constraints

Existence of one-sided approximating polynomial implies that good solution to the convex program gives a good positive reliable classifier

Consider the class of functions of the form:

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^n w_i x_i\right),$$

where w_i are integers. Let $W = \sum_i |w_i|$ denote the total weight.

Consider the class of functions of the form:

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^n w_i x_i\right),$$

where w_i are integers. Let $W = \sum_i |w_i|$ denote the total weight.

Theorem

The class of threshold functions of weight W has (positive and negative) one-sided approximation degree $\tilde{O}(\sqrt{W})$

June 15, 2014

Consider the class of functions of the form:

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^n w_i x_i\right),$$

where w_i are integers. Let $W = \sum_i |w_i|$ denote the total weight.

Theorem

The class of threshold functions of weight W has (positive and negative) one-sided approximation degree $\tilde{O}(\sqrt{W})$

- Proof using Chebychev polynomials
- Majority has (pointwise) approximate-degree $\Omega(n)$.
- Majorities can be positive, negative and fully reliably learned in time $2^{\tilde{O}(\sqrt{n})}$
- Current best known algorithm for agnostic learning majority has running time 2^{O(n)}

Consider the class of functions of the form:

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^n w_i x_i\right),\,$$

where w_i are integers. Let $W = \sum_i |w_i|$ denote the total weight.

Theorem

The class of threshold functions of weight W has (positive and negative) one-sided approximation degree $\tilde{O}(\sqrt{W})$

- Proof using Chebychev polynomials
- Majority has (pointwise) approximate-degree $\Omega(n)$.
- Majorities can be positive, negative and fully reliably learned in time $2^{\tilde{O}(\sqrt{n})}$
- Current best known algorithm for agnostic learning majority has running time 2^{O(n)}

Consider the class of functions of the form:

$$f(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^n w_i x_i\right),$$

where w_i are integers. Let $W = \sum_i |w_i|$ denote the total weight.

Theorem

The class of threshold functions of weight W has (positive and negative) one-sided approximation degree $\tilde{O}(\sqrt{W})$

- Proof using Chebychev polynomials
- Majority has (pointwise) approximate-degree $\Omega(n)$.
- Majorities can be positive, negative and fully reliably learned in time $2^{\tilde{O}(\sqrt{n})}$
- Current best known algorithm for agnostic learning majority has running time $2^{O(n)}$.

June 15, 2014

One-sided approximations: Composition Results

Theorem

Let F be a class of functions that has positive one-sided polynomial approximations of degree d and weight W, then if

$$g = f_1 \vee f_2 \vee \cdots \vee f_m$$

g has positive one-sided polynomial approximation of degree d and weight mW

- Thus, disjunctions of majority are positive reliably learnable
- Analogously, conjunctions of majority are negative reliably learnable
- Weight vs degree tradeoff in (one-sided) polynomial approximation results in sample complexity vs running time tradeoff

One-sided approximations: Composition Results

Theorem

Let F be a class of functions that has positive one-sided polynomial approximations of degree d and weight W, then if

$$g = f_1 \vee f_2 \vee \cdots \vee f_m$$

g has positive one-sided polynomial approximation of degree d and weight mW

- Thus, disjunctions of majority are positive reliably learnable
- Analogously, conjunctions of majority are negative reliably learnable
- Weight vs degree tradeoff in (one-sided) polynomial approximation results in sample complexity vs running time tradeoff

<ロ > < 部 > < き > くき > くき > き の < や

Outline

- Introduction
- Framework
 - Agnostic Learning Framework
 - Positive Reliable Learning
 - Fully Reliable Learning
- Main Results
 - Polynomial Approximations
 - Learning Results
 - One-sided Approximations
- Conclusion

Conclusion

Polynomial approximations play a fundamental role in learning!

- Algorithmic application of <u>one-sided polynomial approximations</u>
- Previously only used for lower-bounds in complexity theory
- Evidence that (fully) reliable learning easier than agnostic learning

Open Questions

- What can be said about one-sided degree of thresholds with larger weight?
 - For halfspaces with weight $2^{\Omega(n)}$, one-sided approximate degree is $\Omega(n)$.
- Other applications of one-sided polynomial approximations?

Thank you!

