
Justin Thaler, Harvard University

Practical Verified Computation with
Streaming Interactive Proofs

Outsourcing
�  Many applications require outsourcing computation to

untrusted service providers.
� Main motivation: commercial cloud computing services.
� Also, weak peripheral devices; fast but faulty co-processors.
� Volunteer Computing (SETI@home,World Community

Grid, etc.)

�  User requires a guarantee that the cloud performed the
computation correctly.

AT&T Cloud Services License Terms
AT&T… MAKES NO WARRANTY THAT THE
APPLICATION… WILL BE UNINTERRUPTED,
ACCURATE, RELIABLE, TIMELY, SECURE OR
ERROR-FREE… [NOR THAT] ANY ERRORS IN
THE APPLICATION WILL BE CORRECTED.

AWS Customer Agreement
WE… MAKE NO REPRESENTATIONS OF ANY
KIND … THAT THE SERVICE OR THIRD PARTY
CONTENT WILL BE UNINTERRUPTED, ERROR
FREE OR FREE OF HARMFUL COMPONENTS,
OR THAT ANY CONTENT … WILL BE SECURE
OR NOT OTHERWISE LOST OR DAMAGED.

Goals of Verifiable Computation
�  Provide user with correctness guarantee, without requiring

her to perform full computation herself.
�  Ideally user will not even maintain a local copy of the data.

�  Minimize extra effort required for cloud to provide
correctness guarantee.

�  Achieve protocols secure against malicious clouds, but
lightweight for use in benign settings.

Possible Approaches
1.  Approaches making strong assumptions.

� Replication [ACKLW02, HKD07, …] assumes majority of
responses are correct.

� Trusted hardware [JSM01, CGJ+09, SSW10…]

2. Approaches with minimal assumptions.
�  Interactive proofs (this talk).
� Argument systems (use crypto).

3.  Approaches using two or more clouds.
� Refereed Games: assumes 1 cloud is honest.
� Multi-Prover Interactive Proofs: assumes clouds cannot

communicate with each other.

AT&T/Google/Microso//Amazon	 Business/Agency/Scien9st	

Interac9ve	 Proofs	

Data	

Business/Agency/Scien9st	

Interac9ve	 Proofs	
AT&T/Google/Microso//Amazon	

Business/Agency/Scien9st	

Data	

Interac9ve	 Proofs	
AT&T/Google/Microso//Amazon	

Ques9on	

Business/Agency/Scien9st	

Data	

Interac9ve	 Proofs	
AT&T/Google/Microso//Amazon	

Answer	

Ques9on	

Business/Agency/Scien9st	

Data	

Interac9ve	 Proofs	
AT&T/Google/Microso//Amazon	

Ques9on	

Answer	

Challenge	

Business/Agency/Scien9st	

Data	

Interac9ve	 Proofs	
AT&T/Google/Microso//Amazon	

Ques9on	

Answer	

Challenge	

Response	

Business/Agency/Scien9st	

Data	

Interac9ve	 Proofs	
AT&T/Google/Microso//Amazon	

Ques9on	

Answer	

Challenge	

Response	

Challenge	

Business/Agency/Scien9st	

Data	

Interac9ve	 Proofs	
AT&T/Google/Microso//Amazon	

Ques9on	

Answer	

Challenge	

Response	

Challenge	

Business/Agency/Scien9st	

Data	

Accept	 or	 Reject	

Interac9ve	 Proofs	
AT&T/Google/Microso//Amazon	

Interactive Proofs
�  Prover P and Verifier V.

�  P solves problem, tells V the answer.
� Then P and V have a conversation.
�  P’s goal: convince V the answer is correct.

�  Requirements:
�  1. Completeness: an honest P can convince V

to accept.
�  2. Soundness: V will catch a lying P with high

probability (secure even if P is computationally
unbounded).

Interactive Proofs
�  IPs have revolutionized complexity theory in the last 25

years.
�  IP=PSPACE [LFKN90, Shamir90].
�  PCP Theorem [AS98, ALMSS98]. Hardness of approximation.
� Zero Knowledge Proofs.

�  But IPs have had very little impact in real delegation scenarios.
� Why?
� Not due to lack of applications!

Interactive Proofs
�  Old Answer: Most results on IPs dealt with hard

problems, needed P to be too powerful.
�  But recent constructions focus on “easy” problems

(e.g. Interactive Proofs for Muggles [GKR 08]).
� Allows V to run very quickly, so outsourcing is

useful even though problems are “easy”.
�  P does not need “much” more time to prove

correctness than she does to just solve the problem!

Interactive Proofs
�  Why does GKR not yield a practical protocol out

of the box?
�  P has to do a lot of extra bookkeeping (cubic

blowup in runtime).
� Naively, V has to retain the full input.

This Talk: New Application of IPs
�  To streaming problems: hard because V has to read input in

one-pass streaming manner, but (might be) easy if V could
store the whole input.

�  Fits cloud computing well: streaming pass by V can occur
while uploading data to cloud.

�  V never needs to store entirety of data!

Data Streaming Model
�  Stream: m elements from universe of size n.

�  e.g., S=<x1, x2, ... , xm> = 3,5,3,7,5,4,8,7,5,4,8,6,3,2, …

�  Goal: Compute a function of stream, e.g., median, frequency
moments, heavy hitters.

�  Challenge:

 (i) Limited working memory, i.e., sublinear(n,m).
 (ii) Sequential access to adversarially ordered data.
 (iii) Process each update quickly.

 Slide derived from [McGregor 10]

This Talk: Models
�  Two models:

1.  One message (Non-interactive) [CCM 09/CCMT 12]: After
both observe stream, P sends V an email with the answer, and a
proof attached.

2.  Multiple rounds of interaction [CTY 10]: P and V have a
conversation after both observe stream.

Costs in Our Models

�  Two main costs: words of communication, and V’s working
memory.

�  Other costs: running time, number of messages.

A Two-Pronged Approach
�  First Prong: General purpose implementation to verify

arbitrary computation [CMT12, TRMP12, T13].
�  Building on general-purpose GKR protocol.

�  Second Prong: Develop highly optimized protocols for
specific important problems [CCMT12, CMT10, CTY12,
CCGT13].
� Reporting queries (what value is stored in memory location x

of my database?)
� Matrix multiplication.
� Graph problems like perfect matching.
� Certain kinds of linear programs.
�  Etc.

Non-Interactive Protocols with
Streaming Verifiers: A Sampling

A general technique
�  Arithmetization: Given function f defined on small domain,

replace f with its low-degree extension, LDE(f), as a
polynomial defined over a large field.

�  Can view LDE(f) as error-corrected encoding of f. Error-
correcting properties give V considerable power over P.

�  If two (boolean) functions differ in one location, their LDE’s
will differ in almost all locations.

Second Frequency Moment (F2)
�  Second frequency moment is central streaming problem.

� Captures sample variance, Euclidean norm, data similarity.

�  Definition:
� Let X be the frequency vector of the stream

� a F2 (X) = Xi
2

i=1

n

!

Let X be the frequency vector of the stream.

3 2 1 0

Frequency Vector XRaw data stream over universe {a, b, c, d}

a b c d F2 (X) = 3
2 + 22 +12 =14

Second Frequency Moment
�  [CCMT 12]: (√n comm., space)-protocol for F2.

� Terabytes of data translate to a few MBs of space and
communication.

�  Optimal. Lower bound of Ω(n) on comm. * mem

n n

Optimal. Lower bound of !(n) on comm. * space.

Terabytes of data translate to a few MBs of space
and communication.

F2 Protocol
�  Recall: F2(X)=∑i Xi

2

�  View universe [n] as [√n] x [√n].

Frequency
“Square”

Recall: F2 (X)=! X 2
i

i
!

View universe [n] as [n] x [n].

Frequency Vector X

0 2 4

0 3 3

0 2 0

0 2 4 0 3 3 0 2 0

�  First idea: Have P send the answer “in pieces”:
�  F2(row 1). F2(row 2). And so on. Requires √n communication.

�  V exactly tracks a row at random (denoted in yellow) so if P lies about
any piece, V has a chance of catching her. Requires space √n.

0

Frequency Square

2 4

0 3 3

0 2 0

P sends

Slide derived from [McGregor 10]

20=22+42

18=32+32

4=22

�  Problem: If P lies in only one place, V has small chance of
catching her.

� What we’d like: if P lies about even one piece, she will have to
lie about many.

�  Solution: Have P commit (succinctly) to second frequency

moment of rows of an error-corrected encoding of the
input.

� Note: V can evaluate any row of the low-degree extension
encoding in a streaming fashion.

0

Low-Degree Extension
of Frequency Square

2 4

0 3 3

0 2 0

P sends

20=22+42

18=32+32

0 -1 -5

0 -6 -12

0 -13 -21

26=(-1)2+(-5)2

These values
all lie on
low-degree
polynomial

4=22

180=(-6)2+(-12)2

610=(-13)2+(-21)2

Why study F2 ?
Omitted:

Connectivity,
Counting Triangles,

Shortest s-t path, etc.

Protocol Engineering:
Smart FFTs
�  Naïve implementation of P in F2 protocol requires Ω(n3/2)

time, doesn’t scale to large streams.

�  Using FFT techniques, we reduce this to O(n log n) time.
�  “Standard” FFT algorithm is unsuitable.
�  Use Prime Factor FFT Algorithm instead. Works well over certain

finite fields (which we can choose!), avoids precision issues entirely.

�  Immediately yields fast protocols for many other problems.

F2 Experiments

Multi-round P from [CTY11] vs. Non-interactive P
with and without FFT techniques

General Purpose IPs
(Extending GKR)

Circuits, Fields, and All That

!"# !$# !%# !&#

'# '# '# '#

(# (#

(#

F2 circuit

Saving V Space [CTY12]
�  Can save V space “for free”.

� Reason: V only needs to store one LDE evaluation of the data.
� Can be computed with one streaming pass over input.

�  Fits cloud computing well: pass by V can occur while
uploading data to cloud.

�  The LDE evaluation is KBs in size, even if the input contains
terabytes of data.

Saving V Time [CMT12]
�  Can save V substantial amounts of time (at least for problems

computable by small-depth circuits).
�  E.g. when multiplying two 512x512 matrices, V requires .12s,

while naive matrix multiplication takes .70s.
�  Savings for V will be much larger at larger input sizes, and for

more time-intensive computations.

Minimizing P’s Overhead [CMT12]
�  Brought P’s runtime down from Ω(S3), to O(S log S), where

S is circuit size.
� Key insight: use multilinear extension of circuit within the

protocol.
� Causes enormous cancellation in P’s messages, allowing fast

computation.
Lots of additional engineering in the implementation.

Choosing the “right” finite field to work over.
Using the “right” circuits.
Etc.

Practically speaking, still not good enough on its own.
256 x 256 matrix multiplication takes P 27 minutes.
Naïve implementation of GKR would take trillions of times
longer.

Minimizing P’s Overhead [CMT12]
�  Brought P’s runtime down from Ω(S3), to O(S log S), where

S is circuit size.
� Key insight: use multilinear extension of circuit within the

protocol.
� Causes enormous cancellation in P’s messages, allowing fast

computation.
�  Lots of additional engineering.

� Choosing the “right” finite field to work over.
� Using the “right” circuits.
�  Etc.

�  Practically speaking, still not good enough on its own.
�  256 x 256 matrix multiplication takes P 27 minutes.
� Naïve implementation of GKR would take trillions of times

longer.

Reducing Overhead Further [T13]
�  Downsides to [CMT12] implementation:

�  For “regular” circuits: log S factor runtime overhead for P.
�  For “irregular” circuits: log S factor runtime overhead for P, and

expensive pre-processing phase for V.

Solution for “regular” circuits: Reduce P’s runtime to O(S).
Key idea: use a new arithmetization of the circuit, allowing P to
reuse work across rounds.
Experimental results: 250x speedup over [CMT12].
P less than 10x slower than a C++ program that just evaluates the
circuit.
Example applications: MatMult, DISTINCT, F2, Pattern Matching,
FFTs.

Reducing Overhead Further [T13]
�  Downsides to [CMT12] implementation:

�  For “regular” circuits: log S factor runtime overhead for P.
�  For “irregular” circuits: log S factor runtime overhead for P, and

expensive pre-processing phase for V.

�  Solution for “regular” circuits: Reduce P’s runtime to O(S).
� Key idea: use new arithmetization of the circuit, allowing P to

reuse work across rounds.
�  Experimental results: 250x speedup over [CMT12].
�  P less than 10x slower than a C++ program that just evaluates

the circuit.
�  Example applications: MatMult, DISTINCT, F2, Pattern

Matching, FFTs.

Problem! P time
[CMT12]!

P time
[T13]!

V time!
[Both]!

Rounds!
[T13]!

Protocol
Comm*

[T13]!
!

Circuit
Eval Time

DISTINCT!
(n=220)!

56.6
minutes!

17.2 s! .2 s! 236! 40.7 KB! 1.88 s!

MatMult!
(512 x 512)!

2.7 !
hours!

37.8 s! .1 s! 1361! 5.4 KB! 6.07 s!

Results for Regular Circuits [T13]

Dealing with Irregular Circuits [T13]
�  No magic bullet for dealing with irregular wiring patterns.

� Need some assumption about the computation being outsourced.
�  Is there structure in real-world computations?

�  Yes: Data Parallel computation.
� Any setting where a sub-computation C is applied to many pieces

of data.
� Make no assumptions about C itself.
� These are the sort of problems getting outsourced!

Data

Sub-
Comp

C

Data

Sub-
Comp

C

Data

Sub-
Comp

C

Data

Sub-
Comp

C

Data

Sub-
Comp

C

Data

Sub-
Comp

C

Aggregation

Leveraging Parallelism [T13]
�  Problem: Verify massive parallel computations.

� Directly applying existing results has big overhead.
� Costs depend on number of data pieces.

�  Approach: take advantage of parallelism.
� Reduce V's effort to proportional to size of C.
� Reduce P's overhead to log size of C.
� No dependence on number of data pieces.

�  Key insight: C may be irregular internally, but the
computation is maximally regular between copies of C.

Further Leveraging Parallelism [TRMP12, T13]
�  In our protocols, P and V themselves can be parallelized

(although V runs quickly even without parallelization).
�  Using a GPU, achieved 40x-100x speedups for P, 100x

speedups for V.

Independent Results
�  Recent efforts to build practical argument systems.

�  Setty, McPherson, Blumberg, Vu, Braun, Parno, Walfish
[NDSS12, Security12, EuroSys13]

�  Vu et al. [Oakland13] build a system that:
1.  Starts with a high-level programming language.
2.  Automatically compiles any program in the language into an

arithmetic circuit.
3.  Decides whether GKR implementation from [CMT12] (plus

refinements) or state-of-the-art argument system is more
efficient, and runs the better of the two.

�  Experimental comparison in [Oakland13] shows [CMT12]
significantly faster except for programs with complicated
control flow or that are highly sequential.

Future Directions
1.  Build a system that automatically verifies MapReduce

programs.
�  Main obstacle: interactive proof technology cannot yet handle

data-dependent control flow.
�  Address by combining crypto with interactive proofs?

2.  Interactive proofs for deep circuits (i.e. non-parallel
computation)?

�  Formalizes the question: “Is proving harder than computing?”

References
�  Cormode, Mitzenmacher, T. (ESA 2010)
�  Cormode, T., Yi (VLDB 2012)
�  Cormode, Mitzenmacher, T. (ITCS 2012)
�  T., Roberts, Mitzenmacher, Pfister (HotCloud 2012)
�  Chakrabarti, Cormode, McGregor, T. (ICALP 2009, in submission 2012)

�  T. (in submission, 2013)
�  Chakrabarti, Cormode, Goyal, T. (ongoing, 2013)

Research Interests (So Far)
1.  Verifiable computation (this talk).
2.  Algorithms for massive data sets.

�  Streaming algorithms for pattern mining [MST12].
�  Hashing-based algorithms for set maintenance and sparse recovery

[AGMT11, MT12, JMT13].
3.  Computational learning theory, differential privacy, and

their intersection [STT, COLT12], [TUV, ICALP12], [BT, in

submission], [CTUW, ongoing].
�  Efficient learning in the presence of irrelevant information.
�  Faster algorithms for private data release.

k-way Marginal Queries

Exercise? Healthy? Ice
Cream?

Criminal?

Y Y Y Y

N N N N

Y N Y N

Y N Y Y

•  k-way marginal queries: q has at most k literals.
•  Number of k-way marginal queries is ~dk.

Query on a row: q(x) = Ice Cream?!Criminal?

Query on database: 1
n

q(xi).
i
"

d attributes

n rows

Goal: Private One-Shot Release Mechanism

•  Want to release a private summary of database D such that
for all k-way marginals q:

•  Two parameters to optimize: running time of sanitizer,

and minimal database size required for non-trivial
accuracy guarantees.

q(Summary) - q(D) !.01

Prior Work on Marginals

Minimum DB Size

R
u
n
n
i
n
g

T
i
m
e

Prior Work on Marginals

Minimum DB Size

R
u
n
n
i
n
g

T
i
m
e

dk/2

•Laplace Mechanism
[DN,BDMN,DMNS]

dk=|Q|

Prior Work on Marginals

Minimum DB Size

R
u
n
n
i
n
g

T
i
m
e

2d •[BLR,...]

dk/2

•Laplace Mechanism
[DN,BDMN,DMNS]

k√d

dk=|Q|

Prior Work on Marginals

Minimum DB Size

R
u
n
n
i
n
g

T
i
m
e

2d •[BLR,...]

dk/2

•Laplace Mechanism
[DN,BDMN,DMNS]

dk=|Q|

dC√kk√d

•[HRS]

Prior Work on Marginals

Minimum DB Size

R
u
n
n
i
n
g

T
i
m
e

2d •[BLR,...]

dk/2

•Laplace Mechanism
[DN,BDMN,DMNS]

dC√kk√d

•[HRS]

poly(d,k) •Holy grail

dk=|Q|

Our Result

Minimum DB Size

R
u
n
n
i
n
g

T
i
m
e

2d •[BLR,...]

dk/2

•Laplace Mechanism
[DN,BDMN,DMNS]

dC√kk√d

•[HRS]

poly(d,k) •Holy grail

•This WorkdC√k

dk=|Q|

Our Result [TUV, ICALP12]

Our Result

Minimum DB Size

R
u
n
n
i
n
g

T
i
m
e

2d •[BLR,...]

dk/2

•Laplace Mechanism
[DN,BDMN,DMNS]

dC√kk√d

•[HRS]

poly(d,k) •Holy grail

•This WorkdC√k

dk=|Q|

Ongoing Work [CTUW13]

§ [CTUW13]

Thank you!

What About “Sparse” Streams? [CCGT13]
�  Many streams are over enormous domain sizes (e.g. IPv6 flows)

�  Existing results depend domain size.
� Want costs to depend on stream length instead.

�  Idea: Domain reduction.
� Ask P to provide ‘perfect’ hash function g mapping huge domain

to small one.
� Challenges: ensuring collisions in remapping do not cause

errors (need a way for V to ‘detect’ collisions under g).
�  New protocols that allow P to ‘correct’ collisions online.

�  Bottom line [CCGT13, to be submitted]: near-optimal
tradeoffs in terms of stream length for frequency moments,
graph problems, etc.

A Final Result: MatMult [T13]
�  Let A be any time t, space s algorithm for n x n MatMult.
�  New MatMult protocol:

�  P takes time t + O(n2) and space s + o(n2).
� Optimal runtime up to leading constant assuming no O(n2) time

algorithm for MatMult.
Problem

Size!
Naïve

MatMult
Time

Additional
P time!

V Time! Rounds!
!

Protocol
Comm!

1024 x 1024! 2.17 s! 0.03 s! 0.67 s! 11! 264 bytes!

2048 x 2048! 18.23 s! 0.13 s! 2.89 s! 12! 288 bytes!

