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X = x1 xz x3 xn

Goal: Compute f(x) by reading as few bits of x as possible.
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Query complexity

Let f:{0,1}" — {0,1} be a function and x € {0,1}" be an input to f.

X = x1 xz x3 xn

Goal: Compute f(x) by reading as few bits of x as possible.

Quantum Query Complexity: Algorithm can query bits of x in superposition, must output

f (x) with probability at least 2/3.

Example: Let OR,,(x) = Vi=; x; and AND,,(x) = AjL{ x;.
Then Q(OR,,) = Q(AND,,) = O(y/n) [Grover96, Bennett-Bernstein-Brassard-Vazirani97]

Classically, we need ©®(n) queries for both problemes.




Why query complexity?

Complexity theoretic motivation

* We can prove statements about the power of different computational models!
(E.g., exponential separation between classical and quantum algorithms)

* Oracle separations between classes, lower bounds on restricted models, upper and lower
bounds in communication complexity, circuit complexity, data structures, etc.

Algorithmic motivation

» Algorithms often transfer to the circuit model, while the abstraction of query complexity
often gets rid of unnecessary details.

* Most quantum algorithms are naturally phrased as query algorithms. E.g., Shor, Grover,
Hidden Subgroup, Linear systems (HHL), etc.



Lower bounds on quantum query complexity

Positive-weights adversary method [Ambainis] Negative-weights adversary method [HLSO7]
Easy to use, but has many limitations. Cannot Equals (up to constants) quantum query
show any of the results of our work. complexity, but difficult to use.

In recent years, the adversary methods have become

the tools of choice for proving lower bounds.

Polynomial method
« Equals (up to constants) quantum query complexity for many natural functions.
« Can show lower bounds for algorithms with unbounded error, small error, and no error.

* Works when the positive-weights adversary fails (e.g., the collision problem).



Lower bounds on quantum query complexity

Positive-weights adversary method [Ambainis] Negative-weights adversary method [HLSO7]
Easy to use, but has many limitations. Cannot Equals (up to constants) quantum query
show any of the results of our work. complexity, but difficult to use.

In recent years, the adversary methods have become

the tools of choice for proving lower bounds.

Polynomial method

* Equals (up to constants) quantum query complexity for many natural functions.
« Can show lower bounds for algorithms with unbounded error, small error, and no error.
* Works when the positive-weights adversary fails (e.g., the collision problem).
« Can imply lower bounds for more powerful models than quantum query complexity:
o “Lifts” to quantum communication lower bounds [She08, SZ09]



Lower bounds on quantum query complexity

Positive-weights adversary method [Ambainis] Negative-weights adversary method [HLSO7]
Easy to use, but has many limitations. Cannot Equals (up to constants) quantum query
show any of the results of our work. complexity, but difficult to use.

In recent years, the adversary methods have become

the tools of choice for proving lower bounds.

Polynomial method

* Equals (up to constants) quantum query complexity for many natural functions.
« Can show lower bounds for algorithms with unbounded error, small error, and no error.
* Works when the positive-weights adversary fails (e.g., the collision problem).
« Can imply lower bounds for more powerful models than quantum query complexity:
o “Lifts” to quantum communication lower bounds [She08, SZ09]
« This work: Extensions to lower bound “super-powerful” query/communication models.



The Polynomial Method For Quantum Query Lower Bounds

Approximate degree: Minimum degree of a polynomial p(x4, ..., x;,) with real Py
coefficients such that Vx € {0,1}", |f(x) — p(x)| < 1/3. eg(f)

deg(OR,) = deg(AND,,) = 0(yn) Q(OR,) = Q(AND,) = 0(yn)




The Polynomial Method For Quantum Query Lower Bounds

Approximate degree: Minimum degree of a polynomial p(x4, ..., x;,) with real Py
coefficients such that Vx € {0,1}", |f(x) — p(x)| < 1/3. eg(f)

deg(OR,) = deg(AND,,) = 0(yn) Q(OR,) = Q(AND,) = 0(yn)

Theorem ([Beals-Buhrman-Cleve-Mosca-de Wolf01]): For any f, .
1 —~ The polynomial method
Q(f) = 5 deg(f)

* For any T-query quantum algorithm A4, there is a polynomial p of degree 2T such that:
e Forall x € {0,1}", p(x) equals the probability that A outputs 1 on input x.




Approximate degree and the Polynomial Method

* For any T-query quantum algorithm A, there is a polynomial p of degree 2T such that:
e Forallx € {0,1}", p(x) equals the probability that A outputs 1 on input x.

p(xl,xz,xg, X4)=
(1 —2x)(1 —2x2) +x1(1 — x3)x5 + X1 X3 Xy




The Approximate Counting
Problem



Approximate Counting

 Givenx € {0,1}",letS ={i: x; = 1}.

Approximate counting problem (AC,, ,(x)): Determine whether |S| < wor |S| =
2w, promised that one of these is the case.

Randomized query complexity: Quantum query complexity:

O(n/w) 0 (\/n/w)

 Quantum Upper Bound (Brassard-Hgyer-Tapp 1998): Grover + quantum
phase estimation (or just Grover...)

* Quantum Lower Bound (Nayak-Wu 1998): Proven via polynomial method



This Work: Understanding
“Super-Powerful” Query
Models



First Result:

QMA Protocols For
Approximate Counting



QMA Protocol for Approximate Counting?4E

* Ina QMA query protocol for f, Merlin knows the input x but Arthur does not.

* Merlin claims that f(x) = 1, and sends Arthur a proof |@) attesting to this.
|@) is an arbitrary m-qubit message.

« After receiving |@), Arthur queries at most T bits of the input in superposition.

* Completeness and soundness must hold.
— f(x) = 1 = there exists a |@) causing Arthur to accept with probability at least 2/3
— f(x) = 0 = for all possible proofs |@), Arthur rejects with probability at least 2/3.



QMA Protocol for Approximate Counting?4E

* Ina QMA query protocol for f, Merlin knows the input x but Arthur does not.

* Merlin claims that f(x) = 1, and sends Arthur a proof |@) attesting to this.
|@) is an arbitrary m-qubit message.

« After receiving |@), Arthur queries at most T bits of the input in superposition.

* Completeness and soundness must hold.
— f(x) = 1 = there exists a |@) causing Arthur to accept with probability at least 2/3
— f(x) = 0 = for all possible proofs |@), Arthur rejects with probability at least 2/3.

* Cost of a protocol is the length m + T.



QMA Protocol for Approximate Counting?4E

* Ina QMA query protocol for f, Merlin knows the input x but Arthur does not.

* Merlin claims that f(x) = 1, and sends Arthur a proof |@) attesting to this.
|@) is an arbitrary m-qubit message.

« After receiving |@), Arthur queries at most T bits of the input in superposition.
e |sthere an efficient QMA protocol for Approximate Counting?

— i.e., Arthur is promised that either |S| < w or [S| = 2w, and Merlin wants to prove
that |[S| = 2w.

— “Efficient” means cost polylog(n).



QMA Protocol for Approximate Counting?4E ;

* Ina QMA query protocol for f, Merlin knows the input x but Arthur does not.

* Merlin claims that f(x) = 1, and sends Arthur a proof |@) attesting to this.
|@) is an arbitrary m-qubit message.

« After receiving |@), Arthur queries at most T bits of the input in superposition.
e |sthere an efficient QMA protocol for Approximate Counting?

— i.e., Arthur is promised that either |S| < w or |[S| = 2w, and Merlin wants to prove
that |[S| = 2w.

e (Obvious solutions:

1. Merlin sends 2w elements of S. Arthur picks a constant number of them and confirms
they are all in S with one membership query each. Cost is O (w).

2. Arthurignores Merlin and solves the problem with O(N/n/w) gueries.



Our Result

Theorem: Given S € |n], for any QMA protocol for Approximate
Counting that uses T queries to S and an m-qubit witness, either:

m=Qw)orT = Q(w/n/w).



Corollary: An Oracle Separating SBP and QMA

SBP: Class of languages L for which there’s a polytime randomized algorithm
that, for some ¢, accepts w.p. = 2¢ifx € L,orw.p. < eif x & L.

Problem that had been

PP Q}Jantum open: Is there an oracle
version of SBP . .
‘ 7 relative to which
SBQP AM SBP z QMA ?
/ \ / Known oracle separations:
QMA SBP coNP z QMA (easy)
\ / S7K AM & PP (Vereshchagin’92)

SZK < QMA (A. 2010)



Background on QMA lower bounds

e [Vyalyi 2003, Marriott and Watrous 2005]: Any QMA query protocol for a
function f with proof length m and query cost T can be transformed into a
(Merlin-less) quantum query protocol Q of cost O(mT) satisfying:

—  f(x) =1 = Pr[Q accepts x] = 27™
— f(x) = 0= Pr[Q accepts x] <271

* |n complexity-theoretic terms, QMA < SBQP.



Background on QMA lower bounds

e [Vyalyi 2003, Marriott and Watrous 2005]: Any QMA query protocol for a
function f with proof length m and query cost T can be transformed into a
(Merlin-less) quantum query protocol Q of cost O(mT) satisfying:

— f(x) =1= Pr|Q acceptsx] = 27™
— f(x) = 0= Pr[Q accepts x] <271

* |n complexity-theoretic terms, QMA < SBQP.

* Major challenge to QMA lower bounds for AC,, ,,:

— AC,, ,, has a trivial SBP protocol @ of low cost.
— @ picks arandom i € |n], queries x;, and accepts if x;=1.

— ACy, (x) =1 = Pr[Q accepts x] > 2

- AC,, (x) =1 = Pr[Q accepts x] <

S|



Getting To Know Approximate
Counting and the Polynomial Method



The Approximate Degree of AC,, , (Upper Bound)
deg(ACy, ) = O(y/nfw).

m Upper bound: Use Chebyshev Polynomials.

m Markov's Inequality: Let G(t) be a univariate polynomial s.t.
deg(G) < d and max;c;_; 1) |G(t)| < 1. Then

max |G'(t)] < d?.
te[—1,1]

m Chebyshev polynomials are the extremal case.
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The Approximate Degree of AC,, , (Upper Bound)

deg(AC,) = O(y/nfw)

m After shifting and scaling, can turn degree O(y/n/w)
Chebyshev polynomial into a univariate polynomial Q(¢) that
looks like:

—~ -
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The Approximate Degree of AC,, , (Upper Bound)

agé(ACw,n) = O(y/n/w).

m After shifting and scaling, can turn degree O(y/n/w)
Chebyshev polynomial into a univariate polynomial Q)(t) that

looks like:
~ —

H \2/3 <Q ([—1 +47W,1D <4/3
<€ 1/3<0Q ([—1,—1 +27W]) <1/3

m Define n-variate polynomial p via

p(z) = Q2 im (1 — 224)/n).
m Then |p(x) — ACyn(z)| <1/3 Vo e {0,1}™



The Approximate Degree of AC,, , (Lower Bound)

[NS92, NW98] deg(AC..,) = Q(y/n/w).
m Lower bound: Use symmetrization.
m Suppose |[p(z) — ACy,n(z)] <1/3 Vo e {0,1}™

m [hereis a way to turn p into a univariate polynomial p
that looks like this:

sym

~~~2/3<Q ([—1 + %W, 1]) <4/3

1/3<Q ([—1,—1 +2?WD <1/3

m Claim 1: deg(p™¥™) < deg(p).
m Claim 2: Markov's inequality = deg(p™¥™) = Q(y/n/w).




What is p>7™?

Theorem (Minsky and Papert, 1969): Given a polynomial p(x4, ..., x,,) of
total degree d, there exists a degree d univariate polynomial p>¥™ such
that for all integersi = 0, ..., n,

p>r (5) = Ejx=i[p(x)].

n



What is p>7™?

Theorem (Minsky and Papert, 1969): Given a polynomial p(x4, ..., x,,) of
total degree d, there exists a degree d univariate polynomial p>¥™ such
that for all integersi = 0, ..., n,

p>r (5) = Ejx=i[p(x)].

n

* Note: Forinputs j € |0,1] that are not integer multiples of 1/n,

. 2
IpSY™(j)| can be as large as 2¢°/™ [Coppersmith Rivlin 1992,
BuhrmanClevedeWolfZalka 1999].

* Not aworry if the degree lower bound to be shown is no larger than \/71, since then

24°/m = 0(1).



Summary: Quantum Query Lower Bound for AC,,, ;,

1. Start with any T-query quantum algorithm for AC,, ,,.

2. Turn it into a degree-(2T) polynomial p(x4, ..., x,,) approximating
ACy 5.
3. Turn p into a degree- (2T ) univariate polynomial p>™ that on

input % outputs p’s average value on input sets S of size i.

4. Conclude that deg(p>¥™) = Q(y/n/w) and hence T = Q(\/n/w).



Proof of Result 1: QMA Lower
bound for AC,, ,



Laurent Polynomials

* Both of our results require generalizing the usual polynomial method to
Laurent polynomials—although for different reasons in the two cases.

p(x) =3x) —x"+1.5x+7-22x" +x~

Degree 10 f

Antidegree 5



QMA Lower Bound Attack Plan

Recall Key Difficulty: All known techniques for putting black-box problems
outside QMA, also put them outside the larger class SBQP. But clearly no
SBP problem can be outside SBQP!

Key Idea of Thomas Watson: QMA is closed under intersection! So suppose
SBPCQMA. Then for all L,,L,eSBP, we’d also have L,nL,e QMACSBQP.

Therefore, we just need to show that the AND of two black-box
AC,, ,, instances is not in SBQP. This will contradict the assumption

SBPCQMA.



Thus, consider a SBQP algorithm for two approximate
counting instances,on S € [n]and T C |n]:

ACyn(S) A\ AC,,,(T)

Let p(S,T) be its acceptance probability. After “double
symmetrization,” we get a bivariate real polynomial

p>M(x,y) = E|g)=x 1=y [D(S, T)].

Note: WLOG p3¥Y™(x,y) = p5Y™(y, x).



Underlying Polynomial Question

N
e Must lower-bound

deg(p>’™) where

p>Y™ is as shown
on the left.

* p>Y"is obtained

by applying
Marriott-Watrous

a QMA protocol

0 W 2W N
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Idea: Restrict p°>”™ to a Hyperbola!
let g(x) = e~1 . pSYm (2wx, ZTW)

This is a univariate Laurent polynomial

pSYM (x,y) > 2¢ of degree and anti-degree < deg(p).

0 <p¥"(x,y) <c¢




2w A

Idea: Restrict p°>”™ to a Hyperbola!

_ 2
= Let g(x) = 71 . pSym (wa, TW)
VI
£\ This is a univariate Laurent polynomial
S/ PSYM (. ) > 2¢ of degree and anti-degree < deg(p) .
> « q(1) = 2.
'y 2wW
VI * Foranyx € |2,N/w], (wa, 7) isin
= the bottom-right box, so it seems like
lg(x)] <1.
* Problem: We only have control
0<p M (x,y)<¢ of pSY™'s values at integer inputs,
and hence q’s values only at inputs 1

2 N :
v v and 2. Let’s ignore for now.



Summarizing Previous Slide

_ 2
Let g(x) = 71 pSY™ (wa, 7W) . This is a univariate Laurent polynomial in

x of degree and anti-degree at most d: = deg(p), such that:

- q(1) = 2.
— Foranyx € [2,n/w], |q(x)] < 1.

pSY ™ (x,y) = 2¢

0<p¥M(x,y)<¢

0<p¥M(x,y)<e

0 w 2w N



Summarizing Previous Slide

_ 2
Let g(x) = 71 pSY™ (wa, 7W) . This is a univariate Laurent polynomial in
x of degree and anti-degree at most d: = deg(p), such that:

- q(1) = 2.

— Foranyx € [2,n/w], |q(x)] < 1.

* If g were a standard polynomial of degree d, Markov’s inequality would

imply thatd = /n/w. V]

p>™(x,y) = 2¢

0<p¥M(x,y)<¢

0<p¥M(x,y)<e¢

0 w 2w N



Change of Variable

* Next Key Lemma: g(x) = ¢~ 1 pS¥y™ (wa, ZTW) is actually a standard

polynomial in (x + 1/x) of degree at most d.

* Proof:
— Recall WLOG p3Y™(|S], |T|) is symmetric in its two inputs.
— The fundamental theorem of symmetric polynomials says: p>Y™ is a degree d
polynomial in the elementary symmetric polynomials: [S| + |T| and |S| - | T].

2w

— But g is the restriction of p>™ to a hyperbola (2wx, 7) . N

«  Onwhich [S| - | Tlis constant (i.e., |S| - | T| = 4 w?). pYT(x,y) = 2¢

0<p¥M(x,y) < ¢

2w A

0<p¥(x,y)<¢

0 w 2w N



Change of Variable

* Next Key Lemma: g(x) = ¢~ 1 pS¥y™ (wa, ZTW) is actually a standard

polynomial in (x + 1/x) of degree at most d.

* Proof:
— Recall WLOG p3Y™(|S], |T|) is symmetric in its two inputs.

— The fundamental theorem of symmetric polynomials says: p>Y™ is a degree d
polynomial in the elementary symmetric polynomials: [S| + |T| and |S| - | T].

2w

— But g is the restriction of p>™ to a hyperbola (2wx, 7) . N

p>™(x,y) = 2¢

Onwhich |S]| - | T|is constant (i.e., |[S| - | T| = 4 w?).

>

0<p¥M(x,y) < ¢

— So g is actually a degree d polynomial in |S| + |T|.
— Onthe hyperbola, |S| + |T| = 2w(x + 1/x).
— So q is actually a degree d polynomial in (x + 1/x).

2w A

0<p¥(x,y)<¢

0 w 2w N



Completing the Argument

* Recall: g(x)=¢" p>™ (wa ZTW) is actually a standard

polynomial in (x + 1/x) of degree at most d.
e lett=x+1/xandr(t) = qg(x).Then:
— deg(r(t)) <d
— r(2) = 71 pSYM 2w, 2w) > 2
— |r(t)| < 1forallt € [2.5,:} | W].

n

p>™(x,y) = 2¢

0<p¥M(x,y)<¢

— Markov’s inequality implies that d = /n/w. -

0<p¥M(x,y)<e¢




Addressing the Ignored Issue

* Problem: We only have control of pY™'s values at integer inputs, and hence
q’s values only at inputs 1 and 2.

pSY™(x,y) = 2¢

0<pV™(xy) < e

0<p¥™(x,y)<e¢

0 w 2w N



Addressing the Ignored Issue

* Problem: We only have control of pY™'s values at integer inputs, and hence
q’s values only at inputs 1 and 2.

e Sketch of how to deal with this:
— Recall that for integer inputs (x,y), p>Y™(x,y) = E|sj=x11=y [P (S, T)].

0 <p¥™M(x,y) <€

0<p¥™(x,y)<e¢




Addressing the Ignored Issue

* Problem: We only have control of pY™'s values at integer inputs, and hence
q’s values only at inputs 1 and 2.

e Sketch of how to deal with this:

— Replace p>Y™ with a different symmetrization of p that is bounded even
at non-integer inputs, namely:

pSY™(x,y) = 2¢

0<pY™(xy)<e

0<p¥™(x,y)<e¢

0 w 2w N



Addressing the Ignored Issue

* Problem: We only have control of pY™'s values at integer inputs, and hence
q’s values only at inputs 1 and 2.

e Sketch of how to deal with this:

— Replace p>Y™ with a different symmetrization of p that is bounded even
at non-integer inputs, namely:

pnew(x y) = Esr[p(S,T)] where each coordinate of S and T are
drawn iid such that the expected values of |S| and |T| are x and y.

Since p is bounded at all Boolean inputs S, T, pnew(x y) is bounded at
all inputs in |0, n] X [0, n] (even non-integers).

0<pV™(xy) < e

0<p¥™(x,y)<e¢




Addressing the Ignored Issue

* Problem: We only have control of pY™'s values at integer inputs, and hence
q’s values only at inputs 1 and 2.

e Sketch of how to deal with this:

— Replace p>Y™ with a different symmetrization of p that is bounded even
at non-integer inputs, namely:

pnew(x y) = Esr[p(S,T)] where each coordinate of S and T are
drawn iid such that the expected values of |S| and |T| are x and y.

* Since p is bounded at all Boolean inputs S, T, pnew(x y) is bounded at
all inputs in |0, n] X [0, n] (even non-integers).

— Introduces a new problem:

P (x,y) = 2¢

0 <p¥™M(x,y) <€

sym’ : . : @ 2w |
* We now have less control over p,o., s behavior at integer inputs.

w

2 ] ” <pY™(x,y) < ¢
cq(x):= p;}e’$ (ZWX, YW) may not have a “jump” between x=1 and x=2 R

0 w 2w N



Second Result:
Quantum Algorithms That Can
Sample From S



Sampling from S

* |n applications, when trying to estimate the size of a set S € [n], often we
can do more than make membership queries to S.

— Often we can efficiently generate nearly uniform samples from S (e.g., via
Markov Chain Monte Carlo).
« |IfSisthe set of perfect matchings in a bipartite graph [Jerrum, Sinclair, and Vigoda 2004].

e Ortheset of grid points in a high-dimensional convex body [Dyer, Frieze, and Kannan 1991].



Sampling from S

* |n applications, when trying to estimate the size of a set S € [n], often we
can do more than make membership queries to S.

 Question: If we can make membership queries to S, and sample uniformly
from S, how efficiently can we solve AC, ,,?



Sampling from S

* |n applications, when trying to estimate the size of a set S € [n], often we
can do more than make membership queries to S.

 (Question: If we can make membership queries to S, and sample uniformly
from S, how efficiently can we solve AC, ,,?
* CLASSICAL SOLUTIONS
— 0O(n/w) classical membership queries to S

 Randomly pick universe elements and see if any are in §

— 0(y/w) classical samples from S

e Birthday Paradox: sample from S and see if any two samples are the same.



Quantum Sampling from S

* Suppose the quantum algorithm is also given copies of the state:

\S>3=W;\i>

 Models situations where S can be efficiently “QSampled” (Aharonov & Ta-
Shma 2003)




Quantum Sampling from S

* Suppose the quantum algorithm is also given copies of the state:

\S>3=W;\i>

 Models situations where S can be efficiently “QSampled” (Aharonov & Ta-
Shma 2003)

— Many interesting sets can be efficiently QSampled, including perfect matchings
[JSV04] and grid points in convex bodies [DFK91].

— All problems in SZK can be efficiently reduced to some instance of QSampling.



Quantum Sampling from S

* Suppose the quantum algorithm is also given copies of the state:

\S>3=W;\i>

 Models situations where S can be efficiently “QSampled” (Aharonov & Ta-
Shma 2003)

 Then known quantum query lower bounds no longer apply.



Quantum Sampling from S

* Suppose the quantum algorithm is also given copies of the state:

\S>3=W;\i>

 Models situations where S can be efficiently “QSampled” (Aharonov & Ta-
Shma 2003)

 Then known quantum query lower bounds no longer apply.

— All the more so if the algorithm can also query an oracle that reflects about |S):
i.e., can apply the unitary transformation U = [ — 2|S)(S]|.

— The ability to perform reflect about |S) follows in a black-box way from the ability to
prepare the state |S) unitarily.



Upper Bounds

Recall: We can decide whether |S| < w or |S| = 2w using:

* CLASSICAL SOLUTIONS

1. T = 0(n/w) classical membership queries to S

2. R = 0(yw) classical samples from S



Upper Bounds

Recall: We can decide whether |S| < w or |S| = 2w using:

* CLASSICAL SOLUTIONS

1. T = 0(n/w) classical membership queries to S

2. R = 0(yw) classical samples from S
* QUANTUM SOLUTIONS

1. T = 0(,/n/w) guantum membership queries to S (BHT 1998)



Upper Bounds

Recall: We can decide whether |S| < w or |S| = 2w using:

* CLASSICAL SOLUTIONS

1. T = 0(n/w) classical membership queries to S

2. R = 0(yw) classical samples from S
* QUANTUM SOLUTIONS

1. T = 0(,/n/w) guantum membership queries to S (BHT 1998)

2. R = 0(min(y/n/w,w/3)) copies of |S) and reflections

O(,/n/w): project |[S) onto |1) + -+ + |N) and do amplitude amplification

0(w?/3): Use “quantum collision” algorithm (BHT 1998) in a new way



Our Result

Theorem: Given S € [n], any quantum algorithm that solves AC,, ,, using T

queries to S as well as R copies of |S) and reflections about |S), requires
either:

T = Q(\/n/—w) orR = Q(min(\/Tl/—W;Wl/g))



Proof of Lower Bound for
Quantum Query+QSampling
Algorithms for AC,, .



Recall Result 1

Theorem: Given S € [n], any quantum algorithm to decide whether [S| < w
or |S| = 2w, using T queries to S as well as R copies of |S) and reflections
about |S), requires either:

T = Q(\/n/_w) or R = Q(min(\/Tl/—W;Wl/g))



Key Lemma: Suppose a quantum algorithm gets R copies of |S) and makes T
membership queries to set S with indicator vector x.

Let g (k) be its acceptance probability, averaged over all S € [n], with |S| = k.
Then q(k) is a Laurent polynomial of degree < 2(T + R) and antidegree < R.
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* The probability of getting ordered sample is {i4, ..., ip} is —= SIF Xi, * ot X

 Thisis a degree-R polynomial in x, weighted by — B IR

* So probability of reaching any particular leaf is a degree-(R + T') polynomial in x, weighted

by 151® |S|R

* Symmetrize this polynomial to get a degree-(R + T) univariate polynomial in |S|, with

1
weights proportional to — SR

* Thisis a Laurent polynomial with the degree (R + T') and anti-degree R.



Underlying Polynomial Question

Suppose p(k) — g(k) n h(lj g, h univariate

k real polynomials
0< p(k)<lfor ke{l,...,n}

1 2
< — 2w) 2= —
p(w)<s, p(2w)=7

Must Show: Either

deg(g)=§2[ 3] o deg(h)=0(w")



“Explosion Argument”

Either g or h must have a large derivative somewhere.
If it’s low-degree, that means it takes large values (Markov).

But g(k) + h () € [0,1] forall k € {1, .., n}.

So the other polynomial must take large values of the opposite sign!
When switching from g to h, the x-axis gets compressed, so Markov’s
inequality yields even larger values, etc. etc.

But polynomials that grow without bound, on a compact set like
|1, n] can never have existed in the first place
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Tightening the Q(w'/4) to Q(w?/3)

DUAL
POLYNOMIALS




Open Problems

“Deep explanation” for why Laurent polynomials show up?
Other applications of the Laurent polynomial method?

— Kretschmer, recently: Simpler proof of ~\N lower bound on approximate
degree of AND-OR tree!

Complexity of Approximate Counting with Queries+QSamples but not
reflections?

Lower-bound number of uses of a |0)<>|S) oracle?

Is there a “real-world” (non-black-box) scenario where membership
qgueries and QSampling are both easy, but approximate counting is hard?



