
Justin Thaler, Yahoo Labs

Semi-Streaming Algorithms for
Annotated Graph Streams

Data Streaming Model
�  Stream: m elements from universe of size N

�  e.g., <x1, x2, ... , xm> = 3,5,3,7,5,4,8,7,5,4,8,6,3,2, …

�  Goal: Compute a function of stream, e.g., number of distinct
elements, frequency moments, heavy hitters.

�  Challenge:

 (i) Limited working memory, i.e., polylog(m,N).
 (ii) Sequential access to adversarially ordered data.
 (iii) Process each update quickly.

Graph Streams
�  In a graph stream, elements are edges in a graph G on n nodes.

�  Goal: Compute properties of G, e.g., Is it connected? Approximately how many
triangles does it have? What is its maximum weight matching?

Bad news: many graph problems cannot be solved (or even approximated) by a
streaming algorithm in o(n2) space.

Example: distinguishing graphs with 0 triangles from those with 1 triangle.

A bright spot: some simple properties can be solved in O(n*polylog(n)) space.
Examples: bipartiteness, connectivity
These are called semi-streaming algorithms.

Graph Streams
�  In a graph stream, elements are edges in a graph G on n nodes.

�  Goal: Compute properties of G, e.g., Is it connected? Approximately how many
triangles does it have? What is its maximum weight matching?

�  Bad news: many graph problems cannot be solved (or even approximated) by a
streaming algorithm in o(n2) space.
�  Example: distinguishing graphs with 0 triangles from those with 1 triangle.

A bright spot: some simple properties can be solved in O(n*polylog(n)) space.
xamples: bipartiteness, connectivity
These are called semi-streaming algorithms.

Graph Streams
�  In a graph stream, elements are edges in a graph G on n nodes.

�  Goal: Compute properties of G, e.g., Is it connected? Approximately how many
triangles does it have? What is its maximum weight matching?

�  Bad news: many graph problems cannot be solved (or even approximated) by a
streaming algorithm in o(n2) space.
�  Example: distinguishing graphs with 0 triangles from those with 1 triangle.

�  A bright spot: some simple properties can be solved in O(n*polylog(n)) space.
�  Examples: bipartiteness, connectivity
� These are called semi-streaming algorithms.

Outsourcing
�  Many applications require outsourcing computation to

untrusted service providers.
� Main motivation: commercial cloud computing services.
� Also, weak peripheral devices; fast but faulty co-processors.
� Volunteer Computing (SETI@home,World Community

Grid, etc.)

�  User requires a guarantee that the cloud performed the
computation correctly.

AWS Customer Agreement
WE… MAKE NO REPRESENTATIONS OF ANY
KIND … THAT THE SERVICE OR THIRD PARTY
CONTENT WILL BE UNINTERRUPTED, ERROR
FREE OR FREE OF HARMFUL COMPONENTS,
OR THAT ANY CONTENT … WILL BE SECURE
OR NOT OTHERWISE LOST OR DAMAGED.

Model of Streaming Verification for This Work
�  Chakrabarti et al. [CCM09/CCMT14] introduced the model of

annotated data streams.
�  One message (non-interactive) model: P and V both observe

stream. Afterward, P sends V an email with the answer, and a
proof attached.

�  Think of V’s streaming pass over the input as occurring while V is
uploading data to the cloud.

Our model: Allow multiple rounds of interaction, i.e. P and V have
a conversation after both observe stream.

Cloud	 Provider	 Business/Agency/Scien5st	

Annotated	 Data	 Streams	

Cloud	 Provider	 Business/Agency/Scien5st	

Data	

Annotated	 Data	 Streams	

Cloud	 Provider	 Business/Agency/Scien5st	

Data	

Summary	

Annotated	 Data	 Streams	

Cloud	 Provider	 Business/Agency/Scien5st	

Ques5on	

Data	

Summary	

Annotated	 Data	 Streams	

Cloud	 Provider	 Business/Agency/Scien5st	

Ques5on	

Data	

Answer	 +	 Proof	
Summary	

Annotated	 Data	 Streams	

Cloud	 Provider	 Business/Agency/Scien5st	

Data	

Accept	 	
or	

Reject	

Ques5on	

Answer	 +	 Proof	

Annotated	 Data	 Streams	

Annotated Data Streams
�  Prover P and Verifier V observe a stream.

�  P solves problem, tells V the answer.
� P appends a proof that the answer is

correct.

�  Requirements:
� 1. Completeness: an honest P can convince

V to accept.
� 2. Soundness: V will catch a lying P with

high probability (secure even if P is
computationally unbounded).

Costs of Annotated Data Streams
�  Two main costs: proof length, and V’s working memory. Both

must be sublinear in input size.
Notation: an (h,v)-protocol is one with proof length O(h) and
memory cost O(v) for V.
he total cost of the protocol is h+v.
or graph problems on n nodes, refer to a protocol of total cost
O(n*polylog(n)) as a semi-streaming scheme.

ther costs: running time of both P and V.

Costs of Annotated Data Streams
�  Two main costs: proof length, and V’s working memory. Both

must be sublinear in input size.
� Notation: an (h,v)-protocol is one with proof length O(h) and

memory cost O(v) for V.
� The total cost of the protocol is h+v.
�  For graph problems on n nodes, refer to a protocol of total cost

O(n*polylog(n)) as a semi-streaming scheme.

�  Other costs: running time of both P and V.

Another Model of Streaming Verification
�  Cormode et al. [CTY12] introduced more general model called

streaming interactive proofs (SIPs) that allows multiple
rounds of interaction between P and V.
� Annotated data streams correspond to 1-message SIPs.

Comparison of Two Models
�  Pros of multi-round model:

1.  Exponentially reduces space and communication cost. Often
 (polylog n, polylog n).

�  Cons of multi-round model:
1.  P must do significant computation after each message.
2.  More coordination needed; network latency might be an issue.

�  Pros of single-message model:
1.  Space and communication still reasonable.
2.  P can do all computation at once, just send an email with proof attached.
3.  Reusability: can run the protocol on a stream, then receive more stream

updates and seamlessly run the protocol on the updated stream.

History of Annotated Data Streams and SIPs
�  [CCM09, CTY12, KP13, GR13, CTY12, PSTY13,

CCMTV14, KP14, DTV15, ADDRV16] all study variants
of these models.

�  [CMT12] gave efficient implementations of protocols
from [CCM09, CMT10] (and from the literature on
“classical” interactive proofs).

Our Results
�  Part 1: We give semi-streaming schemes for exactly solving

two graph problems in dynamic graphs streams that require
Ω(n2) space in the standard streaming model.
� Counting triangles.
� Maximum cardinality matching.
� These protocols are provably optimal.
Only known semi-streaming schemes were for bipartite perfect
matching, and shortest s-t path in graphs of polylogarithmic
diameter [CMT10, CCM09/CCMT14].

Part 2: We show two graph problems that are just as hard
in the annotated data streaming model.

Connectivity and bipartiteness.
aveat: the result holds in the “XOR edge update” model.

Our Results
�  Part 1: We give semi-streaming schemes for exactly solving

two graph problems in dynamic graphs streams that require
Ω(n2) space in the standard streaming model.
� Counting triangles.
� Maximum cardinality matching.
� These protocols are provably optimal.
� Only known semi-streaming schemes were for bipartite perfect

matching, and shortest s-t path in graphs of polylogarithmic
diameter [CMT10, CCM09/CCMT14].

Part 2: We show two graph problems that are just as hard
in the annotated data streaming model.

Connectivity and bipartiteness.
Caveat: the result holds in the “XOR edge update” model.

Our Results
�  Part 1: We give semi-streaming schemes for exactly solving

two graph problems in dynamic graphs streams that require
Ω(n2) space in the standard streaming model.
� Counting triangles.
� Maximum cardinality matching.
� These protocols are provably optimal.
� Only known semi-streaming schemes were for bipartite perfect

matching, and shortest s-t path in graphs of polylogarithmic
diameter [CMT10, CCM09/CCMT14].

�  Part 2: We show two graph problems that are just as
hard in the annotated data streaming model.
� Connectivity and bipartiteness.
� Caveat: the result holds in the “XOR edge update” model.

Semi-Streaming Schemes for
Counting Triangles

Reference (Proof Length, Space Cost) Total Cost Achieved

[CCMT14] (n2, 1) O(n2)

[CCMT14] (h, v): for any h v = n3

O(n3/2)

This work (n, n) O(n)

Summary of Annotated Data Streaming
Protocols for Counting Triangles

•  [CCMT14] proved a lower bound that any (h, v) protocol must satisfy h v > n2.
•  Question of whether there is semi-streaming scheme for the problem is Question

#47 on sublinear.info (posed by Cormode at Bertinoro 2011).
•  Interesting properties of our solution:

• V’s final state depends on the order of the stream.
• Our approach does not allow smooth tradeoffs of proof length and space cost.

⋅

⋅

Outline of the Exposition
1.  Sum-Check Protocol of [LFKN90]

 (a) Simple, non-interactive variant
 (b) Full Interactive Sum-Check Protocol

2.  Low-Degree Extensions
3.  A Simple, Interactive Protocol for Counting Triangles, via (b)
4.  The Annotated Data Streaming Protocol, via (a). we identify a

polynomial g (that depends on the input stream) over such
that

There is a set F such that the number of triangles in the
graph equals
For a randomly chosen point r in F, V can evaluate g(r) using
space v with a single streaming pass over the stream.

 Then there is a (deg(g), v) protocol for counting triangles.
Proof: P sends a polynomial (specified by its coefficients) claimed
to equal g. V checks if and if so outputs
Completeness is obvious. Soundness error is at most

Sum-Check Protocol [LFKN90], Simplified
�  Let be a finite field of (prime) size at least n3.
�  Associate elements of with integers in the natural way.

laim: Suppose we identify a polynomial g (that depends on the
input stream) over such that

There is a set F such that the number of triangles in the
graph equals
For a randomly chosen point r in F, V can evaluate g(r) using
space v with a single streaming pass over the stream.

 Then there is a (deg(g), v) protocol for counting triangles.
Proof: P sends a polynomial (specified by its coefficients) claimed
to equal g. V checks if and if so outputs
Completeness is obvious. Soundness error is at most

F
F

Sum-Check Protocol [LFKN90], Simplified
�  Let be a finite field of (prime) size at least n3.
�  Associate elements of with integers in the natural way.

�  Claim: Suppose we identify a univariate polynomial g (that
depends on the input stream) over such that
1.  The number of triangles in the graph equals
2.  For a randomly chosen point r in F, V can evaluate g(r) using

space v with a single streaming pass over the stream.
 Then there is a (deg(g), v) protocol for counting triangles.
Proof: P sends a polynomial (specified by its coefficients) claimed
to equal g. V checks if and if so outputs
Completeness is obvious. Soundness error is at most

g(b)
b∈[n]
∑ .

r ∈ F g(r)

F
F

v
(deg(g),v)−

g
F

Sum-Check Protocol [LFKN90], Simplified
�  Let be a finite field of (prime) size at least n3.
�  Associate elements of with integers in the natural way.

�  Claim: Suppose we identify a univariate polynomial g (that
depends on the input stream) over such that
1.  The number of triangles in the graph equals
2.  For a randomly chosen point r in F, V can evaluate g(r) using

space v with a single streaming pass over the stream.
 Then there is a (deg(g), v) protocol for counting triangles.
�  Proof: P sends a polynomial (specified by its coefficients)

claimed to equal g. V checks if and if so outputs

�  Completeness is obvious. Soundness error is at most

g(b)
b∈[n]
∑ .

r ∈ F g(r)

g

F
F

F

v
(deg(g),v)−

s
s(r) = g(r)g

deg(g)/ |F | .

s(b)
b∈[n]
∑ .

Sum-Check Protocol [LFKN90]
�  Suppose the input specifies a d-variate polynomial g

over field F.
�  Goal: compute the quantity:

�  Costs:
�  d rounds of interaction.
�  Total communication is O(d*deg(g)).
�  Space cost for V is the space to evaluate at a random point.

... g(b1,...,bd)
bd∈[n]
∑

b2∈[n]
∑

b1∈[n]
∑

O(d ⋅deg(g)).
g

Low-Degree Extensions
�  Define E:[n] x [n] à {0, by:

 E(u, v)=1 if edge (u, v) appears in G
 E(u, v)=0 otherwise.

�  Let F be a field, and let denote the bivariate
polynomial over F of degree n in each variable that
agrees with E at all inputs in [n] x [n.

�  Fact: For any point (r1, r2) in V can evaluate E(r1, r2)
in constant space with a single streaming pass over the
input.

E :[n]×[n]→ {0,1}
E(u,v) =1 if edge (u,v) appears in G.

E(u,v) = 0 otherwise.

E(u,v)~

E [n]×[n]

(r1, r2)∈ F
2, E(r1, r2)

~

0 1

1 1

E :[n]×[n]→ {0,1}

0 1

1 1

E :F2 → F~

2 3

1 1

2 1

3 1

0 -1

-1 -3

4 1

5 1

-2 -5

-3 -7

4 5

1 1

-2 -3

-5 -7

-8 -11

-11 -15

E :F2 → F~

0 1

1 1

2 3

1 1

2 1

3 1

0 -1

-1 -3

4 1

5 1

-2 -5

-3 -7

4 5

1 1

-2 -3

-5 -7

-8 -11

-11 -15

A Simple Interactive Protocol for
Counting Triangles
�  The number of triangles in G equals

�  Get a 3-round (n, 1)-protocol by applying sum-check to the

trivariate polynomial
Can get a 2-round (n, n)-protocol by applying sum-check to the
bivariate polynomial

 can evaluate g’ at a random point (r1, r2) in space O(n) by
computing E(r1, r , as well as E(r1, i) and E(r2, i) for all i in [n].

E(u,v) ⋅
z∈[n]
∑

v∈[n]
∑

u∈[n]
∑ E(v, z) ⋅E(u, z).

g(X,Y,Z) = E(X,Y) ⋅E(Y,Z) ⋅E(X,Z).~ ~ ~

~ ~ ~

A Simple Interactive Protocol for
Counting Triangles
�  The number of triangles in G equals

�  Get a 3-round (n, 1)-protocol by applying sum-check to the

trivariate polynomial
�  Can get a 2-round (n, n)-protocol by applying sum-check to the

bivariate polynomial

� V can evaluate g’ at a random point (r1, r2) in space O(n) by
computing E(r1, r , as well as E(r1, I and E(r2, i) for all i in [n].

E(u,v) ⋅
z∈[n]
∑

v∈[n]
∑

u∈[n]
∑ E(v, z) ⋅E(u, z).

~ ~ ~

g '(X,Y) = E(X,Y) ⋅
z∈[n]
∑ E(Y, z) ⋅E(X, z).

g ' (r1, r2)∈ F
2

~ ~ ~

E(r1, r2) E(r1, z) E(r2, z) z ∈ [n]~ ~ ~

g(X,Y,Z) = E(X,Y) ⋅E(Y,Z) ⋅E(X,Z).~ ~ ~

The Annotated Data Streaming Protocol: Outline
�  To get a semi-streaming scheme, we need to write the number of

triangles in the graph as for a univariate polynomial of
degree that V can evaluate at any point in O(n)space.

Key idea: g will itself be a sum of polynomials gi, one for each
stream update.
gi will count the number of triangles completed at time i

Hence, the total number of triangles will be need to ensure each
has degree and that for any and all , V can evaluate in
O(n) space.

g(b)
b∈[n]
∑

O(n)
g

O(n)

�  To get a semi-streaming scheme, we need to write the number of
triangles in the graph as for a univariate polynomial of
degree that V can evaluate at any point in O(n)space.

�  Key idea: g will itself be a sum of polynomials gi, one for each
stream update.

�  gi will count the number of triangles completed at time i

�  Hence, the total number of triangles will be

�  Need to ensure each has degree and that for any and
all , V can evaluate in O(n) space.

g gi

gi (z)
z∈[n]
∑ i.

gi (z)
z∈[n]
∑

#

$
%%

&

'
((

i≤m
∑ = gi (z)

i≤m
∑
#

$
%

&

'
(

z∈[n]
∑ = g(z)

z∈[n]
∑ .

gi O(n) r
gi (r)i O(n)

The Annotated Data Streaming Protocol: Outline

g(b)
b∈[n]
∑

O(n)
g

O(n)

�  Define E:[n] x [n] à {0, by:
 E(u, v)=1 if edge (u, v) appears in G
 E(u, v)=0 otherwise.

�  If the stream update is edge , define

Ei :[n]×[n]→ {0,1}
Ei (u,v) =1 if edge (u,v) appears in G after i stream updates.
Ei (u,v) = 0 otherwise.

gi (Z) = Ei (ui,Z) ⋅Ei (vi,Z).
i ' th (ui,vi)~ ~

The Annotated Data Streaming Protocol: Details

�  Define E:[n] x [n] à {0, by:
 E(u, v)=1 if edge (u, v) appears in G
 E(u, v)=0 otherwise.

�  If the stream update is edge , define

�  Observe:
�  is a univariate polynomial of degree at most 2n.
�  is the number of triangles completed by at time

�  V can evaluate gi(r) by maintaining
 at all times

�  Hence, V can also evaluate in space.

Ei :[n]×[n]→ {0,1}
Ei (u,v) =1 if edge (u,v) appears in G after i stream updates.
Ei (u,v) = 0 otherwise.

gi (Z) = Ei (ui,Z) ⋅Ei (vi,Z).
i ' th (ui,vi)~ ~

The Annotated Data Streaming Protocol: Details

gi
gi (z)

z∈[n]
∑ (ui,vi) i.

Ei (u, r) for all u∈ [n] i.
g(r) = gi (r)

i≤m
∑ O(n)

~
gi (r) = Ei (ui, r) ⋅Ei (vi, r)

~ ~

Semi-Streaming Scheme for
Maximum Cardinality Matching

Reference (Proof Length, Space Cost) Total Cost Achieved

[CMT10] (m, 1) O(m)

This work (n, n) O(n)

Summary of Annotated Data Streaming
Protocols for Maximum Cardinality Matching

•  [CCMT14] proved a lower bound that any (h, v) protocol must satisfy h*v > n2
(even in the bipartite case).

Lower Bounds for Connectivity and
Bipartiteness

�  Claim: In the XOR update model, any annotated data streaming
protocol for Connectivity and Bipartiteness must have total cost
Ω(n). These problems are solvable in O(n*polylog(n)) space
without a prover.

Proof sketch:
Known fact: any annotated data streaming protocol for the INDEX
problem on N bits must have total cost Ω(N1/2) (this is tight).
We show how to use any annotated data streaming protocol for
connectivity on graphs with n nodes to solve INDEX on n2 bits!
The reduction is tailored to the annotated data streaming model: the
prover helps the verifier perform the reduction.
Such a reduction necessary: even though Connectivity on n nodes is
easier than INDEX on n2 bits in the standard streaming model, but they
are equally hard in the annotated data streaming model.

Overview of Lower Bound and Proof

�  Claim: In the XOR update model, any annotated data streaming
protocol for Connectivity and Bipartiteness must have total cost
Ω(n). These problems are solvable in O(n*polylog(n)) space
without a prover.

�  Proof sketch:
�  Known fact: any annotated data streaming protocol for the INDEX

problem on N bits must have total cost Ω(N1/2) (this is tight).
�  We reduce INDEX on n2 bits to Connectivity on graphs with n nodes.
The reduction is tailored to the annotated data streaming model: the
prover helps the verifier perform the reduction.

Overview of Lower Bound and Proof

�  Claim: In the XOR update model, any annotated data streaming
protocol for Connectivity and Bipartiteness must have total cost
Ω(n). These problems are solvable in O(n*polylog(n)) space
without a prover.

�  Proof sketch:
�  Known fact: any annotated data streaming protocol for the INDEX

problem on N bits must have total cost Ω(N1/2) (this is tight).
�  We reduce INDEX on n2 bits to Connectivity on graphs with n nodes.
�  Reduction is tailored to the annotated data streaming model: P

helps V perform the reduction.
�  This is necessary.

�  Connectivity on n nodes is easier than INDEX on n2 bits in the standard
streaming model, but they’re equally hard in annotated data streaming model.

Overview of Lower Bound and Proof

Open Questions

�  Exhibit any graph problem that cannot be solved by a semi-
streaming scheme.

�  Do there exist non-trivial (i.e., o(n2) total cost) annotated data
streaming protocols for any of the following?

�  Shortest s-t path in general graphs
�  Graph diameter
�  Computing the value of a maximum flow.

�  Do there exist annotated data streaming protocols of o(n) total cost
for Connectivity or Bipartiteness in the insert-only update model?
The strict turnstile update model?

�  Is it possible to give an annotated data streaming protocols for
Counting Triangles of space cost o(n) and help cost o(n2)?

Open Questions

Thank you!

