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Outsourcing 
�  Many applications require outsourcing computation to 

untrusted service providers. 
� Main motivation: commercial cloud computing services. 
� Also, weak peripheral devices; fast but faulty co-processors. 
� Volunteer Computing (SETI@home,World Community 

Grid, etc.) 

�  User requires a guarantee that the cloud performed the 
computation correctly.  



AT&T Cloud Services License Terms 
AT&T… MAKES NO WARRANTY THAT THE 
APPLICATION… WILL BE UNINTERRUPTED, 
ACCURATE, RELIABLE, TIMELY, SECURE OR 
ERROR-FREE… [NOR THAT] ANY ERRORS IN 
THE APPLICATION WILL BE CORRECTED.  



AWS Customer Agreement 
WE… MAKE NO REPRESENTATIONS OF ANY 
KIND … THAT THE SERVICE OR THIRD PARTY 
CONTENT WILL BE UNINTERRUPTED, ERROR 
FREE OR FREE OF HARMFUL COMPONENTS, 
OR THAT ANY CONTENT … WILL BE SECURE 
OR NOT OTHERWISE LOST OR DAMAGED. 



Goals of Verifiable Computation 
�  Provide user with correctness guarantee, without requiring 

her to perform full computation herself. 
�  Ideally user will not even maintain a local copy of the data. 

�  Minimize extra effort required for cloud to provide 
correctness guarantee. 

�  Achieve protocols secure against malicious clouds, but  
lightweight for use in benign settings. 



Possible Approaches 
1.  Approaches making strong assumptions. 

� Replication [ACKLW02, HKD07, …] assumes majority of 
responses are correct. 

� Trusted hardware [JSM01, CGJ+09, SSW10…] 

2. Approaches with minimal assumptions. 
�  Interactive proofs (this talk). 
� Argument systems (use crypto). 

3.  Approaches using two or more clouds. 
� Refereed Games: assumes 1 cloud is honest. 
� Multi-Prover Interactive Proofs: assumes clouds cannot 

communicate with each other.  
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Interactive Proofs 
�  Prover P and Verifier V. 

�  P solves problem, tells V the answer. 
� Then P and  V have a conversation. 
�  P’s goal: convince V the answer is correct. 

�  Requirements:  
�  1. Completeness: an honest P can convince V 

to accept. 
�  2. Soundness: V will catch a lying P with high 

probability (secure even if P is computationally 
unbounded). 



Interactive Proofs 
�  IPs have revolutionized complexity theory in the last 25 

years. 
�  IP=PSPACE [LFKN90, Shamir90]. 
�  PCP Theorem [AS98, ALMSS98]. Hardness of approximation.  
� Zero Knowledge Proofs. 

�  But IPs have had very little impact in real delegation scenarios. 
� Why? 
� Not due to lack of applications! 



Interactive Proofs 
�  Old Answer: Most results on IPs dealt with hard 

problems, needed P to be too powerful. 
�  But recent constructions focus on “easy” problems 

(e.g. Interactive Proofs for Muggles [GKR 08]). 
� Allows V to run very quickly, so outsourcing is 

useful even though problems are “easy”. 
�   P does not need “much” more time to prove 

correctness than she does to just solve the problem!  
 



Interactive Proofs 
�  Why does GKR not yield a practical protocol out 

of the box? 
�  P  has to do a lot of extra bookkeeping (cubic 

blowup in runtime). 
� Naively, V has to retain the full input. 



This Talk: New Application of IPs 
�  To streaming problems: hard because V has to read input in 

one-pass streaming manner, but (might be) easy if  V could 
store the whole input.  

�  Fits cloud computing well: streaming pass by V can occur 
while uploading data to cloud. 

�  V never needs to store entirety of data! 

 



Data Streaming Model 
�  Stream: m elements from universe of size n. 

�   e.g., S=<x1, x2, ... , xm> = 3,5,3,7,5,4,8,7,5,4,8,6,3,2, … 

�  Goal: Compute a function of stream, e.g., median, frequency 
moments, heavy hitters.  

 
�  Challenge:  

 (i) Limited working memory, i.e., sublinear(n,m). 
 (ii) Sequential access to adversarially ordered data. 
 (iii) Process each update quickly. 

 
  Slide derived from [McGregor 10] 



This Talk: Models 
�  Two models:  

1.  One message (Non-interactive) [CCM 09/CCMT 12]: After 
both observe stream, P sends V an email with the answer, and a 
proof attached. 

2.  Multiple rounds of interaction [CTY 10]: P and V have a 
conversation after both observe stream. 

 
 



Costs in Our Models 
 

�  Two main costs: words of communication, and V’s working 
memory. 

�  Other costs: running time, number of messages.  



A Two-Pronged Approach 
�  First Prong: General purpose implementation to verify 

arbitrary computation [CMT12, TRMP12,  T13]. 
�  Building on general-purpose GKR protocol.  

�  Second Prong: Develop highly optimized protocols for 
specific important problems [CCMT12, CMT10, CTY12, 
CCGT13]. 
� Reporting queries (what value is stored in memory location x 

of my database?) 
� Matrix multiplication. 
� Graph problems like perfect matching.  
� Certain kinds of linear programs. 
�  Etc. 
 

 



Non-Interactive Protocols with 
Streaming Verifiers: A Sampling 



A general technique 
�  Arithmetization: Given function f defined on small domain, 

replace f with its low-degree extension, LDE(f), as a 
polynomial defined over a large field. 

�  Can view LDE(f) as error-corrected encoding of f. Error- 
correcting properties give V considerable power over P. 

�  If two (boolean) functions differ in one location, their LDE’s 
will differ in almost all locations. 

 



Second Frequency Moment (F2) 
�  Second frequency moment is central streaming problem. 

� Captures sample variance, Euclidean norm, data similarity. 

�  Definition: 
� Let X be the frequency vector of the stream  

� a F2 (X) = Xi
2

i=1

n

!

Let X be the frequency vector of the stream.

3 2 1 0 

Frequency Vector XRaw data stream over universe {a, b, c, d}

a    b      c        d F2 (X) = 3
2 + 22 +12 =14



Second Frequency Moment 
�  [CCMT 12]: (√n comm.,       space)-protocol for F2. 

� Terabytes of data translate to a few MBs of space and 
communication. 

�  Optimal. Lower bound of Ω(n) on comm. * mem 

n n

Optimal. Lower bound of !(n) on comm. * space.

Terabytes of data translate to a few MBs of space 
and communication.



F2 Protocol 
�  Recall: F2(X)=∑i Xi

2 

�  View universe [n] as [√n] x  [√n].  

Frequency  
“Square”  

Recall: F2 (X)=! X 2
i

i
!

View universe [n] as [ n ] x  [ n ]. 

Frequency Vector X

0 2 4 

0 3 3 

0 2 0 

0 2 4 0 3 3 0 2 0 



�  First idea: Have P send the answer “in pieces”:  
�  F2(row 1). F2(row 2). And so on. Requires √n communication. 

�  V exactly tracks a row at random (denoted in yellow) so if P lies about 
any piece, V has a chance of catching her. Requires space √n. 

0 

Frequency Square  

2 4 

0 3 3 

0 2 0 

P sends 

Slide derived from [McGregor 10] 

20=22+42 

 
18=32+32 

4=22 



�  Problem: If  P lies in only one place, V has small chance of 
catching her. 

� What we’d like: if  P  lies about even one piece, she will have to 
lie about many. 

 
�  Solution: Have  P  commit (succinctly) to second frequency 

moment of rows of an error-corrected encoding of the 
input.  

� Note: V can evaluate any row of the low-degree extension 
encoding in a streaming fashion.  
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Why study F2 ? 
Omitted: 

Connectivity, 
Counting Triangles, 

Shortest s-t path, etc. 



Protocol Engineering: 
Smart FFTs 
�  Naïve implementation of P in F2 protocol requires Ω(n3/2) 

time, doesn’t scale to large streams. 

�  Using FFT techniques, we reduce this to O(n log n) time.  
�  “Standard” FFT algorithm is unsuitable. 
�  Use Prime Factor FFT Algorithm instead. Works well over certain 

finite fields (which we can choose!), avoids precision issues entirely. 
  

�  Immediately yields fast protocols for many other problems.  



F2 Experiments 

Multi-round P from [CTY11] vs. Non-interactive P 
with and without FFT techniques 



General Purpose IPs 
(Extending GKR) 



Circuits, Fields, and All That 
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Saving V Space [CTY12] 
�  Can save V space “for free”.  

� Reason: V only needs to store one LDE evaluation of the data.  
� Can be computed with one streaming pass over input.  

�  Fits cloud computing well: pass by V can occur while 
uploading data to cloud.  

�  The LDE evaluation is KBs in size, even if the input contains 
terabytes of data. 

 



Saving V Time [CMT12] 
�  Can save V substantial amounts of time (at least for problems 

computable by small-depth circuits). 
�  E.g. when multiplying two 512x512 matrices, V requires .12s, 

while naive matrix multiplication takes .70s. 
�  Savings for V will be much larger at larger input sizes, and for 

more time-intensive computations. 
 



Minimizing P’s Overhead [CMT12] 
�  Brought P’s runtime down from Ω(S3), to O(S log S), where 

S is circuit size. 
� Key insight: use multilinear extension of circuit within the 

protocol. 
� Causes enormous cancellation in P’s messages, allowing fast 

computation.  
Lots of additional engineering in the implementation. 

Choosing the “right” finite field to work over. 
Using the “right” circuits. 
Etc. 

Practically speaking, still not good enough on its own.  
256 x 256 matrix multiplication takes P 27 minutes. 
Naïve implementation of GKR would take trillions of times 
longer. 
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Reducing Overhead Further [T13] 
�  Downsides to [CMT12] implementation: 

�  For “regular” circuits: log S factor runtime overhead for P. 
�  For “irregular” circuits: log S factor runtime overhead for P, and 

expensive pre-processing phase for V. 

Solution for “regular” circuits: Reduce P’s runtime to O(S). 
Key idea: use a new arithmetization of the circuit, allowing  P to 
reuse work across rounds. 
Experimental results: 250x speedup over [CMT12].  
P less than 10x slower than a C++ program that just evaluates the 
circuit. 
Example applications: MatMult, DISTINCT, F2, Pattern Matching, 
FFTs. 
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Problem! P time 
[CMT12]!

P time 
[T13]!

V time!
[Both]!

Rounds!
[T13]!

Protocol  
Comm* 

[T13]!
!

Circuit 
Eval Time  

DISTINCT!
(n=220)!

56.6 
minutes!

17.2 s! .2 s! 236! 40.7 KB! 1.88 s!

MatMult!
(512 x 512)!

2.7 !
hours!

37.8 s! .1 s! 1361! 5.4 KB! 6.07 s!

Results for Regular Circuits [T13] 



Dealing with Irregular Circuits [T13] 
�  No magic bullet for dealing with irregular wiring patterns. 

� Need some assumption about the computation being outsourced. 
�  Is there structure in real-world computations? 

�  Yes: Data Parallel computation. 
� Any setting where a sub-computation C is applied to many pieces 

of data.  
� Make no assumptions about C itself. 
� These are the sort of problems getting outsourced! 
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Leveraging Parallelism [T13] 
�  Problem: Verify massive parallel computations. 

� Directly applying existing results has big overhead. 
� Costs depend on number of data pieces. 

�   Approach: take advantage of parallelism. 
� Reduce V's effort to proportional to size of C. 
� Reduce P's overhead to log size of C. 
� No dependence on number of data pieces. 

�  Key insight: C may be irregular internally, but the 
computation is maximally regular between copies of C. 



Further Leveraging Parallelism [TRMP12, T13] 
�  In our protocols, P and V themselves can be parallelized

(although V runs quickly even without parallelization). 
�  Using a GPU, achieved 40x-100x speedups for P, 100x 

speedups for V. 



Independent Results 
�  Recent efforts to build practical argument systems. 

�  Setty, McPherson, Blumberg, Vu, Braun, Parno, Walfish 
[NDSS12, Security12, EuroSys13]  

�  Vu et al. [Oakland13] build a system that: 
1.  Starts with a high-level programming language. 
2.  Automatically compiles any program in the language into an 

arithmetic circuit.  
3.  Decides whether GKR implementation from [CMT12] (plus 

refinements) or state-of-the-art argument system is more 
efficient, and runs the better of the two. 

�  Experimental comparison in [Oakland13] shows [CMT12] 
significantly faster except for programs with complicated 
control flow or that are highly sequential. 



Future Directions 
1.  Build a system that automatically verifies MapReduce 

programs. 
�  Main obstacle: interactive proof technology cannot yet handle 

data-dependent control flow. 
�  Address by combining crypto with interactive proofs? 

2.  Interactive proofs for deep circuits (i.e. non-parallel 
computation)? 

�  Formalizes the question: “Is proving harder than computing?” 
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Research Interests (So Far) 
1.  Verifiable computation (this talk). 
2.  Algorithms for massive data sets.  

�  Streaming algorithms for pattern mining [MST12]. 
�  Hashing-based algorithms for set maintenance and sparse recovery 

[AGMT11, MT12, JMT13]. 
3.  Computational learning theory, differential privacy, and 

their intersection [STT, COLT12], [TUV, ICALP12], [BT, in 

submission], [CTUW, ongoing].  
�  Efficient learning in the presence of irrelevant information. 
�  Faster algorithms for private data release. 

 
 

 



k-way Marginal Queries 

Exercise? Healthy? Ice 
Cream? 

Criminal? 

Y Y Y Y 

N N N N 

Y N Y N 

Y N Y Y 

•  k-way marginal queries: q has at most k literals. 
•  Number of k-way marginal queries is ~dk.  

Query on a row: q(x) = Ice Cream?!Criminal?

Query on database: 1
n

q(xi ).
i
"

d attributes 

n rows 



Goal: Private One-Shot Release Mechanism 

•  Want to release a private summary of database D such that 
for all k-way marginals q: 

 
 
•  Two parameters to optimize: running time of sanitizer, 

and minimal database size required for non-trivial 
accuracy guarantees. 

q(Summary) - q(D) !.01
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Our Result
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Our Result
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§ [CTUW13] 



 
Thank you! 



What About “Sparse” Streams? [CCGT13] 
�  Many streams are over enormous domain sizes (e.g. IPv6 flows) 

�  Existing results depend domain size. 
� Want costs to depend on stream length instead. 

�   Idea: Domain reduction.  
� Ask P to provide ‘perfect’ hash function g mapping huge domain 

to small one.  
� Challenges: ensuring collisions in remapping do not cause 

errors (need a way for V to ‘detect’ collisions under g). 
�   New protocols that allow P to ‘correct’ collisions online. 

�  Bottom line [CCGT13, to be submitted]: near-optimal 
tradeoffs in terms of stream length for frequency moments, 
graph problems, etc. 



A Final Result: MatMult [T13] 
�  Let A be any time t, space s algorithm for n x n MatMult. 
�  New MatMult protocol:  

�  P takes time t + O(n2) and space s + o(n2). 
� Optimal runtime up to leading constant assuming no O(n2) time 

algorithm for MatMult. 
Problem 

Size!
Naïve 

MatMult 
Time 

Additional 
P time!

V Time! Rounds!
!

Protocol  
Comm!

1024 x 1024! 2.17 s! 0.03 s! 0.67 s! 11! 264 bytes!

2048 x 2048! 18.23 s! 0.13 s! 2.89 s! 12! 288 bytes!


