Faster Algorithms for Privately Releasing Marginals Justin Thaler (Harvard University) Jon Ullman (Harvard University) Salil Vadhan (Harvard University) ## K-way Marginal Queries $$D = (\{0, 1\}^d)^n$$ | Exercise? | Healthy? | Ice
Cream? | Criminal? | |-----------|----------|---------------|-----------| | Y | Y | Y | Y | | N | N | N | N | | Y | N | Y | N | | Y | N | Y | Y | Query on a row: $q(x) = Ice Cream? \land Criminal?$ Query on database: $(1/n) \sum_{i} q(x_i)$ - k-way marginal queries: q has at most k literals. - •Number of k-way marginal queries $\sim d^k$. ## Goal: Private One-Shot Release Mechanism • Want to release a *summary* of D such that for all k-way marginals q: $$|Summary(q) - q(D)| \le .01$$ • Two parameters to optimize: running time of the sanitizer and minimal database size required. Minimum DB Size #### Our Result #### Our Results - Faster algorithm for privately releasing marginals with small worst-case error (accuracy $\pm .01$). - Time: $d^{C\sqrt{k}}$, minimum database size: $n \ge d^{C\sqrt{k}}$. - First sanitizer for k-way marginals with running time and minimal DB size sublinear in total number of k-way marginals $\sim d^k$. - Can handle more general settings as well (e.g. where rows of the DB represent *decision lists*). $$D = (\{0, 1\}^d)^n$$ | \mathbf{x}_1 | \mathbf{x}_2 | \mathbf{X}_3 | \mathbf{X}_4 | |----------------|----------------|----------------|----------------| | 1 | 1 | 1 | 0 | | 0 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | | 0 | 0 | 0 | 1 | • View each row x as a function f_x from queries to $\{0, 1\}$: $f_x(q) = 1$ iff row x satisfies marginal q. $$D = (\{0, 1\}^d)^n$$ | \mathbf{x}_1 | \mathbf{x}_2 | \mathbf{X}_3 | \mathbf{X}_4 | |----------------|----------------|----------------|----------------| | 1 | 1 | 1 | 0 | | 0 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | | 0 | 0 | 0 | 1 | - View each row x as a function f_x from queries to $\{0, 1\}$: $f_x(q) = 1$ iff row x satisfies marginal q. - For every x, there exists a d-variate polynomial p_x such that: - $|p_x(q)-f_x(q)| \le .01$ for all q corresponding to k-way marginals. - Degree(p) $\leq C\sqrt{k}$ for some constant C. - All coefficients of p are in $[\pm d^{C\sqrt{k}}]$. $$D = (\{0, 1\}^d)^n$$ | $p_{x1}(y) = 3y_1y_2 + 7y_2y_4 + \dots$ | |--| | $p_{x2}(y) = 4y_1y_2 - 3y_2y_4 + \dots$ | | $p_{x3}(y) = -3y_1y_2 + 2y_2y_4 + \dots$ | | $p_{x4}(y) = 8y_1y_2 + y_2y_4 + \dots$ | | \mathbf{x}_1 | \mathbf{x}_2 | \mathbf{x}_3 | \mathbf{x}_4 | |----------------|----------------|----------------|----------------| | 1 | 1 | 1 | 0 | | 0 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | | 0 | 0 | 0 | 1 | $$D = (\{0, 1\}^d)^n$$ $$p_{x1}(y) = 3y_1y_2 + 7y_2y_4 + \dots$$ $$p_{x2}(y) = 4y_1y_2 - 3y_2y_4 + \dots$$ $$p_{x3}(y) = -3y_1y_2 + 2y_2y_4 + \dots$$ $$p_{x4}(y) = 8y_1y_2 + y_2y_4 + \dots$$ | x ₁ | \mathbf{x}_2 | \mathbf{x}_3 | X ₄ | |-----------------------|----------------|----------------|-----------------------| | 1 | 1 | 1 | 0 | | 0 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | | 0 | 0 | 0 | 1 | - •Let $p_D(y) = (1/n) \sum_{i} p_{xi}(y)$ be the average of the polynomials approximating each row. - •We output a noisy version of p_D. $$D = (\{0, 1\}^d)^n$$ | $p_{x1}(y) = 3y_1y_2 + 7y_2y_4 + \dots$ | |--| | $p_{x2}(y) = 4y_1y_2 - 3y_2y_4 + \dots$ | | $p_{x3}(y) = -3y_1y_2 + 2y_2y_4 + \dots$ | | $p_{x4}(y) = 8y_1y_2 + y_2y_4 + \dots$ | | \mathbf{x}_1 | \mathbf{x}_2 | \mathbf{x}_3 | \mathbf{x}_4 | |----------------|----------------|----------------|----------------| | 1 | 1 | 1 | 0 | | 0 | 1 | 0 | 0 | | 0 | 0 | 1 | 1 | | 0 | 0 | 0 | 1 | - •Let $p_D(y) = (1/n) \sum_{i} p_{xi}(y)$ be the average of the polynomials approximating each row. - •We output a noisy version of p_D. - •Degree(p_D) = $C\sqrt{k}$. So about $d^{C\sqrt{k}}$ coefficients. - •p_D has coefficients in $[\pm d^{C\sqrt{k}}]$, each coeff has sensitivity $\sim d^{C\sqrt{k}}/n$ - •Add independent Laplace noise to each coeff of magnitude $\sim d^{C\sqrt{k}}/n$. #### Conclusion - Previous sanitizers [HRS, etc.] gave a learning algorithm restricted access to the DB. - We cut out the learning algorithm, and give our sanitizer direct access to the database. - We use the same structural results results underlying many learning algorithms. - Does relying on learning algorithms for differential privacy unnecessarily tie our hands?