Faster Algorithms for Privately

Releasing Marginals

Justin Thaler (Harvard University)

Jon Ullman (Harvard University)
Salil Vadhan (Harvard University)

K-way Marginal Queries
DE ({0, 119"

Exercise? | Healthy? Ice Criminal?
Cream?

Query on arow: q(x) = Ice Cream? /\ Criminal?
Query on database: (1/n) 2 q(x))

< | =z | =
Z |z |Z2 |~
< | =z | =
< |z |z |~

. k-Way marginal queries: q has at most k literals.

*Number of k—Way marginal queries ~dk,

Goal: Private One-Shot Release
Mechanism

Want to release a summary of D such that for all k—Way

marginals q:
| Summary(q) —q(D)| < .01

Two parameters to optimize: running time of the

sanitizer and minimal database size required.

®m3—— a3 —3535c X

Prior Work on Marginals

Minimum DB Size

®m3—— 0a>—-—55c X0

d=|Q|

Prior Work on Marginals

*aplace Mechanism
[DN,BDMN,DMNS]

dk/Z
Minimum DB Size

m"n3—— 0> —3>53>5Cc 0

Prior Work on Marginals

24 *[BLR,...]
d“=|Q] *Laplace Mechanism
[DN,BDMN,DMNS]
k+/d k2

Minimum DB Size

®"3—— > —335Cc X

Prior Work on Marginals

24 *[BLR,...]
dk=|Q| *[HRS] *| aplace Mechanism
[DN,BDMN,DMNS]
k/d dCvk k2

Minimum DB Size

®3—— > —3535c ™

Prior Work on Marginals

29 *[BLR,...]
d“=|Q| *[HRS] *Laplace Mechanism
[DN,BDMN,DMNS]
poly(d,k)| *Holy grail
k~/d dCvk k2

Minimum DB Size

®m3—— S —-—335c o

Our Result

| aplace Mechanism
[DN,BDMN,DMNS]

24 *[BLR,...]
d“=|Q| *[HRS]
dcvk e This Work
poly(d,k)] *Holy gralil
kv/d dCvk 12

Minimum DB Size

Our Results

* Faster algorithm for privately releasing marginals with
small worst-case error (accuracy *.01).

* Time: dc\/k, minimum database size: n > d<Vk,

* First sanitizer for k-way marginals with running time
and minimal DB size sublinear in total number of k-
way marginals ~dk.

* Can handle more general settings as well (e.g. where

rows of the DB represent decision lists).

Our Algorithm
DE ({0, 119"

X4 X5 X3 Xy
1 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

* View each row x as a function f_from queries to {0, 1}:

f (q) = 1iff row x satisfies marginal q.

Our Algorithm
DE ({0, 1}9)"

X4 X5 X3 Xy
1 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

* View each row x as a function f_from queries to {0, 1}:
f (q) = 1iff row x satisfies marginal q.
* For every x, there exists a d-variate polynomial p_ such that:
*|p(q)-f.(q)| = .01 for all q corresponding to k-way marginals.
* Degree(p) < CVk for some constant C.
* All coefficients of p are in [idc\/k].

Px1(y) = 3y1¥2 T 7y,y4T -
Pa(Y) = 4y1¥2-3¥,y4T- -
P(Y) = -3y1¥,T2y,y, T ..

Pa(Y) = 8y ¥ty yat. ..

Our Algorithm

D& ({0, 1}9)"

X1 X5 X3

1
0
1
0

S |1 O | O | =

Our Algorithm

D& ({0, 1}9)"

X, X, X; X,
P (Y) = 3y Y, 7y,y, 7T .. 1 1 1 0
Pxo(y) = 4y1¥2-3yayat--. 0 1 0 0
px3<}’) — '3}’1}72+2}’2}’4+- .o 0 0 1 1
Pxa(y) = 8y 1y, TYays™T- - 0 0 0 1

*Let pp(y) = (1/n) 2 p(y) be the average of the polynomials approximating each row.

*We output a noisy version of Pp-

-

Our Algorithm

D& ({0, 1}9)"

X, X, b & X,
P (Y) = 3y Y, 7y,y, 7T .. 1 1 1 0
Pxo(y) = 4y1¥2-3yayat--. 0 1 0 0
sz(}’) — '3}71}’2+2}’2}’4+- .o 0 0 1 1
Pxa(y) = 8y 1y, TYays™T- - 0 0 0 1

*We output a noisy version of Pp-

*Degree(pp) = CVk. So about dVk coefficients.
*pp has coefficients in [idc\/k], cach coeft has sensitivity ~dVk/m
*Add independent Laplace noise to each coeft of magnitude ~dVk /.

*Let pp(y) = (1/n) 2 p(y) be the average of the polynomials approximating each row.

/

Conclusion

* Previous sanitizers [HRS, etc.] gave a learning algorithm
restricted access to the DB.
* We cut out the learning algorithm, and give our sanitizer
direct access to the database.
* We use the same structural results results underlying
many learning algorithms.
* Does relying on learning algorithms for differential privacy

unnecessarily tie our hands?

