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K-way Marginal Queries
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Exercise? | Healthy? Ice Criminal?
Cream?

Query on arow: q(x) = Ice Cream? /\ Criminal?
Query on database: (1/n) 2 q(x))
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. k-Way marginal queries: q has at most k literals.

*Number of k—Way marginal queries ~dk,




Goal: Private One-Shot Release
Mechanism

Want to release a summary of D such that for all k—Way

marginals q:
| Summary(q) —q(D)| < .01

Two parameters to optimize: running time of the

sanitizer and minimal database size required.
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Our Results

* Faster algorithm for privately releasing marginals with
small worst-case error (accuracy *.01).

* Time: dc\/k, minimum database size: n > d<Vk,

* First sanitizer for k-way marginals with running time
and minimal DB size sublinear in total number of k-
way marginals ~dk.

* Can handle more general settings as well (e.g. where

rows of the DB represent decision lists).




Our Algorithm
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X4 X5 X3 Xy
1 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

* View each row x as a function f_from queries to {0, 1}:

f (q) = 1iff row x satisfies marginal q.
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X4 X5 X3 Xy
1 1 1 0
0 1 0 0
0 0 1 1
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* View each row x as a function f_from queries to {0, 1}:
f (q) = 1iff row x satisfies marginal q.
* For every x, there exists a d-variate polynomial p_ such that:
*|p(q)-f.(q)| = .01 for all q corresponding to k-way marginals.
* Degree(p) < CVk for some constant C.
* All coefficients of p are in [idc\/k].
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Our Algorithm
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*Let pp(y) = (1/n) 2 p(y) be the average of the polynomials approximating each row.

*We output a noisy version of Pp-
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*We output a noisy version of Pp-

*Degree(pp) = CVk. So about dVk coefficients.
*pp has coefficients in [idc\/k], cach coeft has sensitivity ~dVk/m
*Add independent Laplace noise to each coeft of magnitude ~dVk /.

*Let pp(y) = (1/n) 2 p(y) be the average of the polynomials approximating each row.
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Conclusion

* Previous sanitizers [HRS, etc.] gave a learning algorithm
restricted access to the DB.
* We cut out the learning algorithm, and give our sanitizer
direct access to the database.
* We use the same structural results results underlying
many learning algorithms.
* Does relying on learning algorithms for differential privacy

unnecessarily tie our hands?




