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Problem Formulation: (g, h)-Sparse Regression

Given: An m× p Boolean matrix B and a positive integer k
such that there is a real p-dimensional vector x∗, ‖x∗‖0 ≤ k,
such that Bx∗ = 1.
Goal: Output a p-dimensional vector x with ‖x‖0 ≤ k · g(p)
such that ‖Bx− 1‖2 ≤ h(m, p).
This problem and its noisy variants are central to model
design in statistics.
Sparse solutions are simple, and generalize well.



An Inefficient Algorithm for (1, 0)-Sparse Regression

For every k-sparse vector x, check if Bx = 1.
Runs in time nO(k).
Algorithm does not “cheat” on the sparsity nor the
accuracy of the solution.

There are many efficient algorithms (e.g. LASSO) that
“cheat” only on the accuracy. There are other efficient
algorithms that cheat only on the sparsity.
But all known algorithms may cheat a whole lot if B is
ill-conditioned.
Main Result of this work: Based on a standard complexity
assumption, there is no efficient algorithm that works for
general matrices, not even if it is allowed to cheat (a lot) on
both the sparsity and accuracy.
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Precise Statement of Hardness Result

Informal Statement: There is no efficient algorithm for
(g, h)-Sparse Regression, even for if g grows “nearly
polynomially quickly” with p, and even if h grows
polynomially quickly in p and nearly linearly in m.

Formal Statement: Assume NP 6⊆ BPTIME(npolylog(n)).
Then for any positive constants δ,C1,C2, there exist a g(p)

in 2Ω(lg1−δ(p)) and an h(m, p) in Ω
(
pC1 · m1−C2

)
such that

there is no quasipolynomial-time randomized algorithm for
(g, h)-SPARSE REGRESSION.
Assuming a reasonable conjecture about PCPs, the
problem is hard even for some g(p) ∈ pΩ(1).
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Prior Hardness Results

Natarajan [1995] and Davis et al. [1997] showed roughly
that (1, 0)-Sparse Regression is NP-Hard.

“Hardness if algorithm cannot cheat on sparsity or
accuracy.”

Arora et al. [1997] and Amaldi and Kahn [1998] showed
that there is no polynomial time algorithm for
(2log1−δ

(p), 1)-Sparse Regression, assuming that
NP 6⊆ DTIME(npolylog(n)).

“Hardness if algorithm cannot cheat on accuracy.”
Zhang et al. [2014] showed, roughly, that LASSO’s
accuracy guarantees in the noisy setting are optimal
among all polynomial time algorithms that do not cheat on
the sparsity, assuming NP 6⊆ P/poly.

“Hardness if algorithm cannot cheat on sparsity.”
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Proof Sketch of Toy Result

Claim: Any polynomial-time algorithm for (g(p), 1)-SPARSE

REGRESSION implies an nO(log log n)-time algorithm for SAT,
where g(p) = (1− δ) ln p.

Proof: Feige gives a reduction from SAT, running in time
nO(log log n) on SAT instances of size n, to SET COVER, in
which the resulting incidence matrix B (whose rows are
elements and columns are sets) has the following
properties. There is a (known) k such that:

If a formula φ ∈ SAT, then there is a collection of k disjoint
sets which covers the universe, i.e., Bx = 1 for some
k-sparse x.
if φ 6∈ SAT, then no collection of at most k · [(1− δ) ln p] sets
covers the universe. i.e., Bx has at least one entry equal to
0 for any‖x‖0 ≤ k · [(1− δ) ln p]. Hence, ‖Bx− 1‖2 ≥ 1.
Any algorithm for (g(p), 1)-Sparse regression can
distinguish these two cases.
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