Semi-Streaming Algorithms for Annotated Graph Streams

Justin Thaler, Yahoo Labs
Data Streaming Model

• Stream: m elements from universe of size N
 • e.g., \(<x_1, x_2, \ldots, x_m> = 3,5,3,7,5,4,8,7,5,4,8,6,3,2, \ldots\>"

• Goal: Compute a function of stream, e.g., number of distinct elements, frequency moments, heavy hitters.

• Challenge:
 (i) Limited working memory, i.e., polylog(m,N).
 (ii) Sequential access to adversarially ordered data.
 (iii) Process each update quickly.
Graph Streams

- In a graph stream, elements are **edges** in a graph G on n nodes.

- Goal: Compute properties of G, e.g., Is it connected? Approximately how many triangles does it have? What is its maximum weight matching?

 - Example: distinguishing graphs with 0 triangles from those with 1 triangle.

 - A bright spot: some simple properties can be solved in $O(n^{\text{polylog}}(n))$ space.

 Examples: **bipartiteness**, **connectivity**. These are called **semi-streaming algorithms**.
Graph Streams

- In a graph stream, elements are edges in a graph G on n nodes.

- Goal: Compute properties of G, e.g., Is it connected? Approximately how many triangles does it have? What is its maximum weight matching?

- Bad news: many graph problems cannot be solved (or even approximated) by a streaming algorithm in o(n^2) space.
 - Example: distinguishing graphs with 0 triangles from those with 1 triangle.
Graph Streams

- In a graph stream, elements are edges in a graph G on n nodes.

- Goal: Compute properties of G, e.g., Is it connected? Approximately how many triangles does it have? What is its maximum weight matching?

- Bad news: many graph problems cannot be solved (or even approximated) by a streaming algorithm in \(o(n^2) \) space.
 - Example: distinguishing graphs with 0 triangles from those with 1 triangle.

- A bright spot: some simple properties can be solved in \(O(n^{*\text{polylog}(n)}) \) space.
 - Examples: bipartiteness, connectivity
 - These are called semi-streaming algorithms.
Outsourcing

- Many applications require outsourcing computation to untrusted service providers.
 - Main motivation: commercial cloud computing services.
 - Also, weak peripheral devices; fast but faulty co-processors.
 - Volunteer Computing (SETI@home, World Community Grid, etc.)

- User requires a guarantee that the cloud performed the computation correctly.
AWS Customer Agreement

WE… MAKE NO REPRESENTATIONS OF ANY KIND … THAT THE SERVICE OR THIRD PARTY CONTENT WILL BE UNINTERRUPTED, ERROR FREE OR FREE OF HARMFUL COMPONENTS, OR THAT ANY CONTENT … WILL BE SECURE OR NOT OTHERWISE LOST OR DAMAGED.
Model of Streaming Verification for This Work

- Chakrabarti et al. [CCM09/CCMT14] introduced the model of annotated data streams.
- One message (non-interactive) model: P and V both observe stream. Afterward, P sends V an email with the answer, and a proof attached.
- Think of V’s streaming pass over the input as occurring while V is uploading data to the cloud.
Annotated Data Streams

Cloud Provider

Business/Agency/Scientist
Annotated Data Streams

Cloud Provider

Data

Business/Agency/Scientist
Annotated Data Streams
Annotated Data Streams

Cloud Provider

Data

Question

Business/Agency/Scientist

Summary
Annotated Data Streams

Cloud Provider

Question

Answer + Proof

Business/Agency/Scientist

Summary
Annotated Data Streams

Cloud Provider

Data

Business/Agency/Scientist

Question

Answer + Proof

Accept or Reject
Annotated Data Streams

• Prover P and Verifier V observe a stream.
 • P solves problem, tells V the answer.
 • P appends a proof that the answer is correct.

• Requirements:
 • 1. Completeness: an honest P can convince V to accept.
 • 2. Soundness: V will catch a lying P with high probability (secure even if P is computationally unbounded).
Costs of Annotated Data Streams

- Two main costs: proof length, and \(V \)'s working memory. Both must be sublinear in input size.

For graph problems on \(n \) nodes, refer to a protocol of total cost \(O(n \text{polylog}(n)) \) as a semi-streaming scheme.
Costs of Annotated Data Streams

- Two main costs: proof length, and \(V \)'s working memory. Both must be sublinear in input size.
 - Notation: an \((h,v)\)-protocol is one with proof length \(O(h) \) and memory cost \(O(v) \) for \(V \).
 - The total cost of the protocol is \(h+v \).
 - For graph problems on \(n \) nodes, refer to a protocol of total cost \(O(n*\text{polylog}(n)) \) as a semi-streaming scheme.
- Other costs: running time of both \(P \) and \(V \).
Another Model of Streaming Verification

- Cormode et al. [CTY12] introduced more general model called streaming interactive proofs (SIPs) that allows multiple rounds of interaction between P and V.
- Annotated data streams correspond to 1-message SIPs.
Comparison of Two Models

- Pros of multi-round model:
 1. Exponentially reduces space and communication cost. Often (polylog n, polylog n).

- Cons of multi-round model:
 1. \(P \) must do significant computation after each message.
 2. More coordination needed; network latency might be an issue.

- Pros of single-message model:
 1. Space and communication still reasonable.
 2. \(P \) can do all computation at once, just send an email with proof attached.
 3. Reusability: can run the protocol on a stream, then receive more stream updates and seamlessly run the protocol on the updated stream.
History of Annotated Data Streams and SIPs

- [CCM09, CTY12, KP13, GR13, CTY12, PSTY13, CCMTV14, KP14, DTV15, ADDRV16] all study variants of these models.

- [CMT12] gave efficient implementations of protocols from [CCM09, CMT10] (and from the literature on “classical” interactive proofs).
Our Results

- Part 1: We give semi-streaming schemes for exactly solving two graph problems in dynamic graphs streams that require $\Omega(n^2)$ space in the standard streaming model.
 - Counting triangles.
 - Maximum cardinality matching.
 - These protocols are provably optimal.
Our Results

• Part 1: We give semi-streaming schemes for exactly solving two graph problems in dynamic graphs streams that require $\Omega(n^2)$ space in the standard streaming model.
 • Counting triangles.
 • Maximum cardinality matching.
 • These protocols are provably optimal.
 • Only known semi-streaming schemes were for bipartite perfect matching, and shortest s-t path in graphs of polylogarithmic diameter [CMT10, CCM09/CCMT14].

• Part 2: We show two graph problems that are just as hard in the annotated data streaming model.
 • Connectivity and bipartiteness.
 • Caveat: the result holds in the "XOR edge update" model.
Our Results

- Part 1: We give semi-streaming schemes for exactly solving two graph problems in dynamic graphs streams that require \(\Omega(n^2) \) space in the standard streaming model.
 - Counting triangles.
 - Maximum cardinality matching.
 - These protocols are provably optimal.
 - Only known semi-streaming schemes were for bipartite perfect matching, and shortest s-t path in graphs of polylogarithmic diameter [CMT10, CCM09/CCMT14].

- Part 2: We show two graph problems that are just as hard in the annotated data streaming model.
 - Connectivity and bipartiteness.
 - Caveat: the result holds in the “XOR edge update” model.
Semi-Streaming Schemes for Counting Triangles
Summary of Annotated Data Streaming Protocols for Counting Triangles

<table>
<thead>
<tr>
<th>Reference</th>
<th>(Proof Length, Space Cost)</th>
<th>Total Cost Achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CCMT14]</td>
<td>((n^2, 1))</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>[CCMT14]</td>
<td>((h, v): \text{for any } h\cdot v = n^3)</td>
<td>(O(n^{3/2}))</td>
</tr>
<tr>
<td>This work</td>
<td>((n, n))</td>
<td>(O(n))</td>
</tr>
</tbody>
</table>

- [CCMT14] proved a lower bound that any \((h, v)\) protocol must satisfy \(h\cdot v > n^2\).
- Question of whether there is semi-streaming scheme for the problem is Question #47 on sublinear.info (posed by Cormode at Bertinoro 2011).
- Interesting properties of our solution:
 - \(V\)'s final state depends on the order of the stream.
 - Our approach does not allow smooth tradeoffs of proof length and space cost.
Outline of the Exposition

1. Sum-Check Protocol of [LFKN90]
 (a) Simple, non-interactive variant
 (b) Full Interactive Sum-Check Protocol

2. Low-Degree Extensions

3. A Simple, Interactive Protocol for Counting Triangles, via (b)

4. The Annotated Data Streaming Protocol, via (a).
Sum-Check Protocol [LFKN90], Simplified

- Let \mathbb{F} be a finite field of (prime) size at least n^3.
- Associate elements of \mathbb{F} with integers in the natural way.
Sum-Check Protocol [LFKN90], Simplified

- Let \mathbb{F} be a finite field of (prime) size at least n^3.
- Associate elements of \mathbb{F} with integers in the natural way.
- Claim: Suppose we identify a univariate polynomial g (that depends on the input stream) over \mathbb{F} such that
 1. The number of triangles in the graph equals $\sum_{b \in [n]} g(b)$.
 2. For a randomly chosen point $r \in \mathbb{F}$, V can evaluate $g(r)$ using space v with a single streaming pass over the stream.

Then there is a $(\deg(g), v)$ -protocol for counting triangles.
Sum-Check Protocol [LFKN90], Simplified

- Let \mathbb{F} be a finite field of (prime) size at least n^3.
- Associate elements of \mathbb{F} with integers in the natural way.
- Claim: Suppose we identify a univariate polynomial g (that depends on the input stream) over \mathbb{F} such that
 1. The number of triangles in the graph equals $\sum_{b \in [n]} g(b)$.
 2. For a randomly chosen point $r \in \mathbb{F}$, V can evaluate $g(r)$ using space v with a single streaming pass over the stream.

Then there is a $(\deg(g), v)$-protocol for counting triangles.

- Proof: P sends a polynomial s (specified by its coefficients) claimed to equal g. V checks if $s(r) = g(r)$ and if so outputs $\sum_{b \in [n]} s(b)$.
- Completeness is obvious. Soundness error is at most $\deg(g)/|\mathbb{F}|$.
Sum-Check Protocol [LFKN90]

• Suppose the input specifies a d-variate polynomial g over field \mathbf{F}.

• Goal: compute the quantity:

\[
\sum \sum \cdots \sum g(b_1, \ldots, b_d)
\]

\[
\begin{aligned}
&b_1 \in [n] \quad b_2 \in [n] \\
&\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad b_d \in [n]
\end{aligned}
\]

• Costs:
 • d rounds of interaction.
 • Total communication is $O(d \cdot \deg(g))$.
 • Space cost for \mathbf{V} is the space to evaluate g at a random point.
Low-Degree Extensions

- Define $E : [n] \times [n] \rightarrow \{0, 1\}$ by:

 \[E(u, v) = 1 \text{ if edge } (u, v) \text{ appears in } G. \]

 \[E(u, v) = 0 \text{ otherwise.} \]

- Let F be a field, and let $\tilde{E}(u, v)$ denote the bivariate polynomial over F of degree n in each variable that agrees with E at all inputs in $[n] \times [n]$.

- Fact: For any point $(r_1, r_2) \in F^2$, V can evaluate $\tilde{E}(r_1, r_2)$ in constant space with a single streaming pass over the input.
$E : [n] \times [n] \rightarrow \{0, 1\}$
\[\tilde{E} : \mathbb{F}^2 \to \mathbb{F} \]
\[\tilde{E} : \mathbf{F}^2 \rightarrow \mathbf{F} \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-1</td>
<td>-3</td>
<td>-5</td>
<td>-7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-2</td>
<td>-5</td>
<td>-8</td>
<td>-11</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-3</td>
<td>-7</td>
<td>-11</td>
<td>-15</td>
<td></td>
</tr>
</tbody>
</table>

-8 is highlighted in yellow.
A Simple Interactive Protocol for Counting Triangles

- The number of triangles in G equals
 \[\sum_{u \in [n]} \sum_{v \in [n]} \sum_{z \in [n]} E(u,v) \cdot E(v,z) \cdot E(u,z). \]

- Get a 3-round (n, 1)-protocol by applying sum-check to the trivariate polynomial \(g(X,Y,Z) = E(X,Y) \cdot E(Y,Z) \cdot E(X,Z). \)
A Simple Interactive Protocol for Counting Triangles

- The number of triangles in G equals
 \[
 \sum_{u \in [n]} \sum_{v \in [n]} \sum_{z \in [n]} \tilde{E}(u, v) \cdot \tilde{E}(v, z) \cdot \tilde{E}(u, z).
 \]

- Get a 3-round $(n, 1)$-protocol by applying sum-check to the \textbf{trivariate} polynomial $g(X, Y, Z) = \tilde{E}(X, Y) \cdot \tilde{E}(Y, Z) \cdot \tilde{E}(X, Z)$.

- Can get a 2-round (n, n)-protocol by applying sum-check to the \textbf{bivariate} polynomial $g'(X, Y) = \tilde{E}(X, Y) \cdot \sum_{z \in [n]} \tilde{E}(Y, z) \cdot \tilde{E}(X, z)$.

- V can evaluate g' at a random point $(r_1, r_2) \in \mathbb{F}^2$ in space $O(n)$ by computing $\tilde{E}(r_1, r_2)$, as well as $\tilde{E}(r_1, z)$ and $\tilde{E}(r_2, z)$ for all $z \in [n]$.

The Annotated Data Streaming Protocol: Outline

• To get a semi-streaming scheme, we need to write the number of triangles in the graph as $\sum_{b \in [n]} g(b)$ for a univariate polynomial g of degree $O(n)$ that V can evaluate at any point in $O(n)$ space.
To get a semi-streaming scheme, we need to write the number of triangles in the graph as $\sum_{b \in [n]} g(b)$ for a \textit{univariate} polynomial g of degree $O(n)$ that V can evaluate at any point in $O(n)$ space.

Key idea: g will itself be a \textit{sum} of polynomials g_i, one for each stream update.

$\sum g_i(z)$ will count the number of triangles \textit{completed} at time i.

Hence, the total number of triangles will be

$$\sum_{i \leq m} \left(\sum_{z \in [n]} g_i(z) \right) = \sum_{z \in [n]} \left(\sum_{i \leq m} g_i(z) \right) = \sum_{z \in [n]} g(z).$$

Need to ensure each g_i has degree $O(n)$ and that for any r and all i, V can evaluate $g_i(r)$ in $O(n)$ space.
The Annotated Data Streaming Protocol: Details

- Define $E_i : [n] \times [n] \rightarrow \{0,1\}$ by:
 $$E_i(u, v) = 1 \text{ if edge } (u, v) \text{ appears in } G \text{ after } i \text{ stream updates.}$$
 $$E_i(u, v) = 0 \text{ otherwise.}$$

- If the i'th stream update is edge (u_i, v_i), define
 $$g_i(Z) = \tilde{E}_i(u_i, Z) \cdot \tilde{E}_i(v_i, Z).$$
The Annotated Data Streaming Protocol: Details

- Define $E_i : [n] \times [n] \to \{0, 1\}$ by:

 $$E_i(u, v) = \begin{cases}
 1 & \text{if edge } (u, v) \text{ appears in } G \text{ after } i \text{ stream updates.} \\
 0 & \text{otherwise.}
 \end{cases}$$

- If the i'th stream update is edge (u_i, v_i), define

 $$g_i(Z) = \tilde{E}_i(u_i, Z) \cdot \tilde{E}_i(v_i, Z).$$

- Observe:

 - g_i is a univariate polynomial of degree at most $2n$.
 - $\sum_{z \in [n]} g_i(z)$ is the number of triangles completed by (u_i, v_i) at time i.

- V can evaluate $g_i(r) = \tilde{E}_i(u_i, r) \cdot \tilde{E}_i(v_i, r)$ by maintaining

 $\tilde{E}_i(u, r)$ for all $u \in [n]$ at all times i.

- Hence, V can also evaluate $g(r) = \sum_{i \leq m} g_i(r)$ in $O(n)$ space.
Semi-Streaming Scheme for Maximum Cardinality Matching
Summary of Annotated Data Streaming Protocols for Maximum Cardinality Matching

<table>
<thead>
<tr>
<th>Reference</th>
<th>(Proof Length, Space Cost)</th>
<th>Total Cost Achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CMT10]</td>
<td>(m, 1)</td>
<td>O(m)</td>
</tr>
<tr>
<td>This work</td>
<td>(n, n)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

- [CCMT14] proved a lower bound that any (h, v) protocol must satisfy $h \times v > n^2$ (even in the bipartite case).
Lower Bounds for Connectivity and Bipartiteness
Overview of Lower Bound and Proof

- Claim: In the XOR update model, any annotated data streaming protocol for Connectivity and Bipartiteness must have total cost $\Omega(n)$. These problems are solvable in $O(n \cdot \text{polylog}(n))$ space without a prover.
Overview of Lower Bound and Proof

- Claim: In the XOR update model, any annotated data streaming protocol for Connectivity and Bipartiteness must have total cost $\Omega(n)$. These problems are solvable in $O(n^{*\text{polylog}(n)})$ space without a prover.

- Proof sketch:
 - Known fact: any annotated data streaming protocol for the INDEX problem on N bits must have total cost $\Omega(N^{1/2})$ (this is tight).
 - We reduce INDEX on n^2 bits to Connectivity on graphs with n nodes.
Overview of Lower Bound and Proof

- Claim: In the XOR update model, any annotated data streaming protocol for Connectivity and Bipartiteness must have total cost $\Omega(n)$. These problems are solvable in $O(n \cdot \text{polylog}(n))$ space without a prover.

- Proof sketch:
 - Known fact: any annotated data streaming protocol for the INDEX problem on N bits must have total cost $\Omega(N^{1/2})$ (this is tight).
 - We reduce INDEX on n^2 bits to Connectivity on graphs with n nodes.
 - Reduction is tailored to the annotated data streaming model: P helps V perform the reduction.
 - This is necessary.
 - Connectivity on n nodes is easier than INDEX on n^2 bits in the standard streaming model, but they’re equally hard in annotated data streaming model.
Open Questions
Open Questions

- Exhibit any graph problem that \textbf{cannot} be solved by a semi-streaming scheme.
- Do there exist non-trivial (i.e., $o(n^2)$ total cost) annotated data streaming protocols for any of the following?
 - Shortest s-t path in general graphs
 - Graph diameter
 - Computing the value of a maximum flow.
- Do there exist annotated data streaming protocols of $o(n)$ total cost for Connectivity or Bipartiteness in the insert-only update model? The strict turnstile update model?
- Is it possible to give an annotated data streaming protocols for Counting Triangles of space cost $o(n)$ and help cost $o(n^2)$?
Thank you!