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Attribute-Efficient Learning

e Attribute-efficient learning is a clean framework capturing the

problem of learning in the presence of irrelevant information.

° Especially important in the age of Big Data.

® (Consider a scientist trying to identify genetic causes of a disease.
® The disease depends on the interaction of a small number of genes.
® The scientist collects a massive amount of genetic data from participants.

° Only a small amount of this information is actually relevant to the
function being learned (the mapping of genes to a subject's

phenotype).




Attribute-Efficient Learning

® Goal of an algorithm for attribute-efficient learning:
® Run in time poly(n), where n is total number of attributes.

® Use a number of examples which is polynomial in the

description length of the function f to be learned.

® The latter can be substantially smaller than n if most of the

attributes are irrelevant.




Comparison to Junta Problem

® The most general version of the problem of problem of learning in
the presence of irrelevant information is called the “Junta
Problem” [Blum-Langley 1997, Mossel-O’Donnell-Servedio 2004].
® Assume nothing about f other than that it depends on k << 'n attributes.

® Uniform-distribution variant of Junta Problem called “the most

important open question in uniform distribution learning” by MOS.

® Our goal is both more and less ambitious than the uniform-
distribution Junta Problem.
® We want to learn under arbitrary distributions.
® But are willing to assume the relevant attributes interact in structured ways.

® We focus on attribute-efficient learning of decision lists.




Decision Lists

* A length k decision list of x,, ..., x, is a sequence of “if-then-else”
statements:
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0 Attribute—efficiently 1earning DLs is a well-studied and
Challenging open problem.

= First posed by [Blum 1992], subsequently considered by
many authors [Blum-Langley 1997, Valiant 1999, Servedio
2000, Nevo-El-Yaniv 2002, Klivans-Servedio 2006, Long-
Servedio 2006].

= DLs are PAC-learnable in poly(n) time, but seem to lie on
boundary of tractability in the attribute-efficient setting.




Mistake-Bounded Learning

® We establish our results in the mistake-bounded model.
® Standard conversions [Littlestone 1989] turn mistake bounds to
sample complexity bounds on PAC learning algorithms.

® Mistake-Bounded model:

® Learning consists of a sequence of trials. In each trial, the
learner is given some x from {0,1}" and outputs h(x), her guess
as to what f(x) is.

= It h(x) = f(x), great!
= It h(x) # {(x), learner is charged a mistake.

e Goal: design an efficient algorithm that minimizes number of

mistakes over all possible (infinite) sequences of trials.




Algorithmic Machinery

® Theorem (Expanded-Winnow Algorithm) [Klivans-Servedio 2004:
Let {(x)=sgn(p(x,, ... , X,)), where p is a degree-d polynomial
with integer coefficients whose absolute values sum to W. Then
we can learn f in time n©@ per example and mistake bound

O(W?d log(n)).

® pis called a polynomial threshold function (PTF) for f, and W is
called the weight of p.

= Corollary: Attribute-efficient learning of DLs reduces to
showing that every length k decision list has a low-degree,
low-weight PTF.




What was known?

Theorem [Klivans-Servedio 2004]: Let f be a length k DL. For
every d k'3, there is a degree d, weight 20/ 42) PTF
computing f.

b/

Theorem [Beigel 1994]: There is a length k decision list f such

that for any d < k, any degree d PTF computing f requires

Weight R k/d")

So both theorems are tight at low degrees (d<k'/?). But it was
open what happens at higher degrees.

We show that at higher degrees, neither theorem is tight!




New Results

® Theorem: Let f be a length k DL. For every d=k'/?, there is a
degree d, weight DO(K/™M/2) GPTF* computing f.

*A GPTF is slightly more expressive than a PTF, and just as useful for
learning purposes.

® Theorem: There is a length k DL such that for any d < k, any

degree d PTF computing f requires Weight 2 R((/DM/2),

e Both of these theorems improve on prior work when the degree is

relatively high (d > k'/?).

¢ The main remaining gap is that our upper bound uses GPTFs while
our lower bound applies only to PTFs.




Comparison of New Upper Bound to
Prior Work [Klivans-Servedio 2004]

PTF Weight Upper Bound for DLs of length k=1,000,000
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Comparison of Our Algorithm to Prior Work

run time mistake bound

Wi.nnow Algorithm i, ok log(n)

[Littlestone 1988]

Ha.lving Algorithm nk L log(n)

[Littlestone 1988]
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Comparison of New Lower Bound to
Prior Work [Beigel 1994 ]

PTF Weight Lower Bound for DLs of length k=1,000,000

of  Blue line is 2°&/¢"2) PTF weight lower bound of
[Beigel 1994].
e Red Line is our new 29(&/d™1/2) pTE Weight

Logarithm of
lower bound.
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Upper Bound Proof Sketch

e Given:a length k DL f.
® Break finto k/b “blocks” of length b.

® Closely approximate each block i in the L, -norm with a low-
degree polynomial p,(x).
® If block i “makes a decision”, p,(x) outputs a value close to *1.
® Otherwise, p,(x) outputs 0.
® Put the approximations together to get a PTF p for the entire
decision list f.
* p(x)= 2,3 Pi(x)-
® The highest block i to “make a decision” will dominate the output of p,
so t=sgn(p(x)).




Upper Bound Proof Sketch

e Given:a length k DL f.
® Break finto k/b “blocks” of length b.

® Closely approximate each block i in the L, -norm with a low-
degree polynomial p,(x).
® If block i “makes a decision”, p,(x) outputs a value close to *1.

® Otherwise, p,(x) outputs 0.

® Put the approximations together to get a PTF p for the entire
decision list f.
* p(x)= 2,3 p(x).
® The highest block i to “make a decision” will dominate the output of p,
so t=sgn(p(x)).
® Degree of p equals degree of the p;s.

° Weight of P depends on the number of blocks and the Weight of the
p;’s. Choose block length to balance these contributions.




Upper Bound Proof Sketch

e Klivans-Servedio use degree d Chebyshev polynomials to

construct each approximating polynomial p,(x).

® But when the d is relatively large, the degree d Chebyshev
polynomials have very high weight.
® Instead, we use lower degree Chebyshev polynomials, composed
with a high-degree monomial.

® This allows us to achieve lower Weight approximating
polynomials p,(x) than those obtained by Klivans-Servedio for

the same degree.




Lower Bound Proof Sketch

®* We prove a lower bound for a specitic decision list, ODD-

MAX-BIT (OMB).
® ook at the right—most bit set to 1. If it is at an odd

coordinate, output 1, else output 0.
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Lower Bound Proof Sketch

¢ Lower bound argument shows that “block-based” approach of

our upper bound is intrinsic.
® Break the OMB function into k/b blocks of length b.

® Show that you can take any PTF p for OMB and turn it into a
polynomial q closely approximating each block.
® q has the same degree and weight as p.

* Beigel used Markov’s inequality from approximation theory
to conclude that q has to have high degree, and hence p has to
have high degree as well.




Lower Bound Proof Sketch

e Markov’s inequality bounds the derivative of a polynomial q

in terms of its degree.

* We prove a new Markov—type inequality which takes into

account both the degree of q and the size of its coefficients.




Lower Bound Proof Sketch

° Markov's Inequality: Let q : [-1,1] = [-1,1] be a real
polynomial with deg(q) < d.Then max, ¢, [d'(x)| S d?.

* Our Markov-type Ine uality: Let q : [-1,1] = [-1,1] be a real

pol nomial W1th < d and coeff1c1ents of absolute value at
most W, If 12 < max |$1 |q(x) |, then

max, < |q'(x)| = O(d*max{d, log(W)}).
o IfW << 24 our inequality is tighter than Markov’s.

® This allows us to improve Beigel’s lower bound for OMB when d
is relatively large.




Lower Bound Proof Sketch

Markov's Inequality: Let q : [-1,1] = [-1,1] be a real
polynomial with deg(q) < d.Then max, ¢, [d'(x)| S d?.

Our Markov-type Ine uality: Let q : [-1,1] = [-1,1] be a real

pol nomial With < d and coeff1c1ents of absolute value at
most W, If 12 < max |$1 |q(x) |, then

max, < |q'(x)| = O(d*max{d, log(W)}).
fW << 24 our inequality is tighter than Markov’s.

This allows us to improve Beigel’s lower bound for OMB when d
is relatively large.

Tight example for Markov: degree d Chebyshev polynomials. Tight
example for our inequality degree d Chebyshev polynomials
composed with a high—degree monomial.

Same intuition applied for our upper bound.




Conclusions

e We provide new positive and negative results for attribute-

efficient learning of decision lists.

® Qur results rely on a careful study of PTF Weight—degree tradeoffs

for decision lists.

® Both our upper and lower bounds improve over prior work when the

allowed degree of the (G)PTF is relatively high.

® Open questions:
® Cryptographic hardness of true attribute-efficient learning of length k
decision lists? [Servedio 2000] has partial results in this direction.
® New algorithms: beyond PTFs?

® Moving beyond DLs: Attribute-efficient learning of more expressive

concept classes like decision trees and DNFs?




Thank you!




