
COSC 544 Probabilistic Proof Systems 10/17/17

A State of the Art MIP For Circuit Satisfiability
Lecturer: Justin Thaler

1 A 2-Prover MIP for Low-Depth Arithmetic Circuit Satisfiability

The succinct argument from the previous lecture can be directly adapted to yield a 2-prover MIP. The idea
is to use the second prover to function as the polynomial commitment scheme.

In more detail, the verifier uses the first prover to apply the GKR protocol to the claim C(x,w) = y. As
explained last lecture, at the end of this protocol, the prover makes a claim about w̃(r).

Last lecture, this claim was checked by forcing the prover to reveal w̃(r) via the polynomial commitment
protocol (which itself involved a set-commitment combined with a low-degree test).

In the MIP, the verifier simply uses the second prover to play the role of the polynomial commitment
scheme (i.e., to provide a claimed value for w̃(r) that does not depend on the questions the verifier asked to
the first prover, and to execute a low-degree test).

For example, if the low-degree test used is the point-versus-line test, then the verifier picks a random
line λ in Flogn containing r, and sends λ to the second prover, who is asked to respond with a univariate
polynomial of degree logn claimed to equal w̃ restricted to λ . Since r is on the line λ , this univariate
polynomial implicitly specifies w̃(r), and the verifier checks that this value matches the first prover’s claim
about w̃(r).

2 A 2-Prover MIP for General Arithmetic Circuit Satisfiability

2.1 Motivation

A downside of the 2-prover MIP for arithmetic circuit satisfiability from the previous section is that the
communication cost and the verifier’s runtime grow linearly with the circuit depth. So the protocol does not
save the verifier time for deep, narrow circuits.

In general, this is not a major downside, because Lecture 11 explained that any computer program
running in time T can be turned into an equivalent instance of arithmetic circuit satisfiability where the
circuit is short and wide rather than long and narrow (specifically, the circuit has depth roughly O(logT)).

Nonetheless, it is interesting to give a 2-prover MIP that directly handles deep, narrow circuits as effi-
ciently as it handles short and wide ones. In so doing, we will see some ideas that will recur in later lectures
when we study argument systems based on PCPs and linear PCPs.

The 2-Prover MIP of this section is from Blumberg et al. [BTVW14]. It combines several new ideas
with techniques from the original MIP = NEXP proof of [BFL91], as well as the GKR protocol [GKR08]
and its refinements by Cormode, Mitzenmacher, and Thaler [CMT12].

1

2.2 Protocol Summary

2.2.1 Terminology

Let C be an arithmetic circuit over a field F taking an explicit input x and a non-deterministic input w.
Let S = 2s denote the number of gates in C, and assign each gate in C a binary label in {0,1}s. Refer
to an assignment of values to each gate of C as a transcript of C, and view the transcript as a function
W : {0,1}s→ F mapping gate labels to their values.

Given a claim that C(x,w) = y, a correct transcript for is a transcript in which the values assigned to the
input gates are those of x, the intermediate values correspond to the correct operation of each gate in C, and
the values assigned to the output gates are y. The arithmetic circuit satisfiability problem on instance Given
a triple {C,x,y} is equivalent to determining whether there is a correct transcript for {C,x,y}.

2.2.2 The MIP

The MIP works by having P1 claim find and “hold” an extension Z of a correct transcript W for {C,x,y}.
If the prover is honest, then Z will equal W̃ , the multilinear extension of W . The protocol then identifies a
polynomial gx,y,Z : F3s→ F (which depends on x, y, and Z) satisfying the following property: gx,y,Z(a,b,c) =
0 for all Boolean inputs (a,b,c) ∈ {0,1}3s ⇐⇒ Z is indeed an extension of a correct transcript W .

To check that gx,y,Z vanishes at all Boolean inputs, the protocol identifies a related polynomial hx,y,Z such
that gx,y,Z vanishes at all Boolean inputs⇐⇒ the following equation holds:

∑
(a,b,c)∈{0,1}3s

hx,y,Z(a,b,c) = 0. (1)

(Strictly speaking, the polynomial hx,y,Z is randomly generated, and there is a small chance over the random
choice of hx,y,Z that Equation (1) holds even though gx,y,Z does not vanish at all Boolean inputs). The MIP
applies the sum-check protocol to the polynomial hx,y,Z to compute this sum (note that if Z is a low-degree
polynomial, then so is hx,y,Z , as is required both to control costs and guarantee soundness in the sum-check
protocol).

At the end of the sum-check protocol, V needs to evaluate hx,y,Z at a random point, which in turn requires
evaluating Z at a random point r ∈ Fs. Unfortunately, V cannot compute Z(r), since V does not have access
to the polynomial Z (as Z only “exists” in P1’s head). Instead, V asks P2 to send her Z(r), using a primitive
called a low-degree test. Specifically, P2 is asked to send Z restricted to a plane Q, where Q is chosen to be
a random plane in Fs containing r. This forces P2 to implicitly make a claim about Z(r) (note that P2 does
not know which point in Q is r); V rejects if P1 and P2’s claims about Z(r) are inconsistent, and accepts
otherwise.

The low-degree test cannot guarantee that Z itself is a low-degree polynomial, since V only ever inspects
Z at a small number of points. Hence it is impossible to argue that hx,y,Z itself satisfies Equation (1): the
soundness analysis for the sum-check protocol breaks down if the polynomial to which it is applied has large
degree. However, the low-degree test does guarantee that if P1 and P2’s claims about Z(r) are consistent
with non-negligible probability over the random choice of r, then Z is close to a low-degree polynomial
Y , in the sense that Y (r′) = Z(r′) for a large fraction of points r′ ∈ F3s. Since hx,y,Y is low-degree, it
is straightforward to tweak the soundness analysis of the sum-check protocol to argue that hx,y,Y satisfies
Equation (1), and hence that Y extends a correct transcript for {C,x,y} (cf. Theorem 2.2).

Preview: The importance of checking that a polynomial vanishes on designated a subspace. The
problem of checking that a certain polynomial gx,y,Z vanishes on a designated subspace plays a central role

2

in many MIPs and PCPs. The problem is sometimes referred to as checking a Vanishing Reed-Solomon
code [BS08].

This problem will arise several more times in this course, including in state of the art PCPs and linear
PCPs described in several lectures. One difference is that in the PCP and linear PCPs of later lectures, the
polynomial gx,y,Z is univariate, instead of (3s)-variate as in the MIP considered here.

Comparison to the GKR Protocol. While the GKR protocol verifies the claim C(x,w) = y layer by layer,
with a a different instance of the sum-check protocol required for each layer of C, the MIP of this section
verifies the whole circuit in one shot, using a single invocation of the sum-check protocol. The reason the
GKR protocol must work layer-by-layer is that the verifier must force the prover to make a claim about (the
multilinear extension of) the input alone, since the verifier never materializes the intermediate gates of the
circuit. This is not necessary in the multi-prover setting: in the MIP, P1 makes a claim about an extension Z
of the entire transcript. V cannot check this claim independently, but that is okay because there is a second
prover to ask for help.

2.3 Protocol Details

Notation. Let add,mult : {0,1}3s→{0,1} denote the functions that take as input three gate labels (a,b,c)
from C and outputs 1 if and only if gate a adds (respectively, multiplies) the outputs of gates b and c.
While the GKR protocol had separate functions addi and multi for each layer of C, the MIP of this section
arithmetizes all of C at once. We also add a third wiring predicate, which has no analog within the GKR
protocol: let io : {0,1}3s → {0,1} denote the function that returns 1 when gate a is either a gate from the
explicit input x or one of the output gates, and gates b and c are the in-neighbors of a (input gates have
in-neighbors b = c = 0).

Notice that add, mult, and io are independent of the inputs x and purported outputs y. The final function
that plays a role in the MIP does depend on x and y. Define Ix,y : {0,1}s→ F such that Ix,y(a) = xa if a is the
label of an input gate, Ix,y(a) = ya if a is the label of an output gate, and Ix,y(a) = 0 otherwise.

Lemma 2.1. For Gx,y,W (a,b,c) : {0,1}3s→ F defined as below, Gx,y,W (a,b,c) = 0 for all (a,b,c)∈ {0,1}3s

if and only if W is a correct transcript for {C,x,y}:

Gx,y,W (a,b,c)= io(a,b,c)·(Ix,y(a)−W (a))+add(a,b,c)·(W (a)−(W (b)+W (c)))+mult(a,b,c)·(W (a)−W (b)·W (c)).

Proof. If W is not a correct transcript, there are five cases:

1. Suppose a ∈ {0,1}s is the label of an input gate. If W (a) 6= xa, then Gx,y,W (a,0,0) = Ix,y(a)−W (a) =
xa−W (a) 6= 0.

2. Suppose a ∈ {0,1}s is the label of a non-output addition gate with in-neighbors b and c. If W (a) 6=
W (b)+W (c), then Gx,y,W (a,b,c) =W (a)− (W (b)+W (c)) 6= 0.

3. Suppose a ∈ {0,1}s is the label of a non-output multiplication gate with in-neighbors b and c. If
W (a) 6=W (b) ·W (c), then Gx,y,W (a,b,c) =W (a)− (W (b) ·W (c)) 6= 0.

4. Suppose a ∈ {0,1}s is the label of an output addition gate with in-neighbors b and c. If ya 6=W (b)+
W (c), then Gx,y,W (a,b,c) = Ix,y(a)−W (a)+(W (a)− (W (b)+W (c))) = ya− (W (b)+W (c)) 6= 0.

3

5. Suppose a ∈ {0,1}s is the label of an output multiplication gate with in-neighbors b and c. If ya 6=
W (b) ·W (c), then Gx,y,W (a,b,c) = Ix,y(a)−W (a)+(W (a)−(W (b) ·W (c))) = ya−(W (b) ·W (c)) 6= 0.

On the other hand, if W is a correct transcript then it is immediate from the definition of Gx,y,W that
Gx,y,W (a,b,c) = 0 for all (a,b,c) ∈ {0,1}3s.

For any polynomial Z : Fs→ F, define the associated polynomial:

gx,y,Z(a,b,c)= ĩo(a,b,c)· (̃Ix,y(a)−Z(a))+ ãdd(a,b,c)·(Z(a)−(Z(b)+Z(c)))+m̃ult(a,b,c)·(Z(a)−Z(b)·Z(c)).

It follows from Lemma 2.1 that Z extends a correct transcript W if and only if gx,y,Z vanishes on the Boolean
hypercube. We now define a polynomial hx,y,Z such that gx,y,Z vanishes on the Boolean hypercube if and
only if ∑u∈{0,1}3s hx,y,Z(u) = 0.

Defining hx,y,Z . Consider a polynomial kx,y,Z whose coefficients are given by the evaluations of kx,y,Z on
{0,1}3s. Specifically, define

kx,y,Z(t) = ∑
u∈{0,1}3s

gx,y,Z(u) · tu.

Here, the bit string u ∈ {0,1}3s in the exponent denotes the integer ∑
3s−1
i=0 ui · 2i (i.e., the integer whose

binary representation is u). Notice that kx,y,Z is the zero polynomial if and only if Gx,y,Z vanishes on {0,1}3s.
Moreover, kx,y,Z(t) is a univariate polynomial of degree at most S3, and so it can have at most S3 roots if it is
nonzero. So if V picks a random point q from [S4] and determines that kx,y(q) = 0, it is safe for V to believe
that kx,y,Z is the zero polynomial.

Thus, in the MIP, V chooses q uniformly at random from the set [S4], and is convinced that Z extends a
correct transcript for {C,x,y} as long as kx,y,Z(q) = 0. As explained below, V will outsource the computation
of kx,y,Z(q) by writing it in a form that is amenable to checking via the sum-check protocol.

For any q ∈ [S4] and u ∈ {0,1}3s, qu can be written as a multilinear polynomial pq(u) in the coordinates
of u as follows. Define q(i) = q2i

. Then it holds that qu = ∏
3s−1
i=0 q(i)

ui = ∏
3s−1
i=0

(
1+(q(i)−1)ui

)
:= Kq(u).

Defining the polynomial hx,y,Z : F3s→ F as hx,y,Z(u) = gx,y,Z(u) ·Kq(u), it holds that:

kx,y,Z(q) = ∑
u∈{0,1}3s

gx,y,Z(u) ·Kq(u) = ∑
u∈{0,1}3s

hx,y,Z(u).

Hence, with probability 1−1/S over the random choice of q, gx,y,Z vanishes on the Boolean hypercube
if and only if ∑u∈{0,1}3s hx,y,Z(u) = 0. For simplicity, the remainder of the presentation ignores the 1/S
probability of error in this step (the 1/n can be folded into the soundness error of the entire MIP).

2.3.1 Applying the Sum-Check Protocol to hx,y,Z

V applies the sum-check protocol to hx,y,Z , with P1 playing the role of the prover in this protocol. To
perform the final check in this protocol, V needs to evaluate hx,y,Z at a random point r ∈ F3s. Let r1,r2,r3

denote the first, second, and third s entries of r. Then evaluating hx,y,Z(r) requires evaluating Kq(r), ĩo(r),
ãdd(r), m̃ult(r), Ĩx,y(r1), Z(r1), Z(r2), and Z(r3). V can compute the first five evaluations without help in
O(log(T)) time, assuming that ãdd and m̃ult can be computed within this time bound. However, V cannot
evaluate Z(r1), Z(r2), or Z(r3) without help. To deal with this, the verifier first uses the “Reducing the
Verification of a Single Point” technique from Lecture 8 (on the GKR protocol), to reduce the evaluation of
Z at the three points r1, r2, and r3, to the evaluation of Z at a single point r4 ∈ Fs. To obtain the evaluation
Z(r4), V turns to P2.

4

2.4 The Low-Degree Test

The paper [BTVW14] uses the point vs. plane low-degree test, as analyzed by Moshkovitz and Raz [MR08].
It could have used the point-versus-line test from the previous lecture, and this would shave a logarithmic
factor off of P2’s asymptotic time cost, as well as the total communication cost of the MIP (see Remark
1). However, the constants appearing in Arora and Sudan’s analysis of the point-versus-line test [AS03] are
too large to yield a practical protocol, as the verifier would be forced to work over an enormous field to
guarantee a suitable soundness error.

The point-versus-plane test involves two oracles Z,A′, with Z modeling the first prover in our MIP, and
A′ modeling the second. The oracle Z takes as input a r4 ∈ Fs and returns some value Z(r4). Let Q denote
the set of all planes in Fs. A′ takes as input a plane Q∈Q returns some bivariate polynomial A′(Q) of degree
s in each variable (purported to be Z ◦Q the restriction of Z to the plane specified by Q).

In the low-degree test, the verifier chooses a random point r4 ∈ Fs, and a random plane Q containing r4,
and queries A(r4) and A′(Q), accepting if and only if the claims of A and A′ regarding Z(r4) are consistent.

Moshkovitz and Raz show that if the oracles pass the low-degree test with probability γ , then there is a
polynomial Y of total degree at most s2 such that A agrees with Y on a fraction of at least γ−ε of the points
in Fs, where ε = 27 · s

(
|F|−1/8 + s2|F−1/4|

)
. Note that ε = o(1) if |F| is sufficiently large, say |F|> s10.

In summary, if |F| > s10, and P1 and P2 pass the low-degree test with probability γ , then there is a
polynomial Y of total degree at most s2 that agrees with Z on a γ−o(1) fraction of points in Fs.

2.4.1 MIP Soundness Analysis

Theorem 2.2. Suppose that P1 and P2 convince the MIP verifier to accept with probability γ > .5+ ε for
ε = Ω(1). Then there is some polynomial Y such that hx,y,Y satisfies Equation (1).

Detailed Sketch. Since P1 and P2 pass the low-degree test with probability at least γ , the low-degree test
guarantees that there is some probability Y of total degree at most s2 such that Z and Y agree on a p≥ γ−o(1)
fraction of points. Since Y has total degree at most s2, hx,y,Y has total degree at most s2 +2.

Suppose that hx,y,Y does not satisfy Equation (1). Let us say that P1 cheats at round i of the sum-check
protocol if he does not send the message that is prescribed by the sum-check protocol in that round, when
applied to the polynomial hx,y,Y . The soundness analysis of the sum-check protocol (Lecture 5) implies that
if P1 falsely claims that hx,y,Y does satisfy Equation (1), then with probability at least 1−3s · (s2 +2)/|F|=
1−o(1), P1 will be forced to cheat at all rounds of the sum-check protocol including the last one.

If P1 does cheat in the last round, the only possible rescue is for the verifier, in the final check of the
protocol, to wind up choosing a point in F3s at which hx,y,Y and hx,y,Z disagree. This only happens if V
picks a point r ∈ Fs for use in the low-degree test such that Y (r) 6= Z(r). But this occurs with probability
only 1− p = 1− γ +o(1). In total, the probability that P1 passes all tests within the sum-check protocol is
therefore at most 1− γ +o(1). If γ > 1

2 , this contradicts the fact that P1 and P2 convince the MIP verifier to
accept with probability at least γ .

Recall that if hx,y,Y satisfies Equation (1), then gx,y,Y vanishes on the Boolean hypercube, and hence Y
is an extension of a correct transcript for {C,x,y}. So Theorem 2.2 implies that if the MIP verifier accepts
with probability γ > 1

2 , then there is a correct transcript for {C,x,y}.
Although the soundness error can reduced from 1

2 + o(1) to an arbitrarily small constant with O(1)
independent repetitions of the MIP, this would be highly expensive in practice. Fortunately, [BTVW14]
performs a more careful soundness analysis that establishes that the MIP itself, without repetition, has
soundness error o(1).

5

Communication Rounds V time P1 and P2 time
O
(
log2 S

)
field elements O(logS) O(n+polylog(S)) O(S logS)

Table 1: Costs of the MIP of Section 2.1. The stated costs assume that ãdd, m̃ult, and ĩo can be evaluated in time
polylog(S). As explained in Lecture 11, this holds for the circuits generated by reductions from RAM simulation.

The bottleneck in the soundness analysis of Theorem 2.2 that prevents the establishment of soundness
error less than 1

2 is that, if the prover’s pass the low-degree test with probability γ < 1
2 , then one can only

guarantee that there is a polynomial Y that agrees with Z on a γ fraction of points. The verifier will choose a
random point r in the sum-check protocol at which Y and Z disagree with probability 1− γ > 1

2 , and in this
case all bets are off.

The key to the stronger analysis is to use a stronger guarantee from the low-degree test, known as a
list-decoding guarantee. Roughly speaking, the list-decoding guarantee ensures that if the oracles pass the
low-degree test with probability γ , then there is a “small” number of low-degree polynomials Q1,Q2, . . .
that “explain” essentially all of the tester’s acceptance, in the sense that for almost all points r at which the
low-degree test passes, A(r) agrees with Qi(r) for at least one i. This allows one to argue that even if the
provers pass the low-degree test with probability only γ < 1

2 , the sum-check protocol will still catch P1 in a
lie with probability very close to 1.

2.4.2 Protocol Costs

Verifier’s Costs. V and P1 exchanges two messages for each variable of hx,y,Z , and where P2 exchanges
two messages in total with V . This is O(logS) messages in total. Each message from P1 is a polynomial
of degree O(1), while the message from P2 is a bivariate polynomial of total degree O(logS). In total,
all messages can be specified using O(log2 S) field elements (the bottleneck is P’s message). As for V’s
runtime, the verifier has to process the provers’ messages, and then to perform the last check in the sum-
check protocol, she must evaluate ãdd, m̃ult, ĩo, and Ĩ at random points. The verifier requires O(log2 S) time
to process the provers’ messages, and Lemma 1.8 of Lecture 4 implies that V can evaluate Ĩ at a random
point in O(n) time. We assume that ãdd, m̃ult, and ĩo can be evaluated at a point in time polylog(S) as
well— as explained in Lecture 11, this (essentially) holds for the circuits generated by reductions from
RAM simulation.

Prover’s Costs. Using the techniques developed to implement the prover in the GKR protocol, specifically
Method 2 described there, P1 can be implemented in O(S logS) time. If the circuit is data parallel, then P1
can be implemented in O(S) time using the same techniques described in Lecture 8. P2 needs to specify
W̃ ◦Q, where Q is a random plane in Fs. It suffices for P2 to evaluate W̃ at O(log2 S) many points—using
Lemma 1.8 of Lecture 4, this can be done in O(S) time per point, resulting in a total runtime of O(S log2 S).

Remark 1. If the point vs. line test were used in place of the point vs. plane test, P2 would only need
to evaluate W̃ at O(logS) points, which can be done in O(S logS) time, and the total communication cost
would drop from O(log2 S) to O(logS).

6

3 A Succinct Argument for Deep Circuits

Using any polynomial commitment scheme, one can turn the MIP of the previous section into a succinct
argument for deep and narrow arithmetic circuits. Specifically, one gets rid of the second prover, and instead
just had the first prover commit to W̃ at the start of the protocol. At the end of the verifier’s interaction
with the first prover in the MIP above, the first prover makes a claim about W̃ (r4), which the verifier checks
directly by having the prover reveal it via the polynomial commitment protocol.

This succinct argument has an advantage over the approach to succinct arguments from Lecture 12 that
was based directly on the GKR protocol: namely, the argument system based on the MIP of the previous
section is succinct with a nearly-linear time verifier even for deep and narrow circuits. The disadvantage
of the argument system from the previous section is that it applies the polynomial commitment scheme
to the entire transcript extension W̃ : Flog |C|→ F, whereas the argument system of Lecture 12 applied the
polynomial commitment scheme only to the multilinear extension of the witness w̃.

Existing polynomial commitment schemes are the concrete bottlenecks in argument systems that use
them. Since the witness w can be much smaller than circuit C, applying the polynomial commitment scheme
to w̃ can be significantly less expensive than applying it to W̃ .

Besides, we’ve seen that short, wide circuits are “universal” in the context of succinct arguments, since
any RAM running in time T can be turned into an instance of arithmetic circuit satisfiability of size close
to T and depth close to O(logT). Accordingly, the instructor anticipates that the approach that Lecture 12
takes to building succinct arguments is typically preferable in practice to the approach of this section.

References

[AS03] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications. Combina-
torica, 23(3):365–426, 2003.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has two-
prover interactive protocols. Computational Complexity, 1:3–40, 1991.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short pcps with polylog query complexity. SIAM J. Com-
put., 38(2):551–607, 2008.

[BTVW14] Andrew J. Blumberg, Justin Thaler, Victor Vu, and Michael Walfish. Verifiable computation
using multiple provers. IACR Cryptology ePrint Archive, 2014:846, 2014.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation
with streaming interactive proofs. In Shafi Goldwasser, editor, ITCS, pages 90–112. ACM,
2012.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: inter-
active proofs for muggles. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, STOC ’08, pages 113–122, New York, NY, USA, 2008. ACM.

[MR08] Dana Moshkovitz and Ran Raz. Sub-constant error low degree test of almost-linear size. SIAM
J. Comput., 38(1):140–180, 2008.

7

	A 2-Prover MIP for Low-Depth Arithmetic Circuit Satisfiability
	A 2-Prover MIP for General Arithmetic Circuit Satisfiability
	Motivation
	Protocol Summary
	Terminology
	The MIP

	Protocol Details
	Applying the Sum-Check Protocol to hx, y, Z

	The Low-Degree Test
	MIP Soundness Analysis
	Protocol Costs

	A Succinct Argument for Deep Circuits

