
Justin Thaler 
Georgetown University 

Verifiable Computing: Between 
Theory and Practice 



Talk Outline 
1.  The VC Model: Interactive Proofs and Arguments 
2.  VC Systems: How They Work 
3.  Survey and Comparison of Existing VC Implementations 
4.  A Brief History of Interactive Proofs (IPs) 
5.  Techniques: IPs vs. Other Approaches 



Part 1: Model and Motivation 



Interactive Proofs (IPs) and Arguments 
�  Prover P and Verifier V. 

1.  P solves a problem on a given input. 
2.  Tells V the answer. 
3.  Then P proves to  V that the answer is correct. 

�  Requirements:  
� Completeness: an honest P can convince V to accept. 
� Soundness: V will catch a lying P with high probability. 

�  IPs: information-theoretically sound [GMR1985, Babai 1985] 

�  Arguments: sound against polynomial time P’s. [BCC 1988] 
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Goals of Verifiable Computation 
1.  Provide user with guarantee of correctness. 

�  Ideally user not do (much) more work than just read the input. 
�  Ideally cloud will not do much more than just solve the problem. 

 
2.  Applications:  

�  Cloud computing. 
�  Weak peripheral devices that lack resources to perform required 

functionality (e.g., keycard readers).  
�  Hardware manufactured in untrusted foundries.  



Zero-Knowledge (ZK) 
�  Some IPs and arguments are also zero-knowledge. 

� They reveal nothing to V other than the validity of the statement 
being proven. 

�  This enables many additional applications. 
�  E.g., Authentication. I publish a cryptographic hash of my 

password, and later prove I know a preimage of the hash, without 
revealing anything about the preimage. 

�  Enables applications that are otherwise impossible. 
� Can justify use of a VC system even if costs are higher than desired.  
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Part 2: General-Purpose VC 
Implementations: How They Work 



General-Purpose VC Implementations 
�  Start with a computer program written in high-level 

programming language (C, Java, etc.) 
�  Step 1: Turn the program into an equivalent model 

amenable to probabilistic checking. 
� Typically some type of arithmetic circuit. 
� Called the Front End of the system. 

�  Step 2: Run an interactive proof or argument on the circuit. 
� Called the Back End of the system. 



Front End 

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview 

F2 circuit 

P and V run interactive proof or 
argument system (back end) on circuit 



Sources of Prover Overhead in VC Systems 
Source of 
Overhead 

P Overhead vs. Native 
(Crude Estimate) 

Slowdown Depends On… 

Front End 
(overhead due to 

using a circuit 
representation of 
the computation) 

(ratio of circuit size to 
number of machine steps of 

original program) 
1x-10,000x 

•  How amenable is the high-
level computer program is 

to representation via 
circuits? 

•  What type of circuits can 
the back-end handle? 

Back-End 
  

(ratio of P time to evaluating 
circuit gate-by-gate) 

10x-1,000x 

•  Varies by back-end and 
computation structure  
(e.g., data parallel?) 



Part 3: Survey and Comparison of Existing 
VC Implementations 



Overview of Backends 
�  Four approaches to general-purpose VC systems have been pursued. 

� Approach 1: Arguments based on linear PCPs. [IKO 2007, GGPR 2013, BCIOP13] 

�  Interactive variants. 
�  Non-interactive variants called SNARKs. 

� Approach 2: Based on IPs [LFKN 1990, GKR 2008]. 

� Approach 3: Arguments based on “short PCPs” [BSGHSV04, BSS05, BCGT13,  BSCS16]  

� Approach 4: Arguments based on garbled circuits or “MPC in the 
head”. [Yao 1982, IKOS 2007, JKO2013] 

�  So far, useful only for zero-knowledge applications. 



Approach VC Systems 
Arguments based on 

linear PCPs 
[SMBW 2012, SVPBBW 2012, SBVBPW 2013, 

BSCGTV 2013, PGHR 2013, BSCGGMTV 2014, 
BSCTV 2014a, BSCTV 2014b, BBFR 2015,  

CTV 2015, CFHKKNPZ 2015, DLFKP 2016] 
 

IPs [CMT 2012, TRMP 2012, VSBW 2013,  
Thaler 2013, WHGSW 2016, WJBSTWW 2017, 

 ZGKPP 2017] 

Arguments based on 
short PCPs 

[BSBTCGCHPRSTV 2017] 

Arguments based on 
garbled circuits or 
MPC-in-the-head 

[JKO 2013, GMO 2016] 



SNARKs vs. IPs: Advantages and 
Limitations 



Advantages of SNARKs over IPs 
1.  Zero-Knowledge. 

�  SNARKs are, IPs are not. 

2.  Succinctness (i.e., very short proofs).  
� Consider the arithmetic CIRCUIT-SAT problem. 
� Given: circuit      taking two inputs, first input    , and (claimed) outputs y . 

� Assume that P knows a     such that C(x, w)=y     
� Goal: confirm this is the case.  

� An argument is succinct if the proof length is o(|w|). 

�  SNARKs have proof length |y| + O(1)  group elements. 

�  IPs have proof length |y| + |w| + O(d * log    field elements. 
�  d   is circuit depth and    Sis circuit size. 

C x y
C(x,w) = y.

o(|w |).
| y |+O(1)

w

| y |+ |w |+O(d ⋅ logS)
d S



Why is Succinctness Important? 
1.  Shorter proofs are obviously better.  

�  In blockchain applications, proofs must “live on the blockchain” forever. 

2.  In some zero-knowledge applications, witness is naturally large.  
�  E.g., hospital publishes cryptographic hash of a massive database w  of 

patient records, later proves it ran a specific analysis on  

3.  Enables more efficient front ends. 
�  E.g., can turn any computer program running in time T   into a 

CIRCUIT-SAT instance of size T*polylog(T). 
�  But the witness size |w| is   
�  So need proof length o(|w|)  if we want V to run in time 

T
T ⋅poly log(T ).

T ⋅poly log(T ).|w |
o(T ).o(|w |)

w
w.



�  A trace of program M on input x is the list of the (time, configuration) 
pairs that arise when running M on x. 
�  A configuration specifies the bits in M’s program counter and registers. 

�  C takes x as explicit input, and takes an entire trace of M as non-
deterministic input. 

�  C then checks the trace for correctness, and if so outputs whatever M 
outputs in the trace. 

So M accepts x if and only if there is some trace w such that C(x, w)=1. 
C must check two properties of the trace. 

ime consistency (the claimed state at time t correctly follows from the claimed state at 
time t-1).  
Memory consistency (whenever M reads a value from a memory location, the value 
that is returned is the last value that was written).  
Time-consistency is easy to check: represent M’s transition function as a small subcircuit, 
apply it to each entry t of the trace and check that it equals entry t+1. 
Checking memory consistency is done by “re-sorting the trasncript based on memory 
location, with ties broken by time. 

  

x Purported Trace of M’s Execution on x 

Circuit C checks if the trace actually 
corresponds to M’s executing on x  
(This requires T * polylog(T) gates)  

Outputs 1 iff trace is correct and ends with M outputting 1. 

Sketch of the Transformation  
[GS 1989, Robson 1991, BSCGT 2013] 



Advantages of IPs over SNARKs 
1.   IPs have much faster P.  

�  SNARK prover does expensive crypto operations for each gate in  
2.   IPs have no public parameters.  

�  In applications, SNARK parameter size is close to 1 GB or more. 
3.  IPs make no crypto assumptions. 

�  SNARKs are based on strong (i.e., non-falsifiable) crypto assumptions. 
4.  IPs can avoid expensive pre-processing phase for V. 

�  For circuits with “regular” wiring patterns. 
5.  IPs have much better space costs for P. 
�  SNARK P performs FFTs on vectors of length   
�  Limits circuits to ~20 million gates on systems with 32 GB of RAM [WSRBW 2015] 

�  SNARK space and pre-processing costs can be asymptotically limited via 
“bootstrapping”, but at very high concrete cost [BCCT 2008, BSCTV 2014].  

C.

S.



IPs vs. SNARKs: Final Notes 
�  Other advantages of IPs: amenable to hardware implementations,    
       superior parallelization. 
 
�  SNARKs are publically verifiable and non-interactive.  
�  IPs can be made to satisfy these properties in the Random Oracle 

Model using the Fiat-Shamir heuristic. 



Short PCPs, Garbled Circuits,  
and MPC-in-the-head 



Short PCPs vs. SNARKs 
�  Main advantage short PCPs: they avoid an expensive    
      pre-processing phase for V in a general-purpose manner.  

�  But concrete costs are currently much higher than SNARKs. 

�  And existing implementations of short PCPs are not zero-
knowledge. 



Garbled Circuits and MPC-In-The-Head 
vs. SNARKs 

�  Garbled circuits and MPC-In-The-Head have proof length 
Omega (with large hidden constant), where S  is circuit size.  

�  So they don’t save V time compared to native execution.  
�  But are still useful in ZK applications. 

�  Advantages over SNARKs: 
�  Lack of public parameters. 
�  Much faster P for some applications. 

Ω(S) S



Part 4: A Brief History of Interactive 
Proofs 



Interactive Proofs, Pre-2008 
�  1985: Introduced by [GMR, Babai]. 

�  IPs were believed to be just slightly more powerful than classical static 
(i.e., NP) proofs. 

�  i.e. let IP denote class of problems solvable by an interactive proof with a 
poly-time verifier. It was believed that IP ≈ NP. 

1990: [LFKN, Shamir] proved that IP=PSPACE. 
i.e., IPs with a poly-time verifier can actually solve much more difficult 
problems than can classical static proofs. 
But IPs were still viewed as impractical. 
Main reason: P’s runtime. 

hen applying the protocols of [LFKN, Shamir] even to very simple problems, the 
honest prover would require superpolynomial time.  
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The GKR Protocol 
�  [GKR 2008] addressed P’s runtime. 

� They gave an IP for any function computed by an efficient 
parallel algorithm. 

�  P runs in polynomial time. 
�   V runs in (almost) linear time, so outsourcing is useful even 

though problems are “easy”. 



The GKR Protocol 
�  [GKR 2008] addressed P’s runtime. 

� They gave an IP for any function computed by an efficient 
parallel algorithm. 

�  P runs in polynomial time. 
�   V runs in (almost) linear time, so outsourcing is useful even 

though problems are “easy”. 

�  But GKR is not practical out of the box. 
�  P still requires a lot of time (quartic blowup in runtime). 
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a1  a2  a3  a4 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+ 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P starts the 
conversation with  
an answer (output). 

The GKR Protocol: Overview 
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The GKR Protocol: Overview 

V sends series of  
challenges. P responds 
with info about next 
circuit level.  
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The GKR Protocol: Overview 

Challenges continue, 
layer by layer down 
to the the input.  
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Finally, P says 
something about the 
(multilinear extension 
of the) input.  
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The GKR Protocol: Overview 

Finally, P says 
something about the 
(multilinear extension 
of the) input.  

V sees input directly, so can check  
P’s final statement directly.   



From Theory to Practice 
�  [CMT 2012] implemented the GKR protocol (with 

refinements). 
�  Demonstrated low concrete costs for V. 
�  Brought P’s runtime down from Ω(S3), to O(S log S), 

where     is circuit size. 
� Key insight: use multilinear extension of circuit within 

the protocol. 
� Causes enormous cancellation in P’s messages, allowing 

fast computation.  
till not good enough on its own.  

P is ~103 times slower than just evaluating the circuit. 

Naïve implementation of GKR would take trillions of times 
longer. 
Both P and V can be sped up 40x-100x using GPUs.. 
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Improvements for “Structured Computation” 
�  [Thaler 2013] brought P’s runtime down further for any circuit 

that exhibits repeated structure. 
�  Includes any data parallel computation. 
�  P runs in time O(S log B)      where      is  
   size of the sub-computation. 

[WJBSTWW 2017] brings this down  
   even further, to O(S + B log B). 

For “sufficient levels of data parallelism”, this is O(S). 
The hidden constant is ≈10. 
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Verifiable ASICs 
�  [WHGSW 2016, WJBSTWW 2017] implement these IPs in hardware. 

� Motivation: verifiable ASICS. 
�  Produce fast, special-purpose hardware in an (untrusted) country’s 

advanced foundry. 
� Make the hardware act as P.  
�  Implement V using much slower, domestically-manufactured hardware.  



Making IPs Succinct 
�  [ZGKPP 2017] renders IPs succinct. 

�  By combining IPs with a cryptographic primitive called a polynomial 
commitment scheme [KGG 2010, PST 2013] 

� Reduces proof length for CIRCUIT-SAT from                                              
to 

� Applies techniques to database applications. 
� Downsides: introduces strong cryptographic assumptions, utilizes public 

parameters of size proportional to  

| y |+ |w |+O(d ⋅ logS)
| y |+O(log |w |)+O(d ⋅ logS).

|w | .



Open Questions 
�  One VC System to rule them all? 

�  Endow IPs with zero-knowledge and succinctness without 
sacrificing any of IPs’ advantages over SNARKs? 

�  Understand the power of IPs in communication complexity. 
�  Proving lower bounds on the communication analog of AM is a 

notorious open problem.  
�  Even open for the communication analogs of NISZK and SZK. 



Comparison of Techniques: IPs vs. 
Other Approaches 



Overview of Argument Systems 
� Most arguments work by: 

1.   “Starting” with an information-theoretically secure protocol in a 
model where P is assumed to behave in a restricted manner. 

� E.g., a linear PCP, “short” PCP, etc. 
� These models assume P is non-adapative (i.e., P’s answer to 

each query from V does not depend on earlier queries).  

2.  Then using cryptography to “force” a computationally bounded P 
to behave in the restricted manner. 



SNARKs, Short PCPs 
�  Whereas GKR checks the circuit layer by layer, all other approaches 

check the circuit all at once. 
�  They crucially exploit non-adaptivity of P to do this. 

�  Recall:      is arithmetic circuit (over     ) of size     and we want to 
check that  

C
C(x,w) = y.

SF



SNARKs, Short PCPs, MIPs, etc. 
�  Let H be a set of size   . Assign each gate in C a label from  
�  A transcript W                  is an assignment of values to each gate. 
�  Call W valid if it is consistent with    ’s execution on input  
�  Let       be a low-degree extension of 

�  i.e., a low degree polynomial such that   

�  Somehow define a polynomial g_  derived from ~  such that: 

�  The “proof ” can be regarded as having two parts:     
�  Part 1: 
�  Part 2: some extra info certifying that   

SH H.C
W :H→ F

W C (x,w).
W~

W~gW~
gW (a) = 0 for all a ∈ H⇔W  is a valid transcript.~

W.

~

W~

gW (a) = 0 for all a ∈ H.~

W (a) =W (a) for all a ∈ H.



Thank you! 


