Attribute-Efficient Learning and Polynomial Threshold Functions

Li-Yang Tan
Columbia University

Joint work with Rocco A. Servedio (Columbia) and Justin Thaler (Harvard)

Tsinghua University Theory Seminar, 20 April 2011

- Machine learning: the study of algorithms that make accurate predictions from raw data
- A major algorithmic challenge in machine learning:

Learning in the presence of irrelevant information

High dimensional data (n dimensions) that only depend on k << n unknown dimensions

- Same problem, different names: feature selection, sparsity, the junta problem, etc.
- Significant practical importance, especially in the age of big data
- This talk: clean theoretical formulation of the problem (A. Blum 1991)

the learning framework

■ Goal: Learn unknown target function f: {0,1}ⁿ -> {0,1}, where f only depends on k << n unknown coordinates (e.g. k = log(n) or constant).

$$f(x_1, x_2, ..., x_n) = g(x_2, x_7, x_9, x_{11}, x_{34})$$

- f belongs to some known concept class C (e.g. conjunctions, decision lists, decision trees, etc.)
- What does it mean to learn f?
 - Learner is given information about how f labels the data {0,1}ⁿ
 - Computes hypothesis h : {0,1}ⁿ -> {0,1}
 - Performance determined by how well h predicts f
- This talk: Online mistake bound model (Littlestone 1988). Clean and simple theoretical model!

the learning model

Goal: Learn unknown function f: {0,1}ⁿ -> {0,1}, where f only depends on k << n unknown coordinates, and f belongs to a known concept class C.

Learning consists of a sequence of trials. In each trial:

- Learner is given some x from {0,1}ⁿ
- Learner outputs h(x), her guess as to what f(x) is
 - If h(x) = f(x), great! ••
 - If $h(x) \neq f(x)$, learner is charged a mistake $\stackrel{\square}{=}$
- If learner makes a mistake, she updates h

Goal: efficient algorithm that minimizes number of mistakes over all possible sequences of trials

Ideally, runs in time poly(n) per trial, and total number of mistakes at most poly(k, log(n)).

Goal: efficient algorithm that minimizes number of mistakes over all possible sequences of trials

A malicious adversary who, for each trial

- chooses x in {0,1}ⁿ
- says "correct" or "incorrect" as he wishes in order to make learner incur as many mistakes as possible. His only constraint: at any time, there must be at least one concept in C consistent with his responses so far!

two easy mistake-bound algorithms

Totally trivial algorithm for any concept class C:

- Pick arbitrary c in C as initial hypothesis
- Whenever mistake incurred, switch to different c
- Constant run time per trial, but mistake bound |C|

Not-so-trivial, but still easy algorithm for any concept class C:

- Take majority vote of concepts in C as initial hypothesis
- Whenever mistake incurred, eliminate all inconsistent c
- "Halving algorithm" (why?)
- Mistake bound log₂(|C|), but run time |C|

attribute-efficient learning

Ideally, algorithm runs in time poly(n) per trial, and total number of mistakes at most poly(k, log(n))

- If this is possible, we say that the concept class C is "attribute-efficiently learnable"
- Often difficult even for simple C! Very few classes known to be attribute-efficiently learnable

This talk: tradeoffs between run time and mistake bound, both upper and lower bounds

Side note: standard results in learning theory translate efficient algorithms in the online mistake bound model into efficient algorithms in Valiant's Probably Approximately Correct (PAC) model

outline for rest of talk

- Decision lists (what we want to learn) and linear threshold functions (how we will learn them)
- Expanded-Winnow algorithm
 - Learning becomes concrete complexity
 - Low-degree low-weight polynomial threshold functions yield efficient learning algorithms
- PTF degree-weight tradeoffs for decision lists
- Lower bounds, and a new Markov-type inequality

one slide summary of this talk

- We make progress on the well-studied problem of attribute-efficiently learning decision lists
- Our upper bounds yield algorithms with the best known running time and mistake bound

Theorem (Servedio-T-Thaler): Let f be a length-k DL. For every $d \le k$, we have an algorithm that learns f in time n^d with mistake bound $2^{(k/d)^{n}1/2}$

- Our lower bounds suggest that significantly different techniques will be required to make further progress
- Both upper and lower bounds utilize tools from approximation theory
- We prove a sharpened version of a classical inequality that could be of independent interest

attribute-efficiently learning decision lists (DL)

A length k decision list over $x_1, ..., x_n$

- A sequence of nested "if-then-else" statements
- Conjunctions and disjunctions can be expressed as DLs
- Attribute-efficiently learning DLs is a well-studied and challenging open problem!
- First posed by [Blum 1992], subsequently considered by many authors [Blum-Hellerstein-Littlestone 1990, Blum-Langley 1997, Valiant 1999, Nevo-El-Yaniv 2002, Klivans-Servedio 2006, Long-Servedio 2006]

linear threshold functions (LTFs)

$$f(x) = sgn(w_1x_1 + w_2x_2 + ... + w_nx_n + θ)$$

$$w_1, w_2, ..., w_n, θ ∈ Z$$

- Usually defined with $w_1, w_2, ..., w_n, \theta \in R$ but for this talk we require that they are integers
- Different names, same object: halfspaces, weighted majorities, perceptrons, linear separators, threshold gates, etc.
- Complexity theory: TC₀ versus NP
- Social choice theory: voting schemes
- Learning theory: Perceptron, Winnow, SVMs

learning LTFs

Theorem (Littlestone 1988): Let $f(x) = \operatorname{sgn}(w_1x_1 + w_2x_2 + \ldots + w_nx_n + \theta), w_i, \theta \in Z.$ If $\sum |w_i| \le W$ for all i, Winnow learns f with run time O(n) per trial and mistake bound O(W² log(n))

- If $\sum |w_i| \le W$, we say that f is a "weight-W" LTF
- Learning f reduces to showing that f can be computed by a low-weight LTF
- Note that not all functions can be expressed as an LTF, even if arbitrarily high weights are allowed!
 - simple example: $f(x_1, x_2) = x_1 + x_2 \mod 2$

Our main learning tool in this talk: a higher-degree generalization of Winnow

But first, what does Winnow tell us about attributeefficiently learning decision lists?

LTF weight of decision lists

A length k decision list over $x_1, ..., x_n$

- First variable (x_1) more important than the second (x_5) , second variable more important than the third (x_9) , etc.
- Set weight of first variable to be larger than sum of weights of all other variables
- Easy induction: every DL has a 2^k weight LTF
- Not hard to show: there exists a DL that requires weight 2^k

two easy algorithms for decision lists

Theorem (Littlestone 1988): Let $f(x) = \operatorname{sgn}(w_1x_1 + w_2x_2 + \ldots + w_nx_n + \theta), \ w_i, \ \theta \in Z.$ If $\sum |w_i| \le W$ for all i, possible to learn f with run time O(n) per trial and mistake bound O(W² log(n))

- Every length k DL is a weight 2^k LTF
- Mistake bound 2^k log(n) , run time O(n)

Halving algorithm

- Take majority vote of concepts in C as initial hypothesis
- Whenever mistake incurred, eliminate all inconsistent c
- Mistake bound log₂(|C|), but run time |C|
 - There are n^{O(k)} length-k DLs over n variables
 - Mistake bound O(k log(n)) , run time n^{O(k)}

This talk: best known trade-offs between run time and mistake bound

Expanded Winnow

A natural generalization of LTFs $f(x) = sgn(w_1x_1 + w_2x_2 + ... + w_nx_n + \theta)$: $f(x) = sgn(p(x_1, ..., x_n))$, where p is a degree-d polynomial We say that f is a degree-d polynomial threshold function (PTF)

Theorem (Klivans-Servedio 2006):

Let $sgn(p(x_1, ..., x_n))$, where p is a degree-d polynomial with integer coefficients whose magnitude sum to W. Then we can learn f with run time $n^{O(d)}$ per trial and mistake bound $O(W^2 d \log(n))$

Proof. Every degree-d PTF is an LTF over n^{O(d)} variables! Make every monomial a new variable ("feature expansion")

PTFs for decision lists

Theorem (Klivans-Servedio 2006):

Let $sgn(p(x_1, ..., x_n))$, where p is a degree-d polynomial with integer coefficients whose magnitude sum to W. Then we can learn f with run time $n^{O(d)}$ per trial and mistake bound $O(W^2 d \log(n))$

- Attribute-efficient learning of DLs reduces to showing that every DL has a low-degree, low-weight PTF
- That is, every DL computed by the sign of a low-degree polynomial with small integer coefficients
- Tradeoffs between degree and weight a natural question on its own!
 - For a fixed degree, how small can the weights be?
 - Are there DLs that require high degree and weight?

Klivans-Servedio 2006

Theorem (Klivans-Servedio 2006): Let f be a length-k DL. For every $d \le k$, there is degree d, weight $2^{(k/d^2)+d}$ PTF computing f

	run time	mistake bound
Winnow	n	2 ^k log(n)
Halving	n ^k	k log(n)
Klivans-Servedio (for every d ≤ k)	n ^d	2 ^{(k/d^2)+d} log(n)

Theorem (Beigel 1996): There is a DL such that for every $d \le k$, any degree d PTF computing f requires weight $2^{k/d^2}$

our contribution

Theorem (Klivans-Servedio 2006): Let f be a length-k DL. For every $d \le k$, there is degree d, weight $2^{(k/d^2)+d}$ PTF computing f

Theorem (Beigel 1996): There is a DL such that for every $d \le k$, any degree d PTF computing f requires weight $\ge 2^{k/d^2}$

- The function k/d^2 : decreasing for $d \le k^{1/3}$, but increasing after. Beigel's lower bound shows that the Klivans-Servedio result is optimal for all $d \le k^{1/3}$.
- Situation unclear for $d \ge k^{1/3}$. For example, for $d = k^{1/2}$:
 - Klivans-Servedio result gives upper bound of $2^{k^1/2}$, worse than the $2^{k^1/3}$ bound for $d = k^{1/3}$!
 - Beigel's lower bound vacuous!

This talk: we complete the picture for all $d \ge k^{1/3}$, giving matching upper and lower bounds

our contribution

Theorem (Servedio-T-Thaler): Let f be a length-k DL. For every $d \le k$, there is degree d, weight $2^{(k/d)^{\Lambda}1/2}$ PTF computing f

Theorem (Servedio-T-Thaler): There is a DL such that for every $d \le k$, any degree d PTF computing f requires weight $\ge 2^{(k/d)^{n}1/2}$

	run time	mistake bound
Winnow	n	2 ^k log(n)
Halving	n ^k	k log(n)
Klivans-Servedio (for every d ≤ k ^{1/3})	n ^d	2 ^{(k/d^2)+d} log(n)
Servedio-T-Thaler (for every d ≥ k ^{1/3})	n ^d	2 ^{(k/d)^1/2} log(n)

Our lower bounds, along with Beigel's, suggest that significantly different techniques will be required to make further progress on the problem

the lower bound

We prove that there exists a DL such that any low degree PTF for the DL requires high weight

the ODD-MAX-BIT function

Look at the right-most bit set to 1. If it is at an odd coordinate, output 1, else output 0

Theorem (Beigel 1996): Any degree d PTF for the OMB function must have weight $\geq 2^{k/d^2}$

Theorem (Servedio-T-Thaler): Any degree d PTF for the OMB function must have weight $\geq 2^{(k/d)^{-1/2}}$

Recall: Beigel's bound is stronger for $d \le k^{1/3}$, our bound is stronger for $d \ge k^{1/3}$. Both are tight.

main idea behind lower bound

Construct a sequence of inputs $x_1, x_2, ..., x_{k/d^2}$ such that $p(x_{i+1}) \ge 2 |p(x_i)|$

If we succeed in finding such a sequence, then $|p(x_{k/d^2})| \ge 2^{k/d^2}$. If p attains value $\ge 2^{k/d^2}$ then p must have weight $\ge 2^{k/d^2}$!

main idea behind lower bound

Construct a sequence of inputs $x_1, x_2, ..., x_{k/d^2}$ such that $p(x_{i+1}) \ge 2 |p(x_i)|$

- Break k coordinates up into k/d² blocks of size d²
- For all i, x_i will be an input such that all blocks from i+1 onwards are 0's

Prove the existence of this doubling sequence of inputs by induction. Base case: there exists an x_1 such that $p(x_1) \ge 1$ (trivial!)

inductive step

Suppose we have found x_i such that $p(x_i) \ge M$. We will prove existence of x_{i+1} such that $p(x_{i+1}) \le -2M$. Proceed by contraction; suppose no such input exist.

- Define F(k) to be the average of p's values of all inputs y such that
 - y agrees with x_i in the first i blocks
 - y has k 1's in even coordinates the i+1 block
 - y has all 0's in the i+2 block onwards

k 1's in even positions in the i+1 block

- What is F(0)? $F(0) = p(x_i) = M$
- What is F(1)? F(1) = average of p's values on inputs with rightmost bit in an even position. So $F(1) \in [-1,-2M]$
- Same for F(2), F(3), etc.

- What is F(0)? $F(0) = p(x_i) = M$
- What is F(1)? F(1) = average of p's values on inputs with rightmost bit in an even position. So $F(1) \in [-1,-2M]$
- Same for F(2), F(3), etc.

■ What is the degree of F? Since F is the average of p's values on some inputs, $deg(F) \le deg(p) \le d$.

Can F have degree ≤ d?

- Properties of F:
 - F is bounded between [-2M, M] on the interval [0,d²]
 - |F'(t)| > M for some t in [0,1]
- Shifting and scaling, transform F into H : $[-1,1] \rightarrow [-1,1]$ such that $|H'(t)| > d^2$ for some t in [-1,1] and deg(H) = deg(F).

```
Theorem (Markov): Let H : [-1,1] \rightarrow [-1,1].
Then deg(H) \ge max\{|H'(t)| : t in [-1,1]\}
```

■ So F attains value < -2M. But F is simply the average of p's values on a few inputs, so there must exist an x_{i+1} such that $p(x_{i+1}) < -2M$.

recap of Beigel's proof

- Break k coordinates up into k/d^2 blocks of size d²
- Try to find sequence of "doubling inputs" $x_1, ..., x_{k/d^2}$ each twice the magnitude of the previous
- Suppose we have found x_i . If x_{i+1} does not exist, we use Markov's theorem to say deg(p) > d, a contradiction.
- This shows we can keep going, and so p must have weight $|p(x_{k/d^2})| \ge 2^{k/d^2}$

If only we could take blocks of smaller size (*i.e.* a longer sequence of double inputs), we would get a better bound!

But Markov's theorem is tight.

Crux of our improvement: Take blocks of size $o(d^2)$. Suppose x_{i+1} does not exist. Instead of showing that p must have high degree, we show directly that p has high weight.

Beigel: "The polynomial must have degree > d, a contradiction!"

Us: "If the polynomial has degree > d, we get a contradiction. If the polynomial has degree ≤ d, it must have high weight!"

our refinement of Markov

```
Theorem (Markov, stated differently): Let F : [-1,1] \rightarrow [-1,1].

If deg(F) \le d, then max |F'(t)| \le d^2
```

Theorem (Servedio-T-Thaler): Let $F: [-1,1] \rightarrow [-1,1]$. If $deg(F) \le d$ and $weight(F) \le W$, then $max | F'(t) | \le d log(W)$

- Sharper than Markov as long as $W \le 2^d$
- Markov: "If F is bounded and attains large derivative, the its degree must be large"
- Us: "If F is bounded and attains large degree, then either its degree or its weight must be large"

using our Markov-type inequality

Theorem (Servedio-T-Thaler): Let $F: [-1,1] \rightarrow [-1,1]$. If $deg(F) \le d$ and $weight(F) \le W$, then $max | F'(t) | \le d log(W)$

- Break k coordinates up into (k/d)^{1/2} blocks of size (kd)^{1/2}
 - When is $(kd)^{1/2} < d^2$? When $d \ge k^{1/3}$.
- Suppose $p(x_i) = M$ for some x_i . Want to find $p(x_{i+1}) < -2M$
- If we can keep going, then $W \ge 2^{(k/d)^{1/2}}$
- Assume x_{i+1} does not exist, can find points such that:

- Shifting and scaling, get $F : [-1,1] \rightarrow [-1,1]$ such that $|F'(t)| > (kd)^{1/2}$ for some t in [-1,1]
- Apply our theorem to conclude that W ≥ 2^(k/d)^{1/2}
- So we either find x_{i+1} , or directly conclude $W \ge 2^{(k/d)^{n}1/2}$

rest of the talk

- Sketch of our construction of low-degree lowweight PTFs for DLs
- Introduce main technical tool: Chebyshev polynomials for L-infinity approximations

First, a minor technical point
Assume our DLs output {-1,1} instead of {0,1}

key idea for upper bound

Break DL upper into smaller DLs

Claim:
$$f = sgn(3^m f_1 + 3^{m-1} f_2 + 3^{m-2} f_3 + ... + 3 f_m - 1)$$

Proof. Suppose an input exits the list at f_i . Then $f_j(x) = 0$ for all j < i, and the weight of f_i overpowers the total weight of f_k for all k > i.

key idea for upper bound

$$f = sgn(3^m f_1 + 3^{m-1} f_2 + 3^{m-2} f_3 + ... + 3 f_m - 1)$$

viewing f_i's as variables, this is a degree-1 weight 3^m polynomial

Suffices to get low-weight low-degree approximations p of each sub-DL f_i satisfying $|p(x)-f_i(x)| < tiny$ (we call these "L-infinity approximators")

$$f_{i} = \begin{array}{cccc} & \longrightarrow & x_{1} & \longrightarrow & x_{5} & \longrightarrow & x_{9} & \longrightarrow & 0 \\ & \downarrow & & \downarrow & & \downarrow & & \downarrow \\ & & -1 & & 1 & & 1 & & 1 \end{array}$$

Can represent
$$f_i(x)$$
 as (-1) $x_1 + (1) (\neg x_1 \land x_5) + (1) (\neg x_1 \land \neg x_5 \land x_9)$

Suffices to get low-weight low-degree L-infinity approximators for AND! This is a well-studied (and well-understood) problem in approximation theory, and is a useful tool for many problems in concrete complexity.

approximating the AND function

$$X_1 \wedge X_2 \wedge X_3 \wedge X_4 \wedge X_5 \wedge X_6 \wedge \ldots \wedge X_n$$

 Function is symmetric (i.e. its value only depends on the Hamming weight of the input)

- Any polynomial that interpolates these n points exactly has to have degree n (why?)
- Suppose we have a polynomial F such that
 - F(n) in [0.9, 1.1]
 - F(1),...,F(n-1) in [-0.1,0.1]
- Then $F(x_1 + x_2 + ... + x_n)$ is L-infinity approximator for AND

Goal: Low-degree polynomial F such that

- F(n) in [0.9, 1.1]
- F(1),...,F(n-1) in [-0.1,0.1]

Chebyshev approximators: There is a polynomial with degree $d = n^{1/2}$ and weight 2^d that achieves this

- More generally, can achieve \mathcal{E} error with degree $n^{1/2} \log(1/\mathcal{E})$
- Matching upper and lower bounds for L-infinity approximators for all symmetric functions [Paturi 1992, Sherstov 2008, de Wolf 2008]

conclusion

- We make progress on the well-studied problem of attribute-efficiently learning decision lists
- Give provably optimal weight-degree tradeoffs for PTF computing decision lists
- Our upper bounds yield algorithms with best known running times and mistake bounds
- Our lower bounds suggest that significantly new techniques will be required to make further progress on the problem