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Data Streaming Model

® Stream: m elements from universe of size N
o e.g, <X, %, ..., %> = 3,5,3,7,548,7,54,8,6,3,2, ...

® Goal: Compute a function of stream, e.g., number of distinct

clements, frequency moments, heavy hitters.

® Challenge:
(i) Limited working memory, i.e., polylog(m,N).
(ii) Sequential access to adversarially ordered data.

(iii) Process each update quickly.
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® Ina graph stream, elements are edges in a graph G on n nodes.

® Goal: Compute properties of G, e.g,, Is it connected? Approximately how many
triangles does it have? What is its maximum weight matching?
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Graph Streams

® Ina graph stream, elements are edges in a graph G on n nodes.

® Goal: Compute properties of G, e.g., Is it connected? Approximately how many
triangles does it have? What is its maximum weight matching?

® Bad news: many graph problems cannot be solved (or even approximated) by a
streaming algorithm in o(n’) space.
® Example: distinguishing graphs with 0 triangles from those with 1 triangle.

® A bright spot: some simple properties can be solved in O(n*polylog(n)) space.

® Examples: bipartiteness, connectivity
® These are called semi-streaming algorithms.




Outsourcing

® Many applications require outsourcing computation to
untrusted service providers.
Main motivation: commercial cloud computing services.
Also, weak peripheral devices; fast but faulty co-processors.

Volunteer Computing (SETI(@home, World Community
Grid, etc.)

* User requires a guarantee that the cloud performed the

computation correctly.




AWS Customer Agreement

WE... MAKE NO REPRESENTATIONS OF ANY
KIND ... THAT THE SERVICE OR THIRD PARTY
CONTENT WILL BE UNINTERRUPTED, ERROR
FREE OR FREE OF HARMFUL COMPONENTS,
ORTHAT ANY CONTENT ... WILL BE SECURE
OR NOT OTHERWISE LOST OR DAMAGED.

amazon
webservices™
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Model of Streaming Verification for This Work
® Chakrabarti et al. [CCM09/CCMT 14] introduced the model of

annotated data streams.

® One message (non-interactive) model: P and V both observe

stream. Afterward, P sendsV an email with the answer, and a
proof attached.
® Think ofV’s streaming pass over the input as occurring while V is

uploading data to the cloud.
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< Question

Answer + Proof >

Data




Annotated Data Streams

® Prover P and Verifier V observe a stream.

® P solves problem, tellsV the answer.

op appends a proof that the answer is
correct.

® Requirements:

1. Completeness: an honest P can convince
V to accept.

® 2. Soundness: V will catch a lying P with
high probability (secure even if P is
computationally unbounded).




Costs of Annotated Data Streams

® Two main costs: proof length, and V’s working memory. Both

must be sublinear in input size.




Costs of Annotated Data Streams

® Two main costs: proof length, and V’s working memory. Both
must be sublinear in input size.

® Notation: an (h,v)-protocol is one with proof length O(h) and

memory cost O(v) for V.
* The total cost of the protocol is h+v.

® For graph problems on n nodes, refer to a protocol of total cost
O(n*polylog(n)) as a semi-streaming scheme.

e Other costs: running time of both P and V.




Another Model of Streaming Verification

® Cormode et al. [CTY12] introduced more general model called
streaming interactive proofs (SIPs) that allows multiple
rounds of interaction between P and V.

® Annotated data streams correspond to 1-message SIPs.




Comparison of Two Models

® Pros of multi-round model:
1. Exponentially reduces space and communication cost. Often
(polylog n, polylog n).
® Cons of multi-round model:
1. P must do significant computation after each message.

2. More coordination needed; network latency might be an issue.

® Pros of single—message model:

1. Space and communication still reasonable.
2. P can do all computation at once, just send an email with proot attached.
3. Reusability: can run the protocol on a stream, then receive more stream

updates and seamlessly run the protocol on the updated stream.
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History of Annotated Data Streams and SIPs

e [CCMO9, CTY12,KP13, GR13,CTY12, PSTY13,
CCMTV14,KP14, DTV15, ADDRV16] all study variants

of these models.

* [CMT12] gave efficient implementations of protocols
from [CCMO09, CMT10] (and from the literature on

“classical” interactive prootfs).




Our Results

® Part 1: We give semi-streaming schemes for exactly solving
two graph problems in dynamic graphs streams that require
(n®) space in the standard streaming model.
* Counting triangles.
® Maximum cardinality matching.

® These protocols are provably Optimal.
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Our Results

® Part 1: We give semi-streaming schemes for exactly solving
two graph problems in dynamic graphs streams that require
(n®) space in the standard streaming model.
* Counting triangles.
® Maximum cardinality matching,
® These protocols are provably optimal.
® Only known semi-streaming schemes were for bipartite perfect
matching, and shortest s-t path in graphs of polylogarithmic
diameter [CMT10, CCM09/CCMT14].
® Part 2: We show two graph problems that are just as
hard in the annotated data streaming model.
® Connectivity and bipartiteness.
® Caveat: the result holds in the “XOR edge update” model.




Semi-Streaming Schemes for

Counting Triangles
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Summary of Annotated Data Streaming

Protocols for Counting Triangles

Reference (Proof Length, Space Cost) Total Cost Achieved
[CCMT14] (n?, 1) O(n?)
[CCMT14] (h, v): for any h'v = n’ O(n3/?)

This work (n, n) O(n)

* [CCMT14] proved a lower bound that any (h, v) protocol must satisfy h-v > n’.

* Question of whether there is semi-streaming scheme for the problem is Question
#47 on sublinear.info (posed by Cormode at Bertinoro 2011).

* Interesting properties of our solution:

* V’s final state depends on the order of the stream.

* Our approach does not allow smooth tradeotfs of proof length and space cost.




Outline of the Exposition

1. Sum-Check Protocol of [LFKN90]

(a) Simple, non-interactive variant

(b) Full Interactive Sum-Check Protocol
2. Low-Degree Extensions
3. A Simple, Interactive Protocol for Counting Triangles, via (b)
4. The Annotated Data Streaming Protocol, via (a).
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* Let F be a finite field of (prime) size at least n°.

® Associate elements of Fwith integers in the natural way.
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2. For arandomly chosen point r EF,V can evaluate g(r) using
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Sum-Check Protocol [LFKN9O], Simplified

* Let F be a finite field of (prime) size at least n’.
® Associate elements of Fwith integers in the natural way.

® Claim: Suppose we identity a univariate polynomial g (that

depends on the input stream) over F such that

1. The number of triangles in the graph equals > g,

be[n]
2. For arandomly chosen point r EF,V can evaluate g(r) using

space v with a single streaming pass over the stream.
Then there is a(deg(g),v)—protocol for counting triangles.

® Proof: P sends a polynomial s (specitied by its coefficients)
claimed to equal .V checks if s(r) = g(r) and if so outputs E s(b).

be[n]

® Completeness is obvious. Soundness error is at most deg(g)/ | FI.




Sum-Check Protocol [LFKN9O]

* Suppose the input specifies a d-variate polynomial g
over field F.

® Goal: compute the quantity:

E E E g(b,,....b)

bi€ln]b,E[n] by, n]

® (osts:
® d rounds of interaction.

® Total communication is O(d -deg(g)).

® Space cost forV is the space to evaluate g at a random point.




Low-Degree Extensions

® Define E:[n]x[n]— {0,1} by:
E(u,v)=11f edge (u,v) appears in G.

E(u,v) =0 otherwise.

o Let Fbe afield, and let £(u,v) denote the bivariate

polynomial over F of degree n in each variable that
agrees with E at all inputs in [n]x[n].

® Fact: For any point (r,,r,) € F*, V can evaluate E (,,71,)
in constant space with a single streaming pass over the

input.




E :[n]x[n]—{0,1}
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A Simple Interactive Protocol for
Counting Triangles

® The number of triangles in G equals

S5 Y Ewv)Ew.)-Ews).

ucs|n|veln]z€[n]

® Geta 3-round (n, 1)-protocol by applylng sum-check to the
trivariate polynomial g(X,Y,Z) = EX.,Y)- E(Y Z)- E(X 7).




A Simple Interactive Protocol for
Counting Triangles

® The number of triangles in G equals

S5 Y Ewn)Ew)-Ews).

us[nlven] z&nj

® Geta 3-round (n, 1)-protocol by applylng sum-check to the
trivariate polynomial g(X,Y,Z) = EX.,Y)- E(Y Z)- E(X 7).

® Can get a 2-round (n, n)-protocol by applying sum-check to the

bivariate polynomial ¢'(X.Y)= E(X.Y)- ¥ E(Y,2)-E(X.2).

z€[n]

® V can evaluate g' at a random point (7, (r,,r ) € F’in space O(n) by
computing E( 1), as well as E(rl,z) and E(rz,z) for allz € [n].

/
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The Annotated Data Streaming Protocol: Outline

* To get a semi-streaming scheme, we need to write the number of

triangles in the graph as Y &® for a univariate polynomial g of

bE[n]

degree O(n)thatV can evaluate at any point in O(n) space.
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The Annotated Data Streaming Protocol: Outline

To get a semi-streaming scheme, we need to write the number of
triangles in the graph as Y &® for a univariate polynomial g of
bE[n]
degree O(n) thatV can evaluate at any point in O(7) space.
Key idea: g will itselt be a sum of polynomials g;, one for each
stream update.
E g,(z) will count the number of triangles completed at time i.
z&[n]
Hence, the total number of triangles will be
E( > g,-<z>) > (}j&(z)) = > 2.
i=sm \ zE€[n] zE[n] \i=sm zE€[ n]

Need to ensure each g; has degree O(n) and that for any r and

all i,V can evaluate g, (r)in O(n) space.

/
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The Annotated Data Streaming Protocol: Details

* Define E; :[n]x[n] —{0,1} by:
E.(u,v)=11f edge (u,v) appears in G after i stream updates.

E.(u,v) =0 otherwise.

® If thei'th stream update is edge (u,,v,), define
8(2)=Eu,2) E(v,.2).




-

™~

The Annotated Data Streaming Protocol: Details

* Define E; :[n]x[n] —{0,1} by:
E.(u,v)=11f edge (u,v) appears in G after i stream updates.
E.(u,v) =0 otherwise.

® If thei'th stream update is edge (u,,v,), define
8(2)=Eu,2) E(v,.2).
® Observe:

® 2.is a univariate polynomial of degree at most 2n.
o E g.(z)is the number of triangles completed by (,,v,) at time {,
z2€[n]
® V can evaluate g;(r) = El.(ui,r) : El.(vl.,r) by maintaining
E.(u,r) for all u €[n] at all times 1.

® Hence,V can also evaluate g(r) = E g:(r) in O(n) space.

i=m /




Semi-Streaming Scheme for

Maximum Cardinality Matching




e

Summary of Annotated Data Streaming
Protocols for Maximum Cardinality Matching
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Reference | (Proof Length, Space Cost)

Total Cost Achieved

[CMT10] (m, 1)

O(m)

This work (n, n)

O)

* [CCMT14] proved a lower bound that any (h, v) protocol must satisfy h*v > n’

(even in the bipartite case).




Lower Bounds for Connectivity and

Bipartiteness




Overview of Lower Bound and Proof

® Claim: In the XOR update model, any annotated data streaming
protocol for Connectivity and Bipartiteness must have total cost
Q2 (n). These problems are solvable in O(n*polylog(n)) space

without a prover.
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protocol for Connectivity and Bipartiteness must have total cost
(2 (n). These problems are solvable in O(n*polylog(n)) space
without a prover.
® Proof sketch:
® Known fact: any annotated data streaming protocol for the INDEX
problem on N bits must have total cost Q (N'/?) (this is tight).
®  We reduce INDEX on n” bits to Connectivity on graphs with n nodes.
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Overview of Lower Bound and Proof

® Claim: In the XOR update model, any annotated data streaming
protocol for Connectivity and Bipartiteness must have total cost
(2 (n). These problems are solvable in O(n*polylog(n)) space

without a prover.

® Proof sketch:
* Known fact: any annotated data streaming protocol for the INDEX
problem on N bits must have total cost Q (N'/?) (this is tight).
®  We reduce INDEX on n” bits to Connectivity on graphs with n nodes.
® Reduction is tailored to the annotated data streaming model: P
helps V perform the reduction.

e Thisis necessary.

Connectivity on n nodes is easier than INDEX on n? bits in the standard

streaming model, but they’re equally hard in annotated data streaming model.

/




Open Questions




Open Questions

* Exhibit any graph problem that cannot be solved by a semi-

streaming scheme.

* Do there exist non-trivial (i.e., o(n?) total cost) annotated data
streaming protocols for any of the following?
®  Shortest s-t path in general graphs
®  Graph diameter

®  Computing the value of a maximum flow.
® Do there exist annotated data streaming protocols of o(n) total cost

for Connectivity or Bipartiteness in the insert—only update model?

The strict turnstile update model?

o Isit possible to give an annotated data streaming protocols for

Counting Triangles of space cost o(n) and help cost o(n?)?
g g p (n) p (n°)




Thank you!




