
Justin Thaler, Simons Institute, UC Berkeley
Joint Work with:

Amit Chakrabarti, Dartmouth
Graham Cormode, University of Warwick

Navin Goyal, Microsoft Research India

Annotations For Sparse Data
Streams

Outsourcing
�  Many applications require outsourcing computation to

untrusted service providers.
� Main motivation: commercial cloud computing services.
� Also, weak peripheral devices; fast but faulty co-processors.
� Volunteer Computing (SETI@home,World Community

Grid, etc.)

�  User requires a guarantee that the cloud performed the
computation correctly.

AWS Customer Agreement
WE… MAKE NO REPRESENTATIONS OF ANY
KIND … THAT THE SERVICE OR THIRD PARTY
CONTENT WILL BE UNINTERRUPTED, ERROR
FREE OR FREE OF HARMFUL COMPONENTS,
OR THAT ANY CONTENT … WILL BE SECURE
OR NOT OTHERWISE LOST OR DAMAGED.

Goals of Verifiable Computation
�  Goal 1: Provide user with a correctness guarantee.
�  Goal 2: User must operate within the restrictive data

streaming paradigm (models a user who lacks the
resources to store the input locally).

Annotated Data Stream (ADS) Model
�  Problem: Given stream S, want to compute f(S).

 S= [x1, x2, x3, x4, x5, x6, x7, x8, x9…, xm]
�  Prover P: Augments S with h-bit annotation.

 (S, a)= [a0, x1, x2, x3, a1, x4, x5, x6, x7, a2, x8, x9…, xm, ah]

�  Verifier V: Process annotated data stream. Output an answer,

or reject annotation as invalid.
�  Captures “Merlin-Arthur protocols with a streaming verifier”.

Introduced in [CCM09/CCMT14].
�  All algorithms in this talk apply to strict turnstile streaming model.

Annotation is a function of
previous stream elements

Annotated Data Streams
�  Requirements:

� 1. Completeness: honest P will convince
verifier to output correct answer.

� 2. Soundness: no P can convince V to
output an incorrect answer, except with
tiny probability.

�  Goal: Minimize annotation length and size of
V’s working memory.

Prior Work
�  [CCM09/CCMT14] introduced ADS model, gave optimal

(annotation length, space) tradeoffs for INDEX, frequency
moments, some graph problems, etc.

�  [CMT10] gave optimal ADS protocols for still more problems.
�  [CMT12] gave efficient implementations of protocols from

[CCM09/CCMT14, CMT10].

�  [KP13, GR13, CTY12, CCMTV14] study variants of the
ADS model.

This Work: “Sparse” Streams
�  Many streams are over enormous domain sizes (e.g. IPv6 flows).

�  Existing results have costs that depend on domain size
�  E.g. [CCM09] gives (√n annotation, space)-protocol for F2.
� This is optimal for “dense” streams (with length

�  We want costs to depend only on the stream length
�  Bottom line: we give near-optimal tradeoffs in terms of for

frequency moments, graph problems, etc.

n n
n.

m

m =!(n)).
m.

Problem Our Costs
(ann. length, space)

Previous Best
(ann. length, space)

[CCM09/CCMT14, CMT10]

Lower Bound

INDEX, MEDIAN

F2, PERFECT
MATCHING,
CONNECTIVITY,
BIPARTITENESS

(x, y) : x ! y "m

E.g. (m, m)

(x, y) : x ! y " n.

E.g. (n, n)
x ! y ="(m).

(x, y) : x ! y "m

E.g. (m2/3, m2/3)

(x, y) : x ! y " n.

E.g. (n, n)
x ! y ="(m).

Problem Our Costs
(ann. length, space)

Previous Best
(ann. length, space)

[CCM09/CCMT14, CMT10]

Lower Bound

INDEX, MEDIAN

F2, PERFECT
MATCHING,
CONNECTIVITY,
BIPARTITENESS

(x, y) : x ! y "m

E.g. (m, m)

(x, y) : x ! y " n.

E.g. (n, n)
x ! y ="(m).

(x, y) : x ! y "m

E.g. (m2/3, m2/3)

(x, y) : x ! y " n.

E.g. (n, n)
x ! y ="(m).

Other
Results:

• Give the first explicit f for which any ADS protocol must have

max{ann. length, space cost} =
~
!(C(f)), where C(f) is

space complexity of f in standard streaming model.
• Improved protocol for counting triangles in sparse graphs.
• Extensions to general turnstile stream update model.

Case Study: Frequency Moments

Second Frequency Moment (F2)
�  F2 is a central streaming problem.

� Captures sample variance, Euclidean norm, data similarity.

�  Definition:
� Let X be the frequency vector of the stream

� a F2 (X) = Xi
2

i=1

n

!

Let X be the frequency vector of the stream.

3 2 1 0

Frequency Vector XRaw data stream over universe {a, b, c, d}

a b c d F2 (X) = 3
2 + 22 +12 =14

Prior Work
�  [CCM09]: (√n annotation, space)-protocol for F2.
�  Protocol is more general: applies to any function
 where is a polynomial of constant degree.

n n

H (X) = p(Xi
i=1

n

!), p

F2 Protocol for Sparse Streams

Protocol Overview
�  Basic idea: Domain reduction.

� At start of S, P gives hash function mapping huge domain to
small domain Then P and V run “dense” F2 protocol on

Many challenges!
Ensuring P does not introduce collisions in remapping to cause errors (need a
way for V to ‘detect’ collisions under).
P does not know in advance, because depends on the stream.
To achieve general (annotation length, space) tradeoffs, need a way for V to
avoid storing complete description of

[n]
[r].[r].

g

Protocol Overview
�  Basic idea: Domain reduction.

� At start of S, P gives hash function mapping huge domain to
small domain Then P and V run “dense” F2 protocol on

� Many challenges!
�  Ensuring P does not introduce collisions in remapping to cause errors (need

a way for V to ‘detect’ collisions under).
�  P does not know in advance, because depends on the stream.
�  To achieve general (annotation length, space) tradeoffs, need a way for V to

avoid storing complete description of

g
g g

g.

[n]
[r].[r].

g

Basic Idea: Domain Reduction
�  At start of S, P gives hash function mapping huge domain

to small domain Then P and V run “dense” F2 protocol on
“mapped-down” stream over

�  P claims is injective on all items with non-zero frequency in S.
�  The larger , the smaller description length.
�  But the larger , the more expensive the dense F2 protocol.
�  We choose to balance these costs.

[n]

[r].
[r].

r
r

r

g

g's

g

Challenge 1: How Can V Check Injectivity?
�  Suppose we have buckets, and a stream S’ of updates of the

form , indicating that item is inserted into
bucket

�  Call S’ an INJECTION if no bucket receives two distinct
elements

�  If V can solve the INJECTION problem, V can determine
whether is injective on S.

(i,b)! [n]"[r] i
b.

b
i ! j.

g

r

An Optimal INJECTION Protocol
�  Solution: Let denote the number of times item is

inserted into bucket b.
�  Define three -dimensional vectors via:

�  Lemma: iff the stream is an injection.
�  We extend “dense” F2 protocol to check this equality with

(annotation, space).

u,v,w

X(i,b)

r

ub = X(j,b)j![n]" ,

vb = X(j,b)j![n]" # j,

wb = X(j,b)j![n]" # j2.

v2bb![r]" = ub #wbb![r]"

r r

i

Challenge 2: P Does Not Know g In Advance
�  How does one construct a hash function that is injective on a

set with (cf. [FK84]).
�  Step 1: Choose at random from a pairwise

independent hash family (requires O(log n) bits to specify).
�  Step 2: Append to a list of all items in that collide with

any other item, with a special hash value for each.
�  In expectation, at most items are involved in a collision,

so total description length of is

|T |!m?T
g

g1 :[n]! [r]
g1

g1

m2 / r
O(m2 logn / r).g

TL

“Complete” F2 Protocol
�  P sends only at start of S.
�  While processing S, V runs “dense” F2 protocol on the

“mapped-down” stream, using as the hash function.
�  At end of S, P gives list of items involved in a collision under
 along with their frequencies.
�  Assuming is honestly specified, V can compute these items’

contribution to F2 and remove them from the stream.
�  is (claimed to be) injective on the remaining items. V checks

this using the INJECTION protocol.
�  It remains for V to check that the list was honestly specified.

g1

g1

g1

g1,
L

L

L

MULTI-INDEX Protocol
�  Given: A stream S, followed by a list of items and their

claimed frequencies
�  Goal: Check whether for all with cost equal to

that of a single INDEX query.
�  Basic Idea: Let be the -dimensional vector such that

for all and otherwise. Enough to check that

X*
i.
Xi = X

*
i i ! L

z n zi =1
i ! L zi = 0

0 = zi ! (Xi "i#[n]$ X*
i)
2.

L

MULTI-INDEX Protocol
�  Enough to check that
�  Protocol proceeds in “stages”. Stage j makes use of a separate

pair-wise independent hash function
�  Stage used to check that where the sum is

only over items “isolated” under but not under for
�  W.h.p., only stages needed w.h.p. before all have

been isolated.
�  Inductive soundness proof: V can “trust” the results of Stage j as

long as she can also trust the results of Stage j+1. Final stage
can be trusted directly.

0 = zi ! (Xi "i#[n]$ X*
i)
2.

hj :[n]! [r].

0 = zi ! (Xi "i# X*
i)
2,

hj, hj ' j ' < j.
j

i
O(1) i ! L

Open Questions
�  We gave F2 protocol with ann. length and space for any
 Best lower bound says Close this gap.
�  Give any explicit function for which any ADS protocol must have

max{ann. length, space cost} , where is input size.
�  Understand the power of interaction in streaming verification.

�  [CTY10]: A logarithmic cost protocol for F2 with rounds of
interaction between P and V.

�  [CCMTV14]: A logarithmic cost protocol for INDEX with 2 rounds
of interaction between P and V.

�  Is there a logarithmic cost protocol for F2 with O(1) rounds of
interaction? Lower bounds of [CCMTV14] give evidence for “NO”.

� Closely related to long-open questions in communication complexity.

x y
x ! y "m. x ! y ="(m).

=!(N1/2+!) N

logn

Thank you!

