Attribute-Efficient Learning and
Polynomial Threshold Functions

Li-Yang Tan

Columbia University

Joint work with
Rocco A. Servedio (Columbia) and Justin Thaler (Harvard)

Tsinghua University Theory Seminar, 20 April 2011

= Machine learning: the study of algorithms that make
accurate predictions from raw data
= A major algorithmic challenge in machine learning:

Learning in the presence of irrelevant information

High dimensional data (n dimensions) that only
depend on k << n unknown dimensions

= Same problem, different names: feature
selection, sparsity, the junta problem, etc.

= Significant practical importance, especially
in the age of big data

= This talk: clean theoretical formulation of
the problem (A. Blum 1991)

the learning framework

Goal: Learn unknown target function f: {0,1}" -> {0,1},
where f only depends on k << n unknown coordinates
(e.g. k =log(n) or constant).

f(Xy, X9, ov s X)) = (X5, X9, Xg, X115 X34)

f belongs to some known concept class C (e.g.
conjunctions, decision lists, decision trees, etc.)
What does it mean to learn f?

= Learneris given information about how f labels

the data {0,1}"

= Computes hypothesis h: {0,1}" -> {0,1}

= Performance determined by how well h predicts f
This talk: Online mistake bound model (Littlestone
1988). Clean and simple theoretical model!

the learning model

= Goal: Learn unknown function f : {0,1}" -> {0,1}, where
f only depends on k << n unknown coordinates, and f
belongs to a known concept class C.

Learning consists of a sequence of trials. In each trial:

= Learner is given some x from {0,1}"
= Learner outputs h(x), her guess as to what f(x) is
= If h(x) = f(x), great! ¢
= If h(x) # f(x), learner is charged a mistake &
= |f learner makes a mistake, she updates h

Goal: efficient algorithm that minimizes number of mistakes
over all possible sequences of trials

Ideally, runs in time poly(n) per trial, and total number
of mistakes at most poly(k, log(n)).

Goal: efficient algorithm that minimizes number of mistakes
over all possible sequences of trials

A malicious adversary who, for each trial

= chooses xin {0,1}"

= says “correct” or “incorrect” as he wishes
in order to make learner incur as many mistakes as
possible. His only constraint: at any time, there must be at
least one concept in C consistent with his responses so far!

two easy mistake-bound algorithms

Totally trivial algorithm for any concept class C:

= Pick arbitrary c in C as initial hypothesis
= Whenever mistake incurred, switch to different c
= Constant run time per trial, but mistake bound | C|

Not-so-trivial, but still easy algorithm for any concept class C:

= Take majority vote of concepts in C as initial hypothesis
= Whenever mistake incurred, eliminate all inconsistent c
= “Halving algorithm” (why?)

= Mistake bound log,(|C|), but run time |C]|

attribute-efficient learning

Ideally, algorithm runs in time poly(n) per trial, and
total number of mistakes at most poly(k, log(n))

= |f this is possible, we say that the concept class C is
“attribute-efficiently learnable”

= Often difficult even for simple C! Very few classes
known to be attribute-efficiently learnable (x,

This talk: tradeoffs between run time and mistake
bound, both upper and lower bounds

Side note: standard results in learning theory translate
efficient algorithms in the online mistake bound model
into efficient algorithms in Valiant’s Probably
Approximately Correct (PAC) model

outline for rest of talk

Decision lists (what we want to learn) and linear
threshold functions (how we will learn them)
Expanded-Winnow algorithm

= Learning becomes concrete complexity

= Low-degree low-weight polynomial threshold

functions yield efficient learning algorithms

PTF degree-weight tradeoffs for decision lists
Lower bounds, and a new Markov-type inequality

one slide summary of this talk

= We make progress on the well-studied problem of
attribute-efficiently learning decision lists

= QOur upper bounds yield algorithms with the best
known running time and mistake bound

Theorem (Servedio-T-Thaler): Let f be a length-k DL. For every d <k, we
have an algorithm that learns f in time nd with mistake bound 2{/d)"1/2

= QOur lower bounds suggest that significantly different
techniques will be required to make further progress

= Both upper and lower bounds utilize tools from
approximation theory

= We prove a sharpened version of a classical inequality
that could be of independent interest

attribute-efficiently learning decision lists (DL)

A length k decision list over x, ..., X

n

2 T A

0 1 1 0 1

= A sequence of nested “if-then-else” statements

= Conjunctions and disjunctions can be expressed as DLs

= Attribute-efficiently learning DLs is a well-studied and
challenging open problem!

= First posed by [Blum 1992], subsequently considered
by many authors [Blum-Hellerstein-Littlestone 1990,
Blum-Langley 1997, Valiant 1999, Nevo-El-Yaniv 2002,
Klivans-Servedio 2006, Long-Servedio 2006]

linear threshold functions (LTFs)

f(x) = sgn(wx; + wx, +...+w x_ +0)
Wy, W, ..., W, 0EZ

Usually defined with w;, w,, ..., w_, 8 € R but
for this talk we require that they are integers
Different names, same object: halfspaces,
weighted majorities, perceptrons, linear
separators, threshold gates, etc.

Complexity theory: TC, versus NP

Social choice theory: voting schemes
Learning theory: Perceptron, Winnow, SVMs

learning LTFs

Theorem (Littlestone 1988): Let
f(x) = sgn(wx; + wx, +...+w_x. +06),w, 0 €ELZ
If 3|w,|< W for all i, Winnow learns f with
run time O(n) per trial and mistake bound O(W?2log(n))

= IfY|w,|<W, we say that fis a “weight-W” LTF
= Learning f reduces to showing that f can be computed
by a low-weight LTF
= Note that not all functions can be expressed as an LTF,
even if arbitrarily high weights are allowed!
= simple example: f(x, X,) = X; + X, mod 2

Our main learning tool in this talk:
a higher-degree generalization of Winnow

But first, what does Winnow tell us about attribute-
efficiently learning decision lists?

LTF weight of decision lists

A length k decision list over x, ..., X

n

2 2 2

0 1 1 0 1

First variable (x;) more important than the second (x:),
second variable more important than the third (x,), etc.

Set weight of first variable to be larger than sum of weights
of all other variables

Easy induction: every DL has a 2X weight LTF

Not hard to show: there exists a DL that requires weight 2k

two easy algorithms for decision lists

Theorem (Littlestone 1988): Let
f(x) = sgn(wyx; + wx, +...+w_x +0),w, 0 €Z
If > |w,|< W for alli, possible to learn f with
run time O(n) per trial and mistake bound O(W?log(n))

= Every length k DL is a weight 2X LTF
= Mistake bound 2*log(n) (& , run time O(n) ¢

Halving algorithm

= Take majority vote of concepts in C as initial hypothesis
= Whenever mistake incurred, eliminate all inconsistent c
= Mistake bound log,(|C|), but run time |C]|

»= There are n°k length-k DLs over n variables
= Mistake bound O(k log(n)) 2, run time n°® (&,

This talk: best known trade-offs
between run time and mistake bound

Expanded Winnow

A natural generalization of LTFs f(x) = sgn(wx; + WX, + ...+ w_x, + 8):
f(x) = sgn(p(xy, -.-, X,)), where p is a degree-d polynomial

We say that f is a degree-d polynomial threshold function (PTF)

Theorem (Klivans-Servedio 2006):
Let sgn(p(xy, ---, X,,)), where p is a degree-d polynomial with integer
coefficients whose magnitude sum to W. Then we can learn f with
run time n° per trial and mistake bound O(W2d log(n))

Proof. Every degree-d PTF is an LTF over n°@ variables!
Make every monomial a new variable (“feature expansion”)

PTFs for decision lists

Theorem (Klivans-Servedio 2006):
Let sgn(p(xy, ..., X,,)), where p is a degree-d polynomial with integer
coefficients whose magnitude sum to W. Then we can learn f with
run time n°d per trial and mistake bound O(W2d log(n))

= Attribute-efficient learning of DLs reduces to showing that
every DL has a low-degree, low-weight PTF
= Thatis, every DL computed by the sign of a low-degree
polynomial with small integer coefficients
= Tradeoffs between degree and weight a natural question
on its own!
= For a fixed degree, how small can the weights be?
= Are there DLs that require high degree and weight?

Klivans-Servedio 2006

Theorem (Klivans-Servedio 2006): Let f be a length-k DL. For
every d < k, there is degree d, weight 2(/d*2+d pTE computing f

(for every d < k)

t:;ne mistake bound
Winnow n 2log(n)
Halving nk k log(n)
Klivans-Servedio nd 2(k/d"2)+d |5g(n)

that for every d <k, any degree d PTF
computing f requires weight 2/d"2

our contribution

Theorem (Klivans-Servedio 2006): Let f be a length-k DL. For
every d <k, there is degree d, weight 2(k/d"2+d PTF computing f

Theorem (Beigel 1996): There is a DL such that for every d <k,
any degree d PTF computing f requires weight > 2k/d"2

* The function k/d?: decreasing for d < k/3, but increasing
after. Beigel’s lower bound shows that the Klivans-
Servedio result is optimal for all d < k1/3,

= Sjtuation unclear for d > k¥/3. For example, for d = k%/2;

= Klivans-Servedio result gives upper bound of 2k"1/2,
worse than the 213 bound for d = k¥/3!
= Beigel’s lower bound vacuous!

This talk: we complete the picture for all d > k¥/3,
giving matching upper and lower bounds

our contribution

Theorem (Servedio-T-Thaler): Let f be a length-k DL. For
every d < k, there is degree d, weight 2(/4"1/2 pPTF computing f

Theorem (Servedio-T-Thaler): There is a DL such that for every
d <k, any degree d PTF computing f requires weight > 2(k/d)"1/2

run time mistake bound
Winnow n 2% log(n)
Halving nk k log(n)
Klivans-Servedio s
(for every d < k%/3) n° 2 log(n)
Servedio-T-Thaler A
(for every d 2 k%/3) n° 287 log(n)

Our lower bounds, along with Beigel’s, suggest that
significantly different techniques will be required to make
further progress on the problem

the lower bound

We prove that there exists a DL such that any low
degree PTF for the DL requires high weight

the ODD-MAX-BIT function

Look at the right-most bit set to 1. If it is at
an odd coordinate, output 1, else output O

10010001101000000....0

A

X;

—> X, = X, = X3 = x, = X, —>

Voo b

1 0 1 0 1

Theorem (Beigel 1996): Any degree d PTF for the
OMB function must have weight > 2k/d"2

Theorem (Servedio-T-Thaler): Any degree d PTF for
the OMB function must have weight > 2(k/d)*1/2

Recall: Beigel’s bound is stronger for d < k%/3, our
bound is stronger for d > k/3. Both are tight.

main idea behind lower bound

Construct a sequence of inputs Xy, X,, ..., X,/gn, SUCh that p(x;,;) 2 2 [p(x;)|

p(x,) p(x,) pP(x) plxs) p(xs)
o = - ® < .-
8 2 01 4 16

If we succeed in finding such a sequence, then | p(x,4a,)| 2 2k/d"2.
If p attains value > 2¥/9*2 then p must have weight > 2/d*21

main idea behind lower bound

Construct a sequence of inputs Xy, X,, ..., X,/gn, SUCh that p(x;,;) 2 2 [p(x;)|

| |
W v I v I\ v J W_J
1 2 3 k/d?
= Break k coordinates up into k/d? blocks of size d?

= Foralli, x, will be an input such that all blocks
from i+1 onwards are 0’s

1010001110101011010000000 ...0

Prove the existence of this doubling sequence of inputs by
induction. Base case: there exists an x; such that p(x,) 2 1 (trivial!)

inductive step

Suppose we have found x; such that p(x;) 2 M. We will
prove existence of x,, such that p(x,,) <-2M. Proceed
by contraction; suppose no such input exist.

= Define F(k) to be the average of p’s values of all inputs y
such that
= yagrees with x, in the first i blocks
= yhask1’sineven coordinates the i+1 block
= yhasall0’sinthei+2 block onwards

1010001110010100000000000000 ...0

1010001110010100101000000000 ...0
W_J
k 1’s in even positions in the i+1 block

= Whatis F(0)? F(0) = p(x) =M

= Whatis F(1)? F(1) = average of p’s values on inputs with
rightmost bit in an even position. So F(1) € [-1,-2M]

= Same for F(2), F(3), etc.

= Whatis F(0)? F(0) = p(x) = M

= Whatis F(1)? F(1) = average of p’s values on inputs with
rightmost bit in an even position. So F(1) € [-1,-2M]

= Same for F(2), F(3), etc.

vy
0
1 2 3 4 d?
¢ o
e e
o
2M

= Whatis the degree of F? Since F is the average of p’s values
on some inputs, deg(F) < deg(p) < d.

Can F have degree < d?

M¢
0
1 2 3 4 d?
e @ o
..
2M

= Properties of F:
= Fisbounded between [-2M, M] on the interval [0,d?]
= |F(t)| >M forsome tin[0,1]
= Shifting and scaling, transform Finto H : [-1,1] -> [-1,1] such
that |H’'(t)| > d? for some tin [-1,1] and deg(H) = deg(F).

Theorem (Markov): Let H : [-1,1] -> [-1,1].
Then deg(H) = max{|H’(t)| : tin [-1,1]}

= So F attains value < -2M. But F is simply the average of p’s
values on a few inputs, so there must exist an x;,; such that
p(x.,,) <-2M.

recap of Beigel’s proof

= Break k coordinates up into k/d”2 blocks of size d?

= Try to find sequence of “doubling inputs” x,, ..., X, /4n,
each twice the magnitude of the previous

= Suppose we have found x.. If x,,, does not exist, we use
Markov’s theorem to say deg(p) > d, a contradiction.

= This shows we can keep going, and so p must have
weight | p(Xy ga,) | 2 249"

If only we could take blocks of smaller size (i.e. a longer
sequence of double inputs), we would get a better bound!
But Markov’s theorem is tight.

Crux of our improvement: Take blocks of size o(d?). Suppose
X;,, does not exist. Instead of showing that p must have high
degree, we show directly that p has high weight.

2M

2M

dZ

Beigel: “The polynomial must have degree > d, a contradiction!”

some value o(d?)

Us: “If the polynomial has degree > d, we get a contradiction. If
the polynomial has degree < d, it must have high weight!”

our refinement of Markov

Theorem (Markov, stated differently): Let F: [-1,1] ->[-1,1].
If deg(F) < d, then max |F'(t)| <d?

Theorem (Servedio-T-Thaler): Let F:[-1,1] ->[-1,1]. If deg(F) <d
and weight(F) £ W, then max |F'(t)| < dlog(W)

= Sharper than Markov as long as W < 24

= Markov: “If Fis bounded and attains large
derivative, the its degree must be large”

= Us: “If Fis bounded and attains large degree, then
either its degree or its weight must be large”

using our Markov-type inequality

Theorem (Servedio-T-Thaler): Let F:[-1,1] ->[-1,1]. If deg(F) <d
and weight(F) < W, then max |F'(t)]| < dlog(W)

= Break k coordinates up into (k/d)¥2 blocks of size (kd)/2
= Whenis (kd)¥2< d?? When d > k1/3,
= Suppose p(x,) = M for some x.. Want to find p(x,,,) < -2M
* |f we can keep going, then W > 2(k/d)*1/2
M+ = Assume x,,, does not exist, can find points such that:

0
1 2 3 4 (kd)V/2 /d/

2M
= Shifting and scaling, get F : [-1,1] -> [-1,1] such that |F'(t)| >
(kd)¥2for some tin [-1,1]
= Apply our theorem to conclude that W > 2(k/d)*1/2
= So we either find x.,,, or directly conclude W > 2(/d)*1/2

rest of the talk

= Sketch of our construction of low-degree low-
weight PTFs for DLs

" |ntroduce main technical tool: Chebyshev
polynomials for L-infinity approximations

First, a minor technical point
Assume our DLs output {-1,1} instead of {0,1}

—)Xl——->x5—>)(9—>)(3——>x7—>
S *
1 1 1
4 /@/1

-1 -

key idea for upper bound

Break DL upper into smaller DLs

TEX T X T Xy TR Xy T X, TR L == xR X T Xy ™ -]
I T 2 2
-1 1 1 -1 1 -1 1 1
\. /J \ J \{ J
Y Y Y
f, f, fo

Claim: f =sgn(3Mf, + 3M1f, + 3m2f, + .+ 3f —1)

Proof. Suppose an input exits the list at f. Then f(x) = 0 for
all j <i, and the weight of f, overpowers the total weight of f,
for all k > i.

key idea for upper bound

f=sgn(3mf, +3M1f, +3m2f + . +3f —1)
§ J

Y
viewing f’s as variables, this is a degree-1 weight 3™ polynomial

Suffices to get low-weight low-degree approximations p of
each sub-DL f, satisfying | p(x)-f,(x) | < tiny
(we call these “L-infinity approximators”)

> X, TP Xy T Xy > 0

fi= ! ! !

-1 1 1
Can represent f(x) as (-1) x; + (1) (=x; AXg) + (1) (=X A=Xs AXg)

Suffices to get low-weight low-degree L-infinity
approximators for AND! This is a well-studied (and well-
understood) problem in approximation theory, and is a
useful tool for many problems in concrete complexity.

approximating the AND function
X AXg A X3 A Xy AXg AXg AL o A X,

Function is symmetric (i.e. its value only depends on
the Hamming weight of the input)

< < O L < . 4
1 2 3 n-1 n

number of bits setto 1

Any polynomial that interpolates these n points exactly
has to have degree n (why?)
Suppose we have a polynomial F such that
= F(n)in[0.9, 1.1]
= F(1),..,F(n-1) in [-0.1,0.1]
Then F(x; + x, + ... + x.) is L-infinity approximator for AND

Goal: Low-degree polynomial F such that
= F(n)in[0.9, 1.1]
= F(1),...,F(n-1) in [-0.1,0.1]

s s s - Y 3 - - -
2 3 n-1 n

number of bits setto 1

Chebyshev approximators: There is a polynomial with
degree d = n¥2and weight 29that achieves this

More generally, can achieve € error with degree n/2log(1/€)
Matching upper and lower bounds for L-infinity approximators
for all symmetric functions [Paturi 1992, Sherstov 2008, de Wolf

2008]

conclusion

We make progress on the well-studied problem of
attribute-efficiently learning decision lists

Give provably optimal weight-degree tradeoffs for PTF
computing decision lists

Our upper bounds yield algorithms with best known
running times and mistake bounds

Our lower bounds suggest that significantly new
techniques will be required to make further progress on
the problem

