
Justin Thaler, Harvard University
Joint work with:

Michael Mitzenmacher (Harvard)
Michael T. Goodrich (UC Irvine)
Daniel S. Hirschberg (UC Irvine)

Cache-Oblivious Dictionaries and
Multimaps with Negligible Failure

Probability

Dynamic Dictionaries: Statement of
Results

Dynamic Dictionaries
�  Goal: Maintain a set of n (key, value) pairs.

� Assume each key is associated with a unique value.
�  E.g. Employees and salaries, symbol table within a compiler.

�  Must support the following operations efficiently (ideally

constant worst-case time per operation):
�  Insert(k, v)
� Delete(k, v)
�  Lookup(k)

�  Goal: Use close to minimum amount of space: (1+ε)n words
of memory for some small constant ε > 0.

New Goal: Negligible Failure Probability
�  We aim for structures with sub-polynomial failure

probability.
� That is, all operations succeed in worst-case constant time with

probability say 1-1/nlog n.

�  Motivations:
� Use in cryptographic applications like oblivious RAM simulation,

prevention of timing attacks, and clocked adversaries.
� Handling super-polynomially long sequences of updates.

Our Dictionary Results
�  Assuming “sufficiently random hash functions” that can

be evaluated in constant time:
�  For any ε, k > 0, we use (1+ε)n words of memory and:
� With probability 1-1/nlogk n, all inserts, deletes, and lookups

will run in time O(1).

�  Previous work based on cuckoo hashing [Arbitman, Naor, Segev
2010] achieved this but with polynomial failure probability.

“Sufficiently random hash functions” = (almost) nα-wise
independent hash family.

It is open how to construct these with O(1) evaluation time and 1/
nω(1) failure probability.
We give partial results toward making the failure probability
subpolynomial, building on [Siegel 2004].

Our Dictionary Results
�  Assuming “sufficiently random hash functions” that can

be evaluated in constant time:
�  For any ε, k > 0, we use (1+ε)n words of memory and:
� With probability 1-1/nlogk n, all inserts, deletes, and lookups

will run in time O(1).

�  Previous work based on cuckoo hashing [Arbitman, Naor, Segev
2010] achieved this but with polynomial failure probability.

�  “Sufficiently random hash functions” = (almost) nα-wise
independent hash family.
�  It is open how to construct these with O(1) evaluation time and

1/nω(1) failure probability.
�  We give partial results toward making the failure probability

subpolynomial, building on [Siegel 2004].

Dynamic Multimaps: Statement of
Results

Dynamic Dictionaries
�  Goal: Maintain a set of n (key, value) pairs.

� Assume each key is associated with a unique value.
�  E.g. Employees and salaries, symbol table within a compiler.

�  Must support the following operations efficiently (ideally

constant worst-case time per operation):
�  Insert(k, v)
� Delete(k, v)
�  Lookup(k)

�  Goal: Use close to minimum amount of space: (1+ε)n words
of memory for some small ε > 0.

Dynamic Multimaps
�  Goal: Maintain a set of n (key, value) pairs.

� Assume each key is associated with a unique value.
�  E.g. Employees and salaries, symbol table within a compiler.

�  Must support the following operations efficiently (ideally

constant worst-case time per operation):
�  Insert(k, v)
� Delete(k, v)
�  Lookup(k)

�  Goal: Use close to minimum amount of space: (1+ε)n words
of memory for some small ε > 0.

Dynamic Multimaps
�  Goal: Maintain a set of n (key, value) pairs.

�  Each key may be associated with many values.
Applications:

Inverted indices.
Keys are words, and each value is a document that contains the word.
Used in web search.

Graphical data.
Efficient adjacency list representation.
Keys are vertices, and each value is an edge incident to the vertex.

Must support the following operations efficiently:
Insert(k, v)
Delete(k, v)
Lookup(k, v)
FindAll(k)
RemoveAll(k)

Dynamic Multimaps
�  Goal: Maintain a set of n (key, value) pairs.

�  Each key may be associated with many values.
�  Applications:

�  Inverted indices.
�  Keys are words, and each value is a document that contains the word.
�  Used in web search.

�  Graphical data.
�  Efficient adjacency list representation.
�  Keys are vertices, and the values are its neighbors.

Must support the following operations efficiently:
Insert(k, v)
Delete(k, v)
Lookup(k, v)
FindAll(k)
RemoveAll(k)

Dynamic Multimaps
�  Goal: Maintain a set of n (key, value) pairs.

�  Each key may be associated with many values.
�  Applications:

�  Inverted indices.
�  Keys are words, and each value is a document that contains the word.
�  Used in web search.

�  Graphical data.
�  Efficient adjacency list representation.
�  Keys are vertices, and the values are its neighbors.

�  Must support the following operations efficiently:
�  Insert(k, v)
�  Delete(k, v)
�  Lookup(k, v)
�  FindAll(k)
�  RemoveAll(k)

Dynamic Multimaps
�  Multimaps are now a standard abstraction.

� Multimaps appear in the C++ Standard Template Library,
Google Java Collections Library, and Apache Common
Collections API.

�  Somebody thinks they’re useful!

Possible Approaches:
C++ Standard Template library uses red-black trees.
 O(log n) worst-case operations.
What about hashing? Can we support all operations in worst-case
constant time with high probability?

Dynamic Multimaps
�  Multimaps are now a standard abstraction.

� Multimaps appear in the C++ Standard Template Library,
Google Java Collections Library, and Apache Common
Collections API.

�  Somebody thinks they’re useful!

�  Possible Approaches:
� C++ Standard Template library uses red-black trees.
�  O(log n) worst-case operations.
� What about hashing?

Our Work: External Memory Multimaps
�  For big data sets, number of memory accesses is paramount.

�  Each memory block can store B items (B may be ω(1)).

�  Goal: minimize the number of memory blocks that must be
touched (I/Os) especially for findAll(k) operations.
� Requires keeping all values associated with a particular key in

contiguous memory.

Additional goal: be cache oblivious.
Shouldn’t be tuned for the parameters of the memory hierarchy,
like the block size B.
Prior work [Angelino et al. 2011] gave a cache-aware dynamic
multimap implementation.

Our Work: External Memory Multimaps
�  For big data sets, number of memory accesses is paramount.

�  Each memory block can store B items (B may be ω(1)).

�  Goal: minimize the number of memory blocks that must be
touched (I/Os) especially for findAll(k) operations.
� Requires keeping all values associated with a particular key in

contiguous memory.

�  Additional goal: be cache oblivious.
� Algorithm shouldn’t be tuned for parameters of the memory

hierarchy, like the block size B.
�  Prior work [Angelino et al. 2011] gave a cache-aware dynamic

multimap implementation.

Dynamic Dictionaries in the Standard
RAM Model

Background: Q-Heaps and Q*-Heaps
�  Q-heaps [Fredman and Willard, 1993] support worst-case

O(1)-time inserts, deletes, lookups, and predecessor queries
into subsets of size O(log1/5 n) from a ‘master set’ of size n.
� Require o(n) space and preprocessing time for pre-computed

lookup tables shared among all the subsets.
� Can be made to work in the AC0 RAM model.

A Q*-heap is essentially a constant-depth B-tree
whose internal nodes are implemented as Q-heaps.

Achieve worst-case constant-time inserts, deletes, and
lookups for subsets of size O(logc n) for an arbitrary
constant c > 0.

Background: Q-Heaps and Q*-Heaps
�  Q-heaps [Fredman and Willard, 1993] support worst-case

O(1)-time inserts, deletes, lookups, and predecessor queries
into subsets of size O(log1/5 n) from a ‘master set’ of size n.
� Require o(n) space and preprocessing time for pre-computed

lookup tables shared among all the subsets.
� Can be made to work in the AC0 RAM model.

�  Q*-heap is a constant-depth B-tree with internal
nodes implemented as Q-heaps.
� Worst-case constant-time inserts, deletes, and lookups

for subsets of size O(logc n) for an arbitrary constant c
> 0.

First Idea for a Dynamic Dictionary

Q*-heap of capacity 6log3 n

Q*-heap of capacity 6log3 n

Q*-heap of capacity 6log3 n

Q*-heap of capacity 6log3 n

Use n/log3 n buckets, each of capacity
6log3 n.

Each time a (k, v) pair
is inserted, hash it to a

random bucket

Analysis
�  Expected number of items mapped to any bucket is log3n.
�  Each bucket has capacity 6log3n.
�  By Chernoff bounds, any bucket overflows with probability

1/nlog3n.
�  By union bound over buckets, no bucket overflows with

probability n/nlog3n .
�  Problem: space usage is > 6n words of memory. How can

remove the 6?

Second idea
�  Use “Front Yard” of [Arbitman, Naor, Segev 2010] to create a

two-level hashing scheme.
�  The top level keeps m = (1 + ε/2)n/d “bins” of size d,

where d is a suitably chosen constant that depends on ε.
�  Lookups, inserts, and deletes to each top-level bin can

trivially be done in time O(d)=O(1).
With 1/nω(1) probability, at most (ε/16)n items will
“overflow” from the top level (holds as long as hash functions
are nα-wise independent for some α>0).

Use our array of Q*-heap to handle the overflow.

Second idea
�  Use “Front Yard” of [Arbitman, Naor, Segev 2010] to create a

two-level hashing scheme.
�  The top level keeps m = (1 + ε/2)n/d “bins” of size d,

where d is a suitably chosen constant that depends on ε.
�  Lookups, inserts, and deletes to each top-level bin can

trivially be done in time O(d)=O(1).
�  With 1/nω(1) probability, at most (ε/16)n items will

“overflow” from the top level.
� Use our array of Q*-heaps to handle the overflow.
� Holds as long as hash functions are nα-wise independent for

some α>0.

Dynamic Multimaps in the External
Memory Model

Recall: Dynamic Multimaps
�  Goal: Maintain a set of n (key, value) pairs.

�  Each key may be associated with many values.

�  Must support the following operations efficiently:
�  Insert(k, v)
� Delete(k, v)
�  Lookup(k, v)
�  FindAll(k)
� RemoveAll(k)

�  Want to use O(n) words of memory.

Methodology
�  Utilize two data structures.
�  A fast dictionary data structure. Supports fast Insert(k, v),

Delete(k, v), and Lookup(k, v) operations.
�  External-memory multiqueues (for fast FindAlls and RemoveAlls).

� Keep values associated with each key in a queue.
� Need to keep entire queue in contiguous memory while using

O(n) space.

Pictorial Representation

The blocks in S

The key-value dictionary, D

The primary
structure, T

Our Solution, Step-by-Step

Method

Lookup(k, v)

Insert(k, v)

Delete(k, v)

FindAll(k)

RemoveAll(k)

Our Solution, Step-by-Step
Method

Lookup(k, v)

Insert(k, v)

Delete(k, v)

•  Keep (k, v) pairs in a dynamic dictionary D.
•  Supports lookups, inserts, and deletes

worst case O(1) time.

The blocks in S

The key-value dictionary, D

The primary
structure, T

Our Solution, Step-by-Step
Method

FindAll(k)

RemoveAll(k)

•  For each key k, keep array Ak of all values
associated with k.

•  To find k’s array quickly, keep second dynamic
dictionary T of (k, ptr(Ak)) pairs, where
ptr(Ak) points to k’s array.

The blocks in S

The key-value dictionary, D

The primary
structure, T

Our Solution, Step-by-Step
Method

FindAll(k)

RemoveAll(k)

•  For each key k, keep array Ak of all values
associated with k.

•  To find k’s array quickly, keep second dynamic
dictionary T of (k, ptr(Ak)) pairs, where
ptr(Ak) points to k’s array.

The blocks in S

The key-value dictionary, D

The primary
structure, T

•  If a value is deleted from Ak, keep Ak
contiguous by moving last item in the
array into the vacated position.

Our Solution, Step-by-Step
Method

FindAll(k)

RemoveAll(k)

•  For each key k, keep array Ak of all values
associated with k.

•  To find k’s array quickly, keep second dynamic
dictionary T of (k, ptr(Ak)) pairs, where
ptr(Ak) points to k’s array.

The blocks in S

The key-value dictionary, D

The primary
structure, T

•  If a value is deleted from Ak, keep Ak
contiguous by moving last item in the
array into the vacated position.

•  Need to dynamically expand and shrink
arrays. Can do in constant time using
“Improved Buddy System” of [Brodal et al.]

Our Solution, Step-by-Step
Method

FindAll(k)

RemoveAll(k)

•  During a RemoveAll(k), just delete k’s entry
from T and free Ak. Cannot afford to remove
all (k, v) entries from D at this time.

•  This creates “spurious” (k, v) entries in D that
must be dealt with.

The blocks in S

The key-value dictionary, D

The primary
structure, T

Conclusions
�  We give new dictionary and multimap data structures that

support constant-time worst-case operations with
subpolynomial failure probabilities.
� Our dictionary is for the standard RAM model and use

(1+ε)n words of memory.
� Our multimap is for the external memory model. It uses O(n)

words of memory and is cache oblivious.

�  Open questions about hash functions remain.
�  Instantiate Siegel’s hash functions with subpolynomial failure

probability and polynomial preprocessing time?
� Or avoid using nα-wise independent hash functions entirely?

Thank you!

Hash Functions with O(1)-Evaluation Time
and Negligible Failure Probability

Siegel’s Construction
�  Given: a universe U.
�  Store a fixed bipartite graph G of degree d=O(1), where

there is a left vertex for each universe item x.
�  Populate each right vertex v with a random value R[v].

�  Define h(x) =⊕v in N(x) R[v].

Siegel’s Construction
�  Define h(x) =⊕v in N(x) R[v].

�  If G is a good vertex expander for sets S of size < k, then
this defines a k-wise independent hash family.
� That is: for any distinct x1, x2, …, xk:

(h(x1), h(x2), …, h(xk)) is uniformly distributed.

Idea: For any set S of size < k, the expansion property of G
guarantees ∃v∈ N(S) with exactly one neighbor x1∈S.
Then h(x1) will be independent of h(xi) for all i ≠ 1.
Intuitively, we can then “ignore” x and iterate the argument on the
set S\{x1}.

Siegel’s Construction
�  Define h(x) =⊕v in N(x) R[v].

�  If G is a good vertex expander for sets S of size < k, then
this defines a k-wise independent hash family.
� That is: for any distinct x1, x2, …, xk:

(h(x1), h(x2), …, h(xk)) is uniformly distributed.

�  Idea: For any set S of size < k, the expansion property of G
guarantees ∃v∈ N(S) with exactly one neighbor x1∈S.

� Then h(x1) will be independent of h(xi) for all i ≠ 1.
�  Intuitively, we can then “ignore” x and iterate the argument on

the set S\{x1}, which also expands well.

Wait a minute
�  G is huge – it has a vertex for each universe item.
�  Instead, store a succinct representation of G.

�  Store a “small” expander G’ of size O(nβ) for some β<1.
� When evaluating the hash function, blow G’ up into a large

expander G “on-the-fly” using graph products.
� Only works for polynomial-sized universes.

Two Sources of “Failure”
�  There are two sources of failure in Siegel’s construction.

1.  There are no known explicit constructions of the expanders
Siegel needs.

�  So he generates a graph at random and hopes it is an expander.

2.  If the universe has superpolynomial size, it must first be hashed
down to a poly-sized universe before applying Siegel’s
construction.

�  This introduces “collisions” with probability 1/poly(n).

Two Sources of “Failure”
�  There are two sources of failure in Siegel’s construction.

1.  There are no known explicit constructions of the expanders
Siegel needs.

�  So he generates a graph at random and hopes it is an expander.

2.  If the universe has superpolynomial size, it must first be hashed
down to a poly-sized universe before applying Siegel’s
construction.

�  This introduces “collisions” with probability 1/poly(n).

Addressing Failure Source 1
�  There are no known explicit constructions of the expanders

Siegel needs.
�  So he generates G at random and hopes it is an expander.

�  Observation: the probability G is not an expander is
dominated by the probability that small sets of vertices fail to
satisfy the condition.
To get failure probability 1/nlogk n, randomly generate G and
exhaustively checking the vertex expansion of all sets of size ≤ logk
n.
Requires quasi-polynomial preprocessing time, but constant
evaluation time “online.”

Addressing Failure Source 1
�  There are no known explicit constructions of the expanders

Siegel needs.
�  So he generates G at random and hopes it is an expander.

�  Observation: the probability G is not an expander is
dominated by the probability that small sets of vertices fail to
satisfy the condition.
� To get failure probability 1/nlogk n, randomly generate G and

exhaustively check the expansion of all sets of size ≤ logk n.
� Requires quasi-polynomial preprocessing time, but constant

evaluation time “online.”

Two Sources of “Failure”
�  There are two sources of failure in Siegel’s construction.

1.  There are no known explicit constructions of the expanders
Siegel needs.

�  So he generates a graph at random and hopes it is an expander.

2.  If the universe has superpolynomial size, it must first be hashed
down to a poly-sized universe before applying Siegel’s
construction.

�  This introduces “collisions” with probability 1/poly(n).

Two Sources of “Failure”
�  If the universe has superpolynomial size, it must first be hashed

down to a poly-sized universe before applying Siegel’s
construction.

�  This introduces “collisions” with probability 1/poly(n).

�  Idea: run say loglog n independent copies of Siegel’s
construction, and define h(x) as the XOR of the results.
� For any set S, if even one copy of Siegel’s construction is

fully random on S, then the XOR will also be fully
random on S.

� Requires evaluation time O(log log n) and has failure
probability 1/nloglog n.

