
Problem Set 2: COSC-548 (Streaming Algorithms)

Due October 25th, 2016 by end of class

1. Recall that a hash family H of hash functions mapping [n]→ [r] is k-wise independent if for
every k distinct values x1, . . . , xk ∈ [n], and any y1, . . . , yk ∈ [r],

Pr
h←H

[h(x1) = y1 and h(x2) = y2 and . . . and h(xk) = yk] = 1/rk.

In class, we saw that for any prime p, the following hash family of hash functions mapping
[p]→ [p] is pairwise independent:

H := {ha,b : a, b ∈ [p]},

where
ha,b(x) := (ax+ b) mod p.

Any hash function in this family can be represented with O(log p) bits and can be evaluated
at any input with one modular multiplication and one modular addition.

Generalize the above construction as follows. For any k ≥ 2, identify a k-wise independent hash
family H of hash functions mapping [p]→ [p] such that any h ∈ H can be represented with
O(k log p) bits, and evaluated at any input with O(k) modular multiplications and additions.

You may use the fact that for any k distinct values x1, . . . , xk ∈ [p], and any values y1 . . . , yk ∈
[p] there exists a unique polynomial g of degree at most k − 1 such that g(xi) = yi for all i.

2. Suppose we toss n balls at random into m bins.

2a) What is the probability that the first and second ball land in the same bin?

2b) Prove that there is some sufficiently small constant c > 0 such that if n < c ·m1/2, the
probability that no two balls land in the same bin is at least 99/100.

2c) Prove that there is some sufficiently large constant c > 0 such that if n > c ·m1/2, the
probability that there exists some pair of balls that land in the same bin is at least
99/100.

Hint: Let E be the event that there is no pair of distinct balls landing in the same
bin. The question asks you to prove that Pr[E] ≤ 0.01. For E to occur, the first n/2
balls must land in distinct bins. Conditioned on this occurring, give an expression for
the probability that none of the last n/2 balls land in the same bin as any of the first
n/2 balls. Then prove that this expression is at most 0.01 (for an appropriate choice of
constant c in the statement of the problem).

For the last step, you may find it helpful to use the fact that for any x ≥ 1, the following
holds: (1− 1/x)x ≤ 1/e < 1/2.
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3. (More Practice with Chernoff Bounds) Let φ, ε ∈ (0, 1), and suppose φ ≥ ε. Given a data
stream σ = 〈a1, . . . , am〉 in the (unit-weight update) insert-only model, with frequency vector
f = (f1, . . . , fn), suppose we wish to output a list of items such that:

• For every item i such that fi ≥ φ ·m, i appears in the list.

• Every item j that appears in the list satisfies fj ≥ (φ− ε) ·m.

3a) Prove that one can achieve the above using O(ε−1 · (log n + logm)) bits of space by
running Misra-Gries on σ and outputting any item that is assigned a counter with value
larger than (φ− ε) ·m.

3b) Let c be a sufficiently large constant. Suppose we sample ` = c ·ε−2 · log n stream updates
at random. Show that there is some threshold t such that if we output all items that
appear in the sample t or more times, then with probability at least 99% over the random
sample, the list output by the algorithm satisfies the desired two properties.

You may use the following “additive Chernoff Bound”: Let X1, . . . , Xm be independent
Poisson trials with expectation p (i.e., Xi takes value 1 with probability p, and 0 with
probability 1− p). Let X =

∑m
i=1Xi and µ = E[X] = m · p. Then the following holds:

For 0 < λ ≤ 1,Pr(|X − µ| > λ ·m) ≤ 2 · e−2λ2·m.

Remark. The space usage of this sampling algorithm is worse than Misra-Gries by a
factor of Θ

(
ε−1 · log n

)
.

3c) Suppose our goal was instead to output a list of items such that

• For every item i such that fi ≥ ε ·m, i appears in the list.

• Every item j that appears in the list satisfies fj ≥ 1
2 · ε ·m.

Let c be a sufficiently large constant. Suppose we sample ` = c ·ε−1 · log n stream updates
at random. Show that there is some threshold t such that if we output all items that
appear in the sample t or more times, then with probability at least 99% over the random
sample, the list output by the algorithm satisfies the desired two properties.

You may use the “multiplicative Chernoff Bound” stated in the previous problem set,
and repeated here for your convenience. Let X1, . . . , Xm be independent Poisson trials
with expectation p (i.e., Xi takes value 1 with probability p, and 0 with probability 1−p).
Let X =

∑m
i=1Xi and µ = E[X] = m · p. Then the following holds:

For 0 < δ ≤ 1,Pr(|X − µ| > δµ) ≤ 2 · e−µδ2/3.

4. Recall that the Count-Min Sketch for the strict turnstile update model works as follows.
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• Let k = d2/εe. Consider t = log(1/δ) arrays, C1, . . . , Ct, each containing k counters initialized
to 0.

• Choose t hash functions h1, . . . , ht : [n]→ [k] independently and uniformly at random from a
pairwise independent hash family.

• When processing stream update (ai, δi):
For each ` = 1, . . . , t:

C`[h`(ai)]← C`[h`(ai)] + δi.

• When asked to return an estimate for the frequency of item j, return min`=1,...,tC`[h`(j)].

4a) Suppose we replace min in the final line of the algorithm with median. Show that the
returned estimate for any query j is never more accurate with median than with min.

4b) Nevertheless, let us show that the resulting Count-Median algorithm satisfies error
guarantees that are similar to Count-Min. Specifically, suppose we increase k and t by
constant factors, say to k = 6/ε and t = 10 · log(1/δ). Show that for each fixed i ∈ [n],
with probability at least 1− δ the Count-Median estimate f̂i satisfies |f̂i − fi| ≤ ε ·M ,
where M =

∑n
i=1 fi.

3


