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Data Streaming Model 
�  Stream: m elements from universe of size N 

�   e.g., <x1, x2, ... , xm> = 3,5,3,7,5,4,8,7,5,4,8,6,3,2, … 

�  Goal: Compute a function of stream, e.g., number of distinct 
elements, frequency moments, heavy hitters.  

 
�  Challenge:  

 (i) Limited working memory, i.e., polylog(m,N). 
 (ii) Sequential access to adversarially ordered data. 
 (iii) Process each update quickly. 

 
  



Graph Streams 
�  In a graph stream, elements are edges in a graph G on n nodes.  

�  Goal: Compute properties of G, e.g., Is it connected? Approximately how many 
triangles does it have? What is its maximum weight matching? 

Bad news: many graph problems cannot be solved (or even approximated) by a 
streaming algorithm in o(n2) space. 

Example: distinguishing graphs with 0 triangles from those with 1 triangle. 

A bright spot: some simple properties can be solved in O(n*polylog(n)) space. 
Examples: bipartiteness, connectivity 
These are called semi-streaming algorithms. 
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Outsourcing 
�  Many applications require outsourcing computation to 

untrusted service providers. 
� Main motivation: commercial cloud computing services. 
� Also, weak peripheral devices; fast but faulty co-processors. 
� Volunteer Computing (SETI@home,World Community 

Grid, etc.) 

�  User requires a guarantee that the cloud performed the 
computation correctly.  



AWS Customer Agreement 
WE… MAKE NO REPRESENTATIONS OF ANY 
KIND … THAT THE SERVICE OR THIRD PARTY 
CONTENT WILL BE UNINTERRUPTED, ERROR 
FREE OR FREE OF HARMFUL COMPONENTS, 
OR THAT ANY CONTENT … WILL BE SECURE 
OR NOT OTHERWISE LOST OR DAMAGED. 



Model of Streaming Verification for This Work 
�  Chakrabarti et al. [CCM09/CCMT14] introduced the model of 

annotated data streams. 
�  One message (non-interactive) model: P and V both observe 

stream. Afterward, P sends V an email with the answer, and a 
proof attached. 

�  Think of V’s streaming pass over the input as occurring while V is 
uploading data to the cloud. 

 

Our model: Allow multiple rounds of interaction, i.e. P and V have 
a conversation after both observe stream.  
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Annotated Data Streams 
�  Prover P and Verifier V observe a stream. 

�  P solves problem, tells V the answer. 
� P appends a proof that the answer is 

correct. 

�  Requirements:  
� 1. Completeness: an honest P can convince 

V to accept. 
� 2. Soundness: V will catch a lying P with 

high probability (secure even if P is 
computationally unbounded). 



Costs of Annotated Data Streams 
�  Two main costs: proof length, and V’s working memory. Both 

must be sublinear in input size. 
Notation: an (h,v)-protocol is one with proof length O(h) and 
memory cost O(v) for V. 
he total cost of the protocol is h+v. 
or graph problems on n nodes, refer to a protocol of total cost 
O(n*polylog(n)) as a semi-streaming scheme. 

ther costs: running time of both P and V.  
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Another Model of Streaming Verification 
�  Cormode et al. [CTY12] introduced more general model called 

streaming interactive proofs (SIPs) that allows multiple 
rounds of interaction between P and V.  
� Annotated data streams correspond to 1-message SIPs. 
 

 
 



Comparison of Two Models 
�  Pros of multi-round model:  

1.  Exponentially reduces space and communication cost. Often  
       (polylog n, polylog n). 

�  Cons of multi-round model:  
1.  P must do significant computation after each message. 
2.  More coordination needed; network latency might be an issue. 

�  Pros of single-message model:  
1.  Space and communication still reasonable.  
2.  P can do all computation at once, just send an email with proof attached. 
3.  Reusability: can run the protocol on a stream, then receive more stream 

updates and seamlessly run the protocol on the updated stream.  

 
 



History of Annotated Data Streams and SIPs 
�   [CCM09, CTY12, KP13, GR13, CTY12, PSTY13, 

CCMTV14, KP14, DTV15, ADDRV16] all study variants 
of these models. 

�  [CMT12] gave efficient implementations of protocols 
from [CCM09, CMT10] (and from the literature on 
“classical” interactive proofs). 

 



Our Results 
�  Part 1: We give semi-streaming schemes for exactly solving 

two graph problems in dynamic graphs streams that require 
Ω(n2) space in the standard streaming model.  
� Counting triangles. 
� Maximum cardinality matching. 
� These protocols are provably optimal. 
Only known semi-streaming schemes were for bipartite perfect 
matching, and shortest s-t path in graphs of polylogarithmic 
diameter [CMT10, CCM09/CCMT14]. 

Part 2: We show two graph problems that are just as hard 
in the annotated data streaming model. 

Connectivity and bipartiteness. 
aveat: the result holds in the “XOR edge update” model. 
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Semi-Streaming Schemes for 
Counting Triangles 



Reference  (Proof Length, Space Cost) Total Cost Achieved 

[CCMT14] (n2, 1) O(n2) 

[CCMT14] (h, v): for any h v = n3 

 
O(n3/2) 

 

This work (n, n) O(n) 

Summary of Annotated Data Streaming 
Protocols for Counting Triangles 

•  [CCMT14] proved a lower bound that any (h, v) protocol must satisfy h v > n2. 
•   Question of whether there is semi-streaming scheme for the problem is Question 

#47 on sublinear.info (posed by Cormode at Bertinoro 2011). 
•  Interesting properties of our solution: 

• V’s final state depends on the order of the stream. 
• Our approach does not allow smooth tradeoffs of proof length and space cost. 

 

⋅

⋅



Outline of the Exposition 
1.  Sum-Check Protocol of [LFKN90] 

      (a)  Simple, non-interactive variant 
      (b) Full Interactive Sum-Check Protocol 

2.  Low-Degree Extensions 
3.  A Simple, Interactive Protocol for Counting Triangles, via (b) 
4.  The Annotated Data Streaming Protocol, via (a). we identify a 

polynomial g (that depends on the input stream) over    such 
that 

There is a set         F such that the number of triangles in the 
graph equals  
For a randomly chosen point r in F, V can evaluate g(r) using 
space v with a single streaming pass over the stream. 

   Then there is a (deg(g), v)  protocol for counting triangles. 
Proof: P sends a polynomial    (specified by its coefficients) claimed 
to equal g. V checks if                   and if so outputs 
Completeness is obvious. Soundness error is at most 



Sum-Check Protocol [LFKN90], Simplified 
�  Let     be a finite field of (prime) size at least n3. 
�  Associate elements of    with integers in the natural way. 

laim: Suppose we identify a polynomial g (that depends on the 
input stream) over    such that 

There is a set         F such that the number of triangles in the 
graph equals  
For a randomly chosen point r in F, V can evaluate g(r) using 
space v with a single streaming pass over the stream. 

   Then there is a (deg(g), v)  protocol for counting triangles. 
Proof: P sends a polynomial    (specified by its coefficients) claimed 
to equal g. V checks if                   and if so outputs 
Completeness is obvious. Soundness error is at most 
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Sum-Check Protocol [LFKN90], Simplified 
�  Let     be a finite field of (prime) size at least n3. 
�  Associate elements of    with integers in the natural way. 
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�  Let     be a finite field of (prime) size at least n3. 
�  Associate elements of    with integers in the natural way. 

�  Claim: Suppose we identify a univariate polynomial g (that 
depends on the input stream) over    such that 
1.  The number of triangles in the graph equals  
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   Then there is a (deg(g), v)  protocol for counting triangles. 
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g(b)
b∈[n]
∑ .

r ∈ F g(r)

g

F
F

F

v
(deg(g),v)−

s
s(r) = g(r)g

deg(g)/ |F | .

s(b)
b∈[n]
∑ .



Sum-Check Protocol [LFKN90] 
�  Suppose the input specifies a d-variate polynomial g 

over field F. 
�  Goal: compute the quantity: 

�  Costs:  
�  d rounds of interaction. 
�  Total communication is O(d*deg(g)). 
�  Space cost for V is the space to evaluate    at a random point. 

 

 

... g(b1,...,bd )
bd∈[n]
∑

b2∈[n]
∑

b1∈[n]
∑

O(d ⋅deg(g)).
g



Low-Degree Extensions 
�  Define E:[n] x [n] à {0, by:  

 E(u, v)=1 if edge (u, v) appears in G 
 E(u, v)=0 otherwise. 

�  Let F be a field, and let           denote the bivariate 
polynomial over F of degree n in each variable that 
agrees with E at all inputs in [n] x [n. 

�  Fact: For any point (r1, r2) in  V can evaluate E(r1, r2) 
in constant space with a single streaming pass over the 
input. 

E :[n]×[n]→ {0,1}
E(u,v) =1 if edge (u,v) appears in G.

E(u,v) = 0 otherwise.

E(u,v)~

E [n]×[n]

(r1, r2 )∈ F
2, E(r1, r2 )

~



0 1 

1 1 

E :[n]×[n]→ {0,1}



0 1 

1 1 

E :F2 → F~

2 3 

1 1 

2 1 

3 1 

0 -1 

-1 -3 

4 1 

5 1 

-2 -5 

-3 -7 

4 5 

1 1 

-2 -3 

-5 -7 

-8 -11 

-11 -15 



E :F2 → F~

0 1 

1 1 

2 3 

1 1 

2 1 

3 1 

0 -1 

-1 -3 

4 1 

5 1 

-2 -5 

-3 -7 

4 5 

1 1 

-2 -3 

-5 -7 

-8 -11 

-11 -15 



A Simple Interactive Protocol for 
Counting Triangles 
�  The number of triangles in G equals  

 
�  Get a 3-round (n, 1)-protocol by applying sum-check to the 

trivariate polynomial  
Can get a 2-round (n, n)-protocol by applying sum-check to the 
bivariate polynomial 

 can evaluate g’  at a random point (r1, r2)       in space O(n) by 
computing E(r1, r , as well as E(r1, i) and E(r2, i) for all i in [n]. 

E(u,v) ⋅
z∈[n]
∑

v∈[n]
∑

u∈[n]
∑ E(v, z) ⋅E(u, z).

g(X,Y,Z ) = E(X,Y ) ⋅E(Y,Z ) ⋅E(X,Z ).~ ~ ~

~ ~ ~
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�  Can get a 2-round (n, n)-protocol by applying sum-check to the 

bivariate polynomial 
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v∈[n]
∑
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~ ~ ~

g '(X,Y ) = E(X,Y ) ⋅
z∈[n]
∑ E(Y, z) ⋅E(X, z).

g ' (r1, r2 )∈ F
2

~ ~ ~

E(r1, r2 ) E(r1, z) E(r2, z) z ∈ [n]~ ~ ~

g(X,Y,Z ) = E(X,Y ) ⋅E(Y,Z ) ⋅E(X,Z ).~ ~ ~



The Annotated Data Streaming Protocol: Outline 
�  To get a semi-streaming scheme, we need to write the number of 

triangles in the graph as           for a univariate polynomial   of 
degree          that V can evaluate at any point in  O(n)space. 

Key idea: g will itself be a sum of polynomials gi, one for each 
stream update. 
gi         will count the number of triangles completed at time i 

Hence, the total number of triangles will be need to ensure each     
has degree           and that for any    and all  , V can evaluate          in 
O(n) space. 

g(b)
b∈[n]
∑

O(n)
g

O(n)
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�  Key idea: g will itself be a sum of polynomials gi, one for each 
stream update. 
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�  Hence, the total number of triangles will be  

�  Need to ensure each     has degree           and that for any    and 
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g gi

gi (z)
z∈[n]
∑ i.

gi (z)
z∈[n]
∑

#

$
%%

&

'
((

i≤m
∑ = gi (z)

i≤m
∑
#

$
%

&

'
(

z∈[n]
∑ = g(z)

z∈[n]
∑ .

gi O(n) r
gi (r)i O(n)

The Annotated Data Streaming Protocol: Outline 
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O(n)
g
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�  Define E:[n] x [n] à {0,     by:  
 E(u, v)=1 if edge (u, v) appears in G 
 E(u, v)=0 otherwise. 

�  If the       stream update is edge           , define    

Ei :[n]×[n]→ {0,1}
Ei (u,v) =1 if edge (u,v) appears in G  after i stream updates.
Ei (u,v) = 0 otherwise.

gi (Z ) = Ei (ui,Z ) ⋅Ei (vi,Z ).
i ' th (ui,vi )~ ~

The Annotated Data Streaming Protocol: Details 



�  Define E:[n] x [n] à {0,     by:  
 E(u, v)=1 if edge (u, v) appears in G 
 E(u, v)=0 otherwise. 

�  If the       stream update is edge           , define    

�  Observe: 
�    is a univariate polynomial of degree at most 2n. 
�             is the number of triangles completed by            at time 

�  V can evaluate                gi(r)                by maintaining 
                                             at all times                   

�  Hence, V can also evaluate                        in           space.   

Ei :[n]×[n]→ {0,1}
Ei (u,v) =1 if edge (u,v) appears in G  after i stream updates.
Ei (u,v) = 0 otherwise.

gi (Z ) = Ei (ui,Z ) ⋅Ei (vi,Z ).
i ' th (ui,vi )~ ~

The Annotated Data Streaming Protocol: Details 

gi
gi (z)

z∈[n]
∑ (ui,vi ) i.

Ei (u, r) for all u∈ [n] i.
g(r) = gi (r)

i≤m
∑ O(n)

~
gi (r) = Ei (ui, r) ⋅Ei (vi, r)

~ ~



Semi-Streaming Scheme for 
Maximum Cardinality Matching 



Reference  (Proof Length, Space Cost) Total Cost Achieved 

[CMT10] (m, 1) O(m) 

This work (n, n) O(n) 

Summary of Annotated Data Streaming 
Protocols for Maximum Cardinality Matching 

•  [CCMT14] proved a lower bound that any (h, v) protocol must satisfy h*v > n2 
(even in the bipartite case). 

 



Lower Bounds for Connectivity and 
Bipartiteness 



�  Claim: In the XOR update model, any annotated data streaming 
protocol for Connectivity and Bipartiteness must have total cost 
Ω(n). These problems are solvable in O(n*polylog(n)) space 
without a prover. 

Proof sketch:  
Known fact: any annotated data streaming protocol for the INDEX 
problem on N bits must have total cost Ω(N1/2) (this is tight). 
We show how to use any annotated data streaming protocol for 
connectivity on graphs with n nodes to solve INDEX on n2 bits! 
The reduction is tailored to the annotated data streaming model: the 
prover helps the verifier perform the reduction. 
Such a reduction necessary: even though Connectivity on n nodes is 
easier than INDEX on n2 bits in the standard streaming model, but they 
are equally hard in the annotated data streaming model.  

Overview of Lower Bound and Proof 
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Open Questions 



�  Exhibit any graph problem that cannot be solved by a semi-
streaming scheme. 

�  Do there exist non-trivial (i.e., o(n2) total cost) annotated data 
streaming protocols for any of the following? 

�  Shortest s-t path in general graphs 
�  Graph diameter 
�  Computing the value of a maximum flow.  

�  Do there exist annotated data streaming protocols of o(n) total cost 
for Connectivity or Bipartiteness in the insert-only update model? 
The strict turnstile update model?  

�   Is it possible to give an annotated data streaming protocols for 
Counting Triangles of space cost o(n) and help cost o(n2)?  

Open Questions 



 
Thank you! 


