
Problem Set 3: COSC-548 (Streaming Algorithms)

Due November 15th, 2016 by end of class

1. Recall that the Count Sketch outputs the median of log(1/δ) copies of the following Basic
Estimator.

• Let k = 6/ε2. Initialize k counters, denoted C[1], C[2], . . . , C[k], to 0.

• Choose a hash function h : [n]→ [k] at random from a pairwise-independent hash family.

• Choose a hash function g : [n]→ {−1, 1} at random from a pairwise-independent hash
family.

• When processing stream update (ai, δi):

C[h(ai)]← C[h(ai)] + g(ai) · δi.
• On query j, output f̂j = g(j) · C[h(j)].

We proved in class that for any fixed j, with probability at least 2/3, |f̂j − fj | ≤ ε · ‖f‖2. This
problem will walk through a proof of the following stronger bound.

The Stronger Bound. Let ` = 1/ε2 (assume ` is an integer), and let f res(`) denote the
frequency vector f of the stream with the top ` entries of f set to 0. For any fixed j, with
probability at least 2/3, |f̂j − fj | ≤ ε · ‖f res(`)‖2.

(1a) Assume without loss of generality that f1 ≥ f2 ≥ . . . fn. Let E denote the event that for
all i ≤ ` such that i 6= j, it holds that h(i) 6= h(j). Show that Pr[E] ≥ 5/6.

(1b) Show that E[f̂j |E] = fj .

(1c) Show that Var[f̂j |E] ≤ ‖f res(`)‖22/k.

(1d) Use Chebyshev’s inequality to conclude that Pr
[∣∣∣f̂j − fj∣∣∣ > ε · ‖f res(`)‖2

]
≤ Pr[E] +

1/(kε2) ≤ 1/6 + 1/6 ≤ 1/3.

2. In class, we showed that for streams in the strict turnstile update model, the Count-Min
sketch can, for each item i ∈ [n], return an estimate f̂i for fi such that the following holds. For
each fixed i ∈ [n], with probability at least 1− δ, 0 ≤ f̂i − fi ≤ ε · ‖f‖1, where ‖f‖1 =

∑
i fi.

The space usage of the sketch is O(ε−1 · (logm+ log n) · log(1/δ)) bits, and the estimate f̂i
can be computed from the sketch in O(log(1/δ)) time.

Let φ, ε ∈ (0, 1). Recall that in Problem Set 2, we showed that for insert-only streams, the
Misra-Gries algorithm can easily output a list of items items such that:

• For every item i such that fi ≥ φ ·m, i appears in the list.
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• Every item j that appears in the list satisfies fj ≥ (φ− ε) ·m.

This problem will focus on achieving the same goal for streams in the strict turnstile model.
Specifically, suppose our goal is to develop a randomized streaming algorithm that, with
probability at least 1− δ, outputs a list satisfying the above two properties.

(2a) Give a randomized streaming algorithm that uses O(ε−1 · (logm+ log n) · log(n/δ)) bits
of space and achieves the above. How long does it take your algorithm to generate the
list?

Sub-problems (2b) and (2c) below will walk you through the design of a randomized
algorithm that uses slightly more space, but generates the list in O(φ−1 · log n) time.
Throughout this problem, for a, b ∈ N, [a, b] denotes the set of all integers between a and
b (inclusive).

(2b) A dyadic range R is a range of the form [x ·2y+1, (x+1) ·2y] for parameters x, y ∈ N. Let
us restrict our attention to dyadic ranges that are subsets of [n]. Show that each point
in [n] is a member of exactly log2 n dyadic ranges, one for each y ∈ {0, . . . , log2(n)− 1}.
Using this fact, give a streaming algorithm that processes each stream update in O(log n)
time, uses O(ε−1 · (logm+log n) · log n · log(1/δ)) bits of space, and achieves the following.

Define the frequency of a dyadic range R to equal fR :=
∑

i∈R fi. The algorithm should

be able to return an estimate f̂R for fR such that the following holds. For each fixed R,
with probability at least 1− δ, 0 ≤ f̂R − fR ≤ ε · ‖f‖1.

(2c) Using (2b), give an algorithm that, with probability at least 1 − δ, outputs a list
satisfying the two bulleted properties above. The space usage of your algorithm should
be O(ε−1 · (logm+ log n) · log n · log(φ−1 · log n · δ−1)) (argue this). Your algorithm should
generate the list in O(φ−1 · log n) time.

Hint: Start by identifying all dyadic ranges of the form [x · 2y + 1, (x + 1) · 2y] with
y = log2(n) − 1 satisfying f̂R ≥ φ · ‖f‖1. For each such dyadic range, split it into two
(sub)-dyadic ranges, and investigate recursively whether one or both subranges also have
estimated frequency at least φ · ‖f‖1. Proceed in this manner until you arrive at dyadic
ranges R consisting of a single item, and return all such identified items.

(2d) Show that each interval [a, b] with 1 ≤ a ≤ b ≤ n is covered by O(log n) disjoint dyadic
ranges. Use this to give an algorithm that uses O(ε−1·(logm+log n)·log2 n·log(log n·δ−1))
bits of space and achieves the following. For any interval R = [a, b] (not just dyadic),
the algorithm can return an estimate f̂R of fR :=

∑
a≤i≤b fi in O(log n · log(1/δ)) time.

Moreover, for each fixed R, with probability at least 1− δ it holds that 0 ≤ fR − f̂R ≤
ε · ‖f‖1.

3. Call a stream in the general turnstile model pure if there exists at most one item i such that
fi 6= 0. Give a streaming algorithm that uses O(log(m · n)) space, and satisfies the following
properties.

• If the stream is pure, then the algorithm always outputs “PURE”, along with the unique
item i such that fi 6= 0.

2



• If the stream is not pure, then with probability at least 1− 1/n, the algorithm outputs
“NOT PURE”.

Hint: Let p be a sufficiently large prime (remember to say how large p must be when describing
your solution). Pick a random r ∈ [p], and compute the following three quantities.

• ρ :=
∑

i∈[n] fi · i.
• φ :=

∑
i∈[n] fi.

• τ :=
∑

i∈[n] fi · ri (mod p).

Consider what happens if your algorithm tests whether τ = φ · rρ/φ (mod p).

4. Recall that a graph is bipartite if its vertices can be split into two sets A,B such that every
edge contains exactly one vertex in A and exactly one vertex in V . Give an algorithm that
works for graph streams in the insert-only update model, uses O(n · log n) bits of space, and
determines whether or not a graph is bipartite. Extra credit: Give an algorithm that works
for graph streams in the strict turnstile update model and uses space O(n · log3 n).

5. Prove that any connected, cycle-free graph on n nodes has exactly n− 1 edges.
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