Faster Algorithms for Privately Releasing Marginals

Justin Thaler (Harvard University)

Jon Ullman (Harvard University)

Salil Vadhan (Harvard University)

K-way Marginal Queries

$$D = (\{0, 1\}^d)^n$$

Exercise?	Healthy?	Ice Cream?	Criminal?
Y	Y	Y	Y
N	N	N	N
Y	N	Y	N
Y	N	Y	Y

Query on a row: $q(x) = Ice Cream? \land Criminal?$

Query on database: $(1/n) \sum_{i} q(x_i)$

- k-way marginal queries: q has at most k literals.
- •Number of k-way marginal queries $\sim d^k$.

Goal: Private One-Shot Release Mechanism

• Want to release a *summary* of D such that for all k-way marginals q:

$$|Summary(q) - q(D)| \le .01$$

• Two parameters to optimize: running time of the sanitizer and minimal database size required.

Minimum DB Size

Our Result

Our Results

- Faster algorithm for privately releasing marginals with small worst-case error (accuracy $\pm .01$).
 - Time: $d^{C\sqrt{k}}$, minimum database size: $n \ge d^{C\sqrt{k}}$.
 - First sanitizer for k-way marginals with running time and minimal DB size sublinear in total number of k-way marginals $\sim d^k$.
 - Can handle more general settings as well (e.g. where rows of the DB represent *decision lists*).

$$D = (\{0, 1\}^d)^n$$

\mathbf{x}_1	\mathbf{x}_2	\mathbf{X}_3	\mathbf{X}_4
1	1	1	0
0	1	0	0
0	0	1	1
0	0	0	1

• View each row x as a function f_x from queries to $\{0, 1\}$: $f_x(q) = 1$ iff row x satisfies marginal q.

$$D = (\{0, 1\}^d)^n$$

\mathbf{x}_1	\mathbf{x}_2	\mathbf{X}_3	\mathbf{X}_4
1	1	1	0
0	1	0	0
0	0	1	1
0	0	0	1

- View each row x as a function f_x from queries to $\{0, 1\}$: $f_x(q) = 1$ iff row x satisfies marginal q.
- For every x, there exists a d-variate polynomial p_x such that:
 - $|p_x(q)-f_x(q)| \le .01$ for all q corresponding to k-way marginals.
 - Degree(p) $\leq C\sqrt{k}$ for some constant C.
 - All coefficients of p are in $[\pm d^{C\sqrt{k}}]$.

$$D = (\{0, 1\}^d)^n$$

$p_{x1}(y) = 3y_1y_2 + 7y_2y_4 + \dots$
$p_{x2}(y) = 4y_1y_2 - 3y_2y_4 + \dots$
$p_{x3}(y) = -3y_1y_2 + 2y_2y_4 + \dots$
$p_{x4}(y) = 8y_1y_2 + y_2y_4 + \dots$

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
1	1	1	0
0	1	0	0
0	0	1	1
0	0	0	1

$$D = (\{0, 1\}^d)^n$$

$$p_{x1}(y) = 3y_1y_2 + 7y_2y_4 + \dots$$

$$p_{x2}(y) = 4y_1y_2 - 3y_2y_4 + \dots$$

$$p_{x3}(y) = -3y_1y_2 + 2y_2y_4 + \dots$$

$$p_{x4}(y) = 8y_1y_2 + y_2y_4 + \dots$$

x ₁	\mathbf{x}_2	\mathbf{x}_3	X ₄
1	1	1	0
0	1	0	0
0	0	1	1
0	0	0	1

- •Let $p_D(y) = (1/n) \sum_{i} p_{xi}(y)$ be the average of the polynomials approximating each row.
- •We output a noisy version of p_D.

$$D = (\{0, 1\}^d)^n$$

$p_{x1}(y) = 3y_1y_2 + 7y_2y_4 + \dots$
$p_{x2}(y) = 4y_1y_2 - 3y_2y_4 + \dots$
$p_{x3}(y) = -3y_1y_2 + 2y_2y_4 + \dots$
$p_{x4}(y) = 8y_1y_2 + y_2y_4 + \dots$

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
1	1	1	0
0	1	0	0
0	0	1	1
0	0	0	1

- •Let $p_D(y) = (1/n) \sum_{i} p_{xi}(y)$ be the average of the polynomials approximating each row.
- •We output a noisy version of p_D.
 - •Degree(p_D) = $C\sqrt{k}$. So about $d^{C\sqrt{k}}$ coefficients.
 - •p_D has coefficients in $[\pm d^{C\sqrt{k}}]$, each coeff has sensitivity $\sim d^{C\sqrt{k}}/n$
 - •Add independent Laplace noise to each coeff of magnitude $\sim d^{C\sqrt{k}}/n$.

Conclusion

- Previous sanitizers [HRS, etc.] gave a learning algorithm restricted access to the DB.
- We cut out the learning algorithm, and give our sanitizer direct access to the database.
 - We use the same structural results results underlying many learning algorithms.
- Does relying on learning algorithms for differential privacy unnecessarily tie our hands?