
Problem Set 1: COSC-548 (Streaming Algorithms)

Due September 29th, 2016 by end of class

1. Given two streams σ1 = 〈a1, . . . , am〉 and σ2 = 〈b1, . . . , bm〉 with all ai, bi drawn from a data
universe [n], let σ := σ1 ◦ σ2 denote their concatenation.

In class, we saw a randomized streaming algorithm that made a single pass over σ, used space
O(log(m · n)), and achieved the following guarantee.

• If aj = bj for all j ∈ [m], then the algorithm output EQUAL with probability 1.

• If there exists some j such that aj 6= bj , then the algorithm output NOTEQUAL with
probability at least 1− 1/m.

Give a streaming algorithm with space cost O(log(m · n)) that tests whether σ1 and σ2 have
the same frequency vectors (instead of testing whether σ1 and σ2 are equal as ordered lists,
which is what the algorithm given in class achieved). That is, letting f1 denote the frequency
vector of σ1 and f2 denote the frequency vector of σ2, your algorithm should achieve the
following guarantee.

• If f1 = f2 entry-wise, then the algorithm must output EQUAL with probability 1.

• If f1 does not equal f2 entry-wise, then the algorithm must output NOTEQUAL with
probability at least 1− 1/m.

Does your algorithm work in the turnstile streaming model?

(For reference, frequency vectors and the turnstile streaming model are defined in Lecture 0
of Amit Chakrabarti’s notes at http://www.cs.dartmouth.edu/~ac/Teach/CS49-Fall11/

Notes/lecnotes.pdf).

2. Recall the Misra-Gries algorithm from class in the context of the vanilla streaming model.
When run on a data stream σ = 〈a1, . . . , am〉, the algorithm maintains k (item, count) pairs.
Every time the algorithm processes a stream update ai, the algorithm looks to see if ai is
assigned a counter, and if so it increments the counter. If not, and an unassigned counter
exists, the algorithm assigns the counter to ai and sets the count to 1. If no unassigned
counter exists, the algorithm decrements all counters by 1, and marks all counters set to 0
as unassigned. When asked to provide an estimate f̂MG,k

j for the frequency of item j, the
algorithm returns 0 if j is not assigned a counter, and returns the value of the counter assigned
to j otherwise.

We proved in class that 0 ≤ fj − f̂MG,k
j ≤ m/(k + 1). Prove that in fact for any c < k, the

following holds: 0 ≤ fj − f̂MG,k
j ≤ F res(c)/(k + 1 − c). Here, F res(c) denotes the sum of the

frequencies of all but the c most frequent items.

1

3. In class, we also discussed the SpaceSaving algorithm, which works as follows. When run on
a data stream σ = 〈a1, . . . , am〉, the algorithm maintains k (item, count) pairs. Every time
the algorithm processes a stream update ai, the algorithm looks to see if ai is assigned a
counter, and if so it increments the counter. If not, and an unassigned counter exists, the
algorithm assigns the counter to ai and sets the count to 1. If no unassigned counter exists,
the algorithm finds the smallest counter, reassigns it to ai, and increments the count. When
asked to provide an estimate f̂SS,kj for the frequency of item j, the algorithm returns the
minimum counter value if j is not assigned a counter, and returns the value of the counter
assigned to j otherwise.

Prove that SpaceSaving and Misra-Gries are isomorphic in the following sense. After running
Misra-Gries with k counters on a stream σ, one can use the resulting k (item, count) pairs to

compute f̂SS,k+1
j . Similarly, after running SpaceSaving with k + 1 counters on σ, one can use

the resulting k + 1 (item, count) pairs to compute f̂MG,k
j .

Hint: Let minSS,k+1 denote the minimum counter value in the SpaceSaving data structure,
and let m̂MG,k denote the sum of all the counter values in the Misra-Gries data structure.
Show that f̂SS,k+1

j − f̂MG,k
j = minSS,k+1 = (m − m̂MG,k)/(k + 1). Do this by induction on

the number of stream updates. That is, show that this holds for streams with just a single
update. Then assume that it holds for all streams with at most m− 1 stream updates, and
show that it also holds after the algorithms process the m’th stream update.

4. Suppose we throw m balls into n bins at random, with m ≥ n.

(a) Let the random variable Bi denote the number of balls in bin i. What is E[B1]?

(b) Suppose m = 100n lnn. Show that the number of balls in bin i does not differ from the
expectation by more than (say) 50 lnn with probability at least 1− 1/n2.

Hint: Use the following form of the Chernoff bound that we covered in class. Let X1, . . . , Xm

be independent Poisson trials with expectation p (i.e., Xi takes value 1 with probability p, and
0 with probability 1− p). Let X =

∑m
i=1Xi and µ = E[X] = m · p. Then the following holds:

For 0 < δ ≤ 1,Pr(|X − µ| > δµ) ≤ 2 · e−µδ2/3.

(c) Let m = n. Prove that with probability at least 1− 1/n2, the maximum number of balls
in any bin is at most c · log n/ log log n for some constant c > 0.

Hint: Use the following stronger version of the Chernoff bound. Let X1, . . . , Xm be independent
Poisson trials with expectation p. Let X =

∑m
i=1Xi and µ = E[X] = m ·p. Then the following

holds:
For any δ > 0,Pr(X − µ > δµ) ≤

(
eδ/(1 + δ)(1+δ)

)µ
.

Remark. The O(log n/ log log n) upper bound on the maximum load of any bin implies that
a simple hash table implementation based on chaining can support any sequence of n lookup,
insert, and delete operations in O(log n/ log log n) time with high probability, while using
O(n log |U|) bits of space, where U is the data universe from which keys are drawn. Specifically,
the hash table maintains n “buckets”. It hashes each key to a random bucket, and for each
bucket it maintains a linked list storing all keys residing in the bucket. The entire linked list

2

for any bucket can be searched in time proportional to the length of the linked list, which
is O(log n/ log log n) with high probability. This runtime beats that of self-balancing binary
search trees by a Θ(log log n) factor. Later in the semester, we will see more sophisticated
hash table implementations achieving faster runtimes.

3

