Interactive Proofs

Justin Thaler

Georgetown University

Talk Outline

1.
2.

Definition of Interactive Proofs

The Power of Randomness
Reed-Solomon Fingerprinting

Freivalds’ Protocol for Verifying Matrix Products
Technical Concepts: low-degree extensions, arithmetization
The Sum-Check Protocol
An Interactive Proof for #SAT

Doubly—EffiCient Interactive Proofs

Interactive Proofs: Motivation and

Model

Interactive Proofs

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Cloud Provider Business/Agency/Scientist

. Question |

Interactive Proofs

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Cloud Provider Business/Agency/Scientist

Interactive Proofs

® Prover P and Verifier V.

® P solves problem, tellsV the answer.
® Then P and V have a conversation.

e P’s goal: convince V the answer is correct.

° Requirements:

o 1. Completeness: an honest P can convinceV

to accept.

® 7. Soundness:V will catch a lying P with high
probability.

Interactive Proofs

® Prover P and Verifier V.

® P solves problem, tellsV the answer.
® Then P and V have a conversation.

e P’s goal: convince V the answer is correct.

° Requirements:

o 1. Completeness: an honest P can convinceV

to accept.

®). Soundness:V will catch a lying P with high
probability.
® This must hold even if P is computationally

unbounded and trying to trickV into accepting the
incorrect answer. /

The Power of Randomness: A

Demonstration

EQUALITY Testing
Alice Bob

a=(a..,a,) €{0,1}" b= (by,..,b,) €{0,1}"

Alice and Bob’s Goal: Determine whether @ = b, while

exchanging as few bits as possible.

Alice

EQUALITY Testing
Bob

a=(a..,a,) €{0,1}" b= (by,..,b,) €{0,1}"

Trivial solution: Alice sends @ to Bob, who checks whether @ = b.

Communication cost is 1.

/

EQUALITY Testing
Alice Bob

a=(a..,a,) €{0,1}" b= (by,..,b,) €{0,1}"

Fact: Trivial solution is optimal amongst deterministic protocols.

/

A Logarithmic Cost Randomized

Solution

4 ™
Randomized EQUALITY Testing Protocol

* Notation:
* Let F be any finite field with |F| = n®.
* Interpret each a;, b; as elements of F.

e Letp(x) =Y, a;x"and q(x) = X, b; x*.

g
Randomized EQUALITY Testing Protocol

* Notation:
* Let F be any finite field with |F| = n®.
* Interpret each a;, b; as elements of F.
e Letp(x) =X a;x'andq(x) =Y, b; x*.

* The Protocol:
* Alice picks a random 7 € F and sends (7, p(r)) to Bob.

* Bob outputs EQUAL if p(r) = q (7). Otherwise he
outputs NOT-EQUAL.

g
Randomized EQUALITY Testing Protocol

* Notation:
* Let F be any finite field with |F| = n®.
* Interpret each a;, b; as elements of F.
e Letp(x) =X a;x'andq(x) =Y, b; x*.

* The Protocol:
* Alice picks a random 7 € F and sends (7, p(r)) to Bob.
* Bob outputs EQUAL if p(r) = q (7). Otherwise he
outputs NOT-EQUAL.

* Total communication: O (log |F|) = O(logn) bits.

4 ™
Randomized EQUALITY Testing Protocol

* Notation:
* Let F be any finite field with |F| = n®.
* Interpret each a;, b; as elements of F.

e Letp(x) =Y, a;x"and q(x) = X, b; x*.

* The Protocol:
* Alice picks a random 7 € F and sends (7, p(r)) to Bob.

* Bob outputs EQUAL if p(r) = q (7). Otherwise he
outputs NOT-EQUAL.

* Total communication: O (log |F|) = O(logn) bits.
N * Call p(7) the Reed-Solomon fingerprint of the vector @ at 1. Yy

4 ™
Correctness Analysis

* Claim 1:if @ = b, then Bob outputs EQUAL with probability 1.

* Claim 2: @ # b, then Bob outputs NOT-EQUAL with

1

probability at least 1-— — over the choice of v € F.

™
Correctness Analysis

Claim 1:if @ = b, then Bob outputs EQUAL with probability 1.
* Proof: Since @ = b, p and q are the same polynomial, so

p(r) =q(r) forallr € F.

Claim 2: @ # b, then Bob outputs NOT-EQUAL with

1

probability at least 1-— —over the choice of 7 € F.

Correctness Analysis

™

Claim 2: @ # b, then Bob outputs NOT-EQUAL with probability at

1

least 1 — —over the choice of r € F .

n

4 ™
Correctness Analysis

* Claim 2: @ # b, then Bob outputs NOT-EQUAL with probability at

1

least 1 — —over the choice of € F.

FACT: Let p # g be univariate polynomials of degree at most n.
Then p and q agree on at most n inputs Equivalently:

Prreplp(r) = ()] < 7

™
Correctness Analysis

Claim 2: @ # b, then Bob outputs NOT-EQUAL with probability at

1
least 1 — —over the choice of € F.

FACT: Let p # g be univariate polynomials of degree at most n.
Then p and q agree on at most n inputs Equivalently:

Prreplp(r) = ()] < 7

If @ # b, then p and q are not the same polynomial. By FACT, the

probability Alice picks an 7 such that p(r) = q(r) is at most |lF| <

<
nZ — n’

Main Takeaways

1. Any two distinct low—degree polynomials differ almost

everywhere: it p # q then Pryer [p (T’) = q(?‘)] = %

where n bounds the degree of p and q.
* Corollary: If two low-degree polynomials agree at a
randomly chosen input, it is “safe” to believe they are the

same polynomial.

2. Interpreting inputs as low—degree polynomials is powertul.
* If two inputs differ at all, then once interpreted as
polynomials, they differ almost everywhere.

Freivalds’ Protocol for Verifying Matrix

Products

Demonstrating the Power of
Randomness in Verifiable Computing

e
Verifying Matrix Multiplication

* Inputis two matrices A, B € F XN Goal is to compute A * B.

* Fastest known algorithm runs in time about n%37,

e
Verifying Matrix Multiplication

* Inputis two matrices A, B € F XN Goal is to compute A * B.

* Fastest known algorithm runs in time about n%37,

e What if an untrusted prover P claims that the answer is a matrix C?

Can V verify that C= A - B in 0(n2) time?

e

Verifying Matrix Multiplication

Input is two matrices A, B € F XN Goal is to compute A * B.
Fastest known algorithm runs in time about n%37.
What if an untrusted prover P claims that the answer is a matrix C?

Can V verify that C= A - B in 0(n2) time?
Yes!

e
Verifying Matrix Multiplication
* The Protocol:

1. Vpicksarandom r € F and lets X = (1, re ..., r’).
2.V computes C + X and (AB) - X, accepting iff they are equal.

4 R
Verifying Matrix Multiplication

* The Protocol:
1. Vpicksarandom r € F and lets X = (T,T‘z, n, T,
2.V computes C + X and (AB) - X, accepting iff they are equal.

* Runtime Analysis:

* V’s runtime dominated by computing 3 matrix-vector products,
each of which takes 0(n?) time.

¢ C - X is one matrix-vector multiplication.
* (AB)-x=A"- (B - x) takes two matrix-vector

multiplications.

e
Correctness Analysis

* Claim 1: If C= A - B then V accepts with probability 1.
* Claim 2: If C # A - B, then V rejects with probability at least

- >1-1/
—— =1-1/n.
|F|

g
Correctness Analysis

* Claim 1: If C= A - B then V accepts with probability 1.
* Claim 2: If C # A - B, then V rejects with probability at least
n
1 — m >1-1 / n.
* Proof of Claim 2:
* Recall that x = (7, TZ, e,).
e (C-x)i= }lzl CijTj is the Reed-Solomon fingerprint at r
of the ith row of C.

g

Correctness Analysis

Claim 1: If C= A - B then V accepts with probability 1.
Claim 2: If C # A - B, then V rejects with probability at least

n
1-— >1-1/n

[F| —
Proof of Claim 2:
* Recall that x = (7, TZ, e,).
e (C-x)i= }1=1 CijTj is the Reed-Solomon fingerprint at r
of the ith row of C.
* Similarly, ((AB) * x); is the Reed-Solomon fingerprint at 7 of

the ith row of AB.

4 ™
Correctness Analysis

* Claim 1: If C= A - B then V accepts with probability 1.
* Claim 2: If C # A - B, then V rejects with probability at least
n
1— m >1-1 / n.
* Proof of Claim 2:
* Recall that x = (7, TZ, e,).
e (C-x)i= }1=1 CijTj is the Reed-Solomon fingerprint at r
of the ith row of C.
* Similarly, ((AB) * x); is the Reed-Solomon fingerprint at 7 of
the ith row of AB.
* Soif even one row of € does not equal the corresponding row

of AB, the fingerprints for that row will differ with probability

_ atleast 1 — 1/n, causing V to reject. -

Interactive Proof Techniques:

HEINEEHES

Schwartz-Zippel Lemma

® Recall FACT: Let p # @ be univariate polynomlals of degree at

most d. Then PrreF[(r) = q(‘l")] — |F|

Schwartz-Zippel Lemma

® Recall FACT: Let p # q be univariate polynomials of degree at

d
most d. Then PrrEF[p(r) — q(”l")] = |F|’

e The SChwartZ—Zippel lemma is a multivariate

generalization:

® Let p # q be €-variate polynomials of total degree at most d.

Then PrreF{)[(r) = q(T)] |F|

Schwartz-Zippel Lemma

® Recall FACT: Let p # q be univariate polynomials of degree at

d
most d. Then PrrEF[p(r) — q(?")] = |F|’

e The SChwartZ—Zippel lemma is a multivariate

generalization:

® Let p # q be £-variate polynomials of total degree at most d.

Then PrreF{) [p(T) — q(T)] |:7l'|

® “Total degree refers to the maximum sum of degrees of all

variables in any term. E.g., x12x2 + X1X5 has total degree 3.

Low-Degree and Multilinear Extensions

* Definition [Extensions]. Given a function f: {0,1}£—> F,
a ¥-variate polynomial g over F is said to extend f if f(x) =
g(x) forall x € {O,l}f.

® Definition [Multilinear Extensions]. Any function
f: {0,1}€—> F has a unique multilinear extension (MLE),

denoted f :

Low-Degree and Multilinear Extensions

* Definition [Extensions]. Given a function f: {0,1}£—> F,
a ¥-variate polynomial g over F is said to extend f if f(x) =
g(x) forall x € {0,1}8.

® Definition [Multilinear Extensions]. Any function
f: {0,1}€—> F has a unique multilinear extension (MLE),

denoted f :

e Multilinear means the polynomial has degree at most 1 in each

variable.

e (1 —x9)(1 — x5) is multilinear, x12 X is not.

£:{0,}* >F

1 2 l

8 10|

f:F*—F

4?

38

30

26

8 ||| 10 fl| 12 ||| 14 []| 16 18|
15 || 18 ||| 21 [I| 24 ||| 27 30',.,

34
29 34 39 ||| 44 ||| 49 56 l

22

36 ||| 42 48 54 60 ||| 68 l

g

Flxy,x) = (1 —x)(1—x5) +2(1 — x1)x,+ 8x1(1 — x,)+10x,x,

1 2 3 4 5 6
8 10 12 14 16 18
15 18 21 24 27 30
22 26 30 34 38 42
29 34 39 ||| 44 ||| 49 56
36 ||| 42 48 54 60 68

Can check:
o0 /(0,0)=1
f(0,1) =2
f(1,0) =8
f(1,1) =10

™

Another (non-multilinear) extension of f :
glxy, %) = —x2 + x1x,+8x; + x, + 1

1 2 3 4 5 6

8 10 12 14 16 18

Can check:
Bl tel[l1off|22]] 25| 28 || o@@ 9(0.0) =1
g(0,1) =2
16 | 20 Ul 24 [l 28 Il 32 Ul| 36 g(1,0) =8
g(1,1)=10

17 22 27 32 37 || 42

16 || 22 Nl 28 [I| 34 ||| 40 ||| 44

Low-Degree and Multilinear Extensions

® Fact [VSBW13]: Given as input all 2¢ evaluations of a function
f: {0,1}€—> F, for any point 1 € F? there is an 0(2£)—time
algorithm for evaluating f (1).

* Note: If f is “structured”, there may extensions g for which
g (1) can be evaluated much faster than O (23)—time.

Low-Degree and Multilinear Extensions

® Fact [VSBW13]: Given as input all 2¢ evaluations of a function
f: {0,1}€—> F, for any point 1 € F? there is an 0(2£)—time
algorithm for evaluating f (1).

* Note: If f is “structured”, there may extensions g for which

g (7) can be evaluated much faster than O (23)—time.

e We will see an example later when covering arithmetization of

Boolean formulae.

| QUIET
WAIT! NALL.

HAMMER

Sum-Check Protocol [LFKN9O]

* Input:V given oracle access to a £-variate polynomial g

over field F .
® Goal: compute the quantity:

2 z 2 g(by, ., bp).

ble{O,l} b2 E{O,l} ng{O,l}

g

* Start: P sends claimed answer C;.The protocol must check that:

C, = z 2 z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

g

* Start: P sends claimed answer C;.The protocol must check that:

C, = z 2 z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

* Round 1: P sends univariate polynomial s, (X;) claimed to equal:

2 z 9(X:, by, ., by)

b,€{0,1} b,€{0,1}

g

* Start: P sends claimed answer C;.The protocol must check that:

C, = z 2 z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

* Round 1: P sends univariate polynomial s, (X;) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} b,€{0,1}

g

* Start: P sends claimed answer C;.The protocol must check that:

C, = z 2 z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

* Round 1: P sends univariate polynomial s, (X;) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} bye{0,1}
® V checks that C; = s;(0) + s;(1).

Start: P sends claimed answer C; . The protocol must check that:

C, = z z z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

Round 1: P sends univariate polynomial 51 (X1) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} bye{0,1}
V checks that C; = s;1(0) + s;(1).

If this check passes, it is safe for V to believe that C; is the correct answer, so long
asV believes that ;= H.

How to check this? Just check that $; and H; agree at a random point 77 !

Start: P sends claimed answer C; . The protocol must check that:

C, = z z z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

Round 1: P sends univariate polynomial 51 (X1) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} bye{0,1}
V checks that C; = s;1(0) + s;(1).

If this check passes, it is safe for V to believe that C; is the correct answer, so long
asV believes that ;= H.

How to check this? Just check that $; and H; agree at a random point 77 !

V can compute S; (77) directly from P’s first message, but not Hy (7).

g

* Start: P sends claimed answer C;.The protocol must check that:

C, = z z z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

* Round 1: P sends univariate polynomial s, (X;) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} bye{0,1}
® V checks that C; = s;(0) + s;(1).
® V picks 17 at random from F and sends 17 to P.
* Round 2:They recursively check that §; (ry) = Hy{(ry).

g

* Start: P sends claimed answer C;.The protocol must check that:

C, = z z z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

* Round 1: P sends univariate polynomial s, (X;) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} bye{0,1}
® V checks that C; = s;(0) + s;(1).

® V picks 17 at random from F and sends 17 to P.
e Round 2: They recursively check that s1(17) = Hy(17).

l.e., that S1 (7"1) = ZDZE{O,l} bee{o’l}g(rl, bz, cee b,g)

-

Start: P sends claimed answer C; . The protocol must check that:

C, = z z z g(by, .. by).

b,€{0,1} b,€{0,1} b,€{0,1}

Round 1: P sends univariate polynomial 51 (X1) claimed to equal:

H,(X,): = 2 z 9(X:, by, ., by)

b,€{0,1} by€{0,1}

V checks that C; = s1(0) + s4(1).
V picks 77 at random from F and sends 17 to P
Round 2: They recursively check that 51(17) = Hy(17).

i.e., that S;(1y) = sze{o,1} Zb{;e{o,l}g(rl' b,, ..., by).
Round ¢ (Final round): P sends univariate polynomial Sp(X,) claimed to equal

Hp = g(ry, ..., Tp—1, Xp).

V checks that Sp_1 (1p_1) = 5,(0) + s,(1).
V picks 7y at random, and needs to check that S,(1) = g (77, ..., 7).

® No need for more rounds. V can perform this check with one oracle query.

Analysis of the Sum-Check Protocol

Completeness and Soundness
® Completeness holds by design: If P sends the prescribed

messages, then all of Vs checks will pass.

Completeness and Soundness
® Completeness holds by design: If P sends the prescribed

messages, then all of Vs checks will pass.

® Soundness: If P does not send the prescribed messages,
£-d
then V rejects with probability at least 1- m , where d is

the maximum degree of g in any variable.

® Proofis by induction on the number of variables £.

Completeness and Soundness
® Completeness holds by design: If P sends the prescribed

messages, then all of Vs checks will pass.

® Soundness: It P does not send the prescribed messages,

f-d
then V rejects with probability at least 1- —, where d is

the maximum degree of g in any Variable.

® Proofis by induction on the number of variables £.

® Base case: £ = 1. In this case, P sends a single message Sq (X1)
claimed to equal g (X1).V picks 77 at random, checks that

s1(r1) = g(r1).

® By Fact, if s; # g, then Pry. ep[s; (r1) = g()] < |F|

e

Soundness: Inductive Case

* Inductive case: £ > 1.
® Recall: P’s first message S (X1) is claimed to equal
Hy (X1) = Lp,e(0,1) = Zbsefo,1} I X1, bz, v, by).

® ThenV picks a random 77 and sends 77 to P. They (recursively) invoke sum-
check to confirm that s,(ry) = H,(1y).

e
Soundness: Inductive Case

* Inductive case: £ > 1.
® Recall: P’s first message S (X1) is claimed to equal
Hy (X1) = Lp,e(0,1) = Zbsefo,1} I X1, bz, v, by).

® ThenV picks a random 77 and sends 77 to P. They (recursively) invoke sum-
check to confirm that s,(ry) = H,(1y).

. d
* By Fact, if s; # Hy, then Pry. cp[s1(r7) = H(ry)] < T

e
Soundness: Inductive Case

e Inductive case: £ > 1.

® Recall: P’s first message S (X1) is claimed to equal
Hy (X1) = Lp,e(0,1) = Zbsefo,1} I X1, bz, v, by).

® ThenV picks a random 77 and sends 77 to P. They (recursively) invoke sum-
check to confirm that s,(ry) = H,(1y).

. d
* By Fact, if s; # Hy, then Pry. cp[s1(r7) = H(ry)] < T

o Ifs1(r1) # H(ry), P is left to prove a false claim in the recursive call.

4 ™
Soundness: Inductive Case

e Inductive case: £ > 1.

® Recall: P’s first message S (X1) is claimed to equal
Hy (X1) = Lp,e(0,1) = Zbsefo,1} I X1, bz, v, by).

® ThenV picks a random 77 and sends 77 to P. They (recursively) invoke sum-
check to confirm that s,(ry) = H,(1y).

. d
* By Fact, if s; # Hy, then Pry. cp[s1(r7) = H(ry)] < T

o Ifs1(r1) # H(ry), P is left to prove a false claim in the recursive call.
® The recursive call applies sum-check to g(11, X5, ..., Xp), which is £-1 variate.

® By induction, P fails to convince V in the recursive call with probability at least

| _ 4=
|F|

4 ™
Soundness: Inductive Case

e Inductive case: £ > 1.

® Recall: P’s first message S (X1) is claimed to equal
Hy (X1) = Lp,e(0,1) = Zbsefo,1} I X1, bz, v, by).

® ThenV picks a random 77 and sends 77 to P. They (recursively) invoke sum-
check to confirm that s,(ry) = H,(1y).

. d
* By Fact, if s; # Hy, then Pry. cp[s1(r7) = H(ry)] < T

o Ifs1(r1) # H(ry), P is left to prove a false claim in the recursive call.
® The recursive call applies sum-check to g(11, X5, ..., Xp), which is £-1 variate.

® By induction, P fails to convince V in the recursive call with probability at least

| _ 4=
|F|

* Summary:if S; # Hy, the probability V accepts is at most:
Pryer[s1(r1) = H(r1)] + Pry, - ,er[V accepts|s;(r1) # H(ry)]
< d n d(f-1) < dt

_ — |F| IF| — IFI -

Costs of the Sum-Check Protocol

* Total communication is O (d¥) field elements.

® P sends ¥ messages, each a univariate polynomial of degree at
most d.V sends £ — 1 messages, each consisting of one field

elements.

Costs of the Sum-Check Protocol

* Total communication is O (d¥) field elements.

® P sends € messages, each a univariate polynomial of degree at

most d.V sends £ — 1 messages, each consisting of one field

elements.
® V’s runtime is:

O(d? + [time required to evaluate g at one point]).

Costs of the Sum-Check Protocol

* Total communication is O (d¥) field elements.

® P sends € messages, each a univariate polynomial of degree at

most d.V sends £ — 1 messages, each consisting of one field

elements.
® V’s runtime is:

O(d? + [time required to evaluate g at one point]).

® P’s runtime is at most:

O(d . 2¢ . [time required to evaluate g at one point]).

/

First Application of Sum-Check:

An IP For #SAT [LFKN]

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

O

a@ 9

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

® Goal: count the number of satistying assignments of .

® i.e., Compute er{o,l}n (p(x)

® In the sum above, we are viewing ¢ as a function mapping

{0,1}"*> {0, 1}. (0 interpreted as FALSE, 1 as TRUE).

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

® Goal: count the number of satistying assignments of .

® i.e., Compute er{0,1}" (,O(X)

® In the sum above, we are viewing ¢ as a function mapping

{0,1}"*> {0, 1}. (0 interpreted as FALSE, 1 as TRUE).

Q@
C

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

® Goal: count the number of satistying assignments of .

® i.e., Compute er{0,1}" (,O(X)

® In the sum above, we are viewing ¢ as a function mapping

{0,1}"*> {0, 1}. (0 interpreted as FALSE, 1 as TRUE).

®
OQ V)

0 O O ©

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

® Goal: count the number of satistying assignments of .

® i.e., Compute er{0,1}" (,O(X)

® In the sum above, we are viewing ¢ as a function mapping

{0,1}"*> {0, 1}. (0 interpreted as FALSE, 1 as TRUE).

Q@
L

9 @O @O C

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

® Goal: count the number of satistying assignments of .

® i.e., Compute er{0,1}" (,O(X)

® In the sum above, we are viewing ¢ as a function mapping

{0,1}"*> {0, 1}. (0 interpreted as FALSE, 1 as TRUE).

®
30 V)

90 @O @O C

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

® Goal: count the number of satistying assignments of .

® i.e., Compute er{0,1}" (,O(X)

® In the sum above, we are viewing ¢ as a function mapping

{0,1}"*> {0, 1}. (0 interpreted as FALSE, 1 as TRUE).

®
09 O

0 O O ©

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

® Goal: count the number of satistying assignments of .

® i.e., Compute er{0,1}" (,O(X)

® In the sum above, we are viewing ¢ as a function mapping

{0,1}"*> {0, 1}. (0 interpreted as FALSE, 1 as TRUE).

(L
GG (U

9 @O @O C

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

* Goal: Compute er{o’l}n ©(x).

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

* Goal: Compute X yerg 130 @ (X).

® Protocol:
® Let g be an extension polynomial of .

* Apply the sum-check protocol to compute D xefo,1n 9 (x).

#SAT Problem

Let ¢ be a Boolean formula of size S over 1 variables.

Goal: Compute Yy e 13n @ ().

Protocol:
Let g be an extension polynomial of ¢.

Apply the sum-check protocol to compute D xefo,1n 9 (x).

* Note: in final round of sum-check, V needs to compute g(r) for

some randomly chosen 7 in F™,

To control V’s runtime, we need this to be fast.

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

* Goal: Compute er{o,l}n ©(x).

® Protocol:
® Let g be an extension polynomial of .

* Apply the sum-check protocol to compute D xefo,1n 9 (x).
* Note: in final round of sum-check, V needs to compute g(r) for
some randomly chosen 7 in F™.

To control V’s runtime, we need this to be fast.

® To control communication and P and V’s runtime, we need g to

be “low—degree”.

#SAT Problem

® Let ¢ be a Boolean formula of size S over 1 variables.

* Goal: Compute er{o,l}n ©(x).

® Protocol:
® Let g be an extension polynomial of .

* Apply the sum-check protocol to compute D xefo,1n 9 (x).
* Note: in final round of sum-check, V needs to compute g(r) for
some randomly chosen 7 in F™.

To control V’s runtime, we need this to be fast.

® To control communication and P and V’s runtime, we need g to

be “low—degree”.

* Key question: how to construct the extension polynomial g7)

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.
NOT(x))=1—x
AND(x,y)=> x -y
OR(x,y)=¥x+y —x-y

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.

NOT(x)=> 1 —x
AND(x,y)=> x -y
OR(x,y)=¥x+y —x-y

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.

NOT(x)=> 1 —x
AND(x,y)=> x -y
OR(x,y)=¥x+y —x-y

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.
NOT(x))=1—x
AND(x,y)=> x -y
OR(x,y)=¥x+y —x-y

®
D ® —s

© @O @ ©

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.
NOT(x))=1—x
AND(x,y)=> x -y
OR(x,y)=¥x+y —x-y

N
(A V) —>

© @O @ ©

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.
NOT(x))=1—x
AND(x,y)=> x -y
OR(x,y)=¥x+y —x-y

N
() V) —>

0 O @ @

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.
NOT(x))=1—x
AND(x,y)=> x -y

(x)
OR(x,y)=¥x+y —x-y ()
ORAC R Q¢
¢ - N\ X
O 000 00 00 O,

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.
NOT(x))=1—x
AND(x,y)=> x -y

(x)
OR(x,y)=¥x+y —x-y ()
(1) . D —> < °‘°
o 2N\ XN
OO0 00 60 O,

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.
NOT(x))=1—x
AND(x,y)=> x -y

(%)
OR(x,y)=¥x+y —x-y (1)
(L) . D —> = 0‘0
0 2N\ XN
O 000 OO0 O O,

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.
NOT(x))=1—x
AND(x,y)=> x -y

(%)
OR(x,y)=¥x+y —x-y (1)
@ . D —> = 0‘0
C 2N\ XN
@ OO0 00 00 O,

Arithmetization

* Key question: how to construct the extension polynomial g7

* Answer: Arithmetize
® i.c., replace ¢ with an arithmetic circuit computing extension g

Go gate-by-gate through @, replacing each gate with the gate’s

multilinear extension.
NOT(x))=1—x
AND(x,y)=> x -y
OR(x,y)=¥x+y —x-y

(1)
(1) 90

9 O @O @

g

Summary of Arithmetization

Transforming a Boolean formula @ of size § into an arithmetic

circuit computing an extension g of @.

Note: deg(g) < S, and g can be evaluated at any input, gate by
gate, in time 0(S).

Costs of #SAT Protocol Applied to g

® Let @ be a Boolean formula of size S over 1 variables, g the

extension obtained by arithmetizing .

Rounds

Communication

V Time

P Time

P sendsa degree S
polynomial in reach round,
V sends one field element

in each round

—
O(S-n)
field elements sent in
total.

0 (S) time to process each
of the 11 messages of P
*0(S) time to evaluate

g(r)

O(S - n) time total

P evaluates g at
O(S . Zn) points
to determine each

message

—
O(S-n- 2") time

in total.

|P=PSPACE

o #SAT isa #P—complete problem.

* Hence, the protocol we just saw implies every problem in #P has an

interactive proof with a polynomial time verifier.

® [t is not much harder to show that this in fact holds for every
problem in PSPACE [LFKN, Shamir].

|P=PSPACE

o #SAT isa #P—complete problem.

* Hence, the protocol we just saw implies every problem in #P has an

interactive proof with a polynomial time verifier.

® [t is not much harder to show that this in fact holds for every
problem in PSPACE [LFKN, Shamir].

e But is this a practical result?

|P=PSPACE

o #SAT isa #P—complete problem.

* Hence, the protocol we just saw implies every problem in #P has an

interactive proof with a polynomial time verifier.
® Itis not much harder to show that this in fact holds for every
problem in PSPACE [LFKN, Shamir].

e But is this a practical result?

® No.The main reason: P’s runtime.

|P=PSPACE

o #SAT is a #P-complete problem.
* Hence, the protocol we just saw implies every problem in #P has an

interactive proof with a polynomial time verifier.

® [t is not much harder to show that this in fact holds for every
problem in PSPACE [LFKN, Shamir].

e Butis this a practical result?
® No. The main reason: P’s runtime.

® When applying the protocols of [LFKN, Shamir] even to very simple

problems, the honest prover would require superpolynomial time.

|P=PSPACE

o #SAT is a #P-complete problem.
* Hence, the protocol we just saw implies every problem in #P has an

interactive proof with a polynomial time verifier.

® |t is not much harder to show that this in fact holds for every

problem in PSPACE [LFKN, Shamir].

e Butis this a practical result?
® No. The main reason: P’s runtime.

® When applying the protocols of [LFKN, Shamir] even to very simple

problems, the honest prover would require superpolynomial time.

e The #SAT prover took time at least 2™

This seems unavoidable for #SAT, since we don’t know how to even solve the

problem in less than 2™ time.

But we can hope to solve “easier”’ problems without turning those problems
P P g P
into #SAT instances.

Doubly-Efficient Interactive Proofs

Doubly-Efficient Interactive Proof

o A doubly—efficient interactive proof for a problem is one where:
® V runs in time linear in the input size.

® Pruns in polynomial time.

A Second Application of the Sum-Check

Protocol

A Doubly—Efficient Interactive Proof for

Counting Triangles

Counting Triangles

* Input: A € {0,1}'**" representing the adjacency matrix of a graph.
, 1
® Desired Output: P : Z(i,j,k)e[n]3 AijAjkAik .

* Fastest known algorithm runs in matrix-multiplication time, currently about
2.37
n .

Counting Triangles

* Input: A € {0,1}'**" representing the adjacency matrix of a graph.

1

® Desired Output: p Z(i,j,k)e[n]3 AijAjkAik :

® The Protocol:
View A as a function mapping {O,l}log nX{O,l}log Mto F.
Recall that A denotes the multilinear extension of A.

Define the polynomial g(X, Y,Z) = A(X, Y) A(Y, Z) A(X, Z)
Apply the sum-check protocol to g to compute:

2.

(a,b,c) €{0,1)3logn

g(a,b,c)

Counting Triangles

* Input: A € {0,1}'**" representing the adjacency matrix of a graph.
® Desired Output: % y Z(i,j,k)e[n]3 AijAjkAik :
® The Protocol:

® View A as a function mapping {0,1}10g nX{O,l}log Mto F.

® Recall that A denotes the multilinear extension of A.

® Detine the polynomial g(X, Y,Z) = A(X, Y) A(Y, Z) A(X, Z)

* Apply the sum-check protocol to g to compute:

z g(a,b,c)

(a,b,c) €{0,1}3l0gn
® Costs:
¢ Total communication is O (log TL) ,V runtime is O (nz), P runtime is O (TLB).

® V’s runtime dominated by evaluating:

_ g(ry,12,13) = A(Tp r2) A(Tz; 13) A(T1; 13).

The GKR Protocol

A General—Purpose Doubly—EffiCient

Interactive Proot

e
General-Purpose Doubly-Efficient

Interactive Proofs

* [GKR 2008] gave a doubly-efticient interactive proof for any
function computed by an efficient parallel algorithm.

g

General-Purpose Doubly-Efficient Protocols

® Start with a computer program written in high-level
programming language (C, Java, etc.)

® Step 1:Turn the program into an equivalent model
amenable to probabilistic checking.

° Typically some type of arithmetic circuit.

e Called the Front End of the system.

® Step 2: Run an interactive proof or argument on the circuit.
e Called the Back End of the system.

/\

» Front End » /\ /\

TT TT TT TT

P and V run interactive proof (back end) on circuit.
Note: if the program is an efficient parallel algorithm,
then the circuit can be small-depth.

The GKR Protocol: Overview

The GKR Protocol: Overview

e P starts the

conversation with

an answer (output).

The GKR Protocol: Overview

V sends series of
challenges. P responds
with info about next

circuit level.

The GKR Protocol: Overview

Challenges continue,
layer by layer down
to the the input.

The GKR Protocol: Overview

Finally, P says
something about the

(multilinear extension

of the) input.

The GKR Protocol: Overview

Finally, P says
something about the

(multilinear extension

of the) input.

V sees input directly, so can check

P’s final statement directly.

/

4 ™
Costs of the GKR protocol

o Vtimeis O(n + D log S) where 1 is input size,

D is circuit depth, and S is circuit size.

* Communication cost is O (D log S).

Costs of the GKR protocol

o Vtimeis O(n + D log S) where 1 is input size,

D is circuit depth, and S is circuit size.

* Communication cost is O (D log S).

* P timeis O(S).
® A naive implementation of the prover in the

GKR protocol with take Q(S*) time, where S is

circuit size.

* A sequence of works has brought this down to

0(S), for arbitrary circuits! [CMT12, Thaler13,

WBSTWW17, WTSTW18, XZZPS19]
\ /

[RRR16] and Open Questions

Another General—Purpose Doubly—

Efficient Interactive Proof

What We Really Want

* In the cloud computing scenario at the start of the talk, we really
wanted the following:

1. Vasks P to run some computer program on her data.
2. Pproves that she correctly ran the program on the data.

® V should not do much more work than read the input.

e P should not do much more work than run the program.

What We Really Want

* In the cloud computing scenario at the start of the talk, we really
wanted the following:

1. Vasks P to run some computer program on her data.
2. Pproves that she correctly ran the program on the data.
® V should not do much more work than read the input.

e P should not do much more work than run the program.

® If the program runs in time T', and space S, then P should run in time

O(T) and space O(s).

What We Really Want

* In the cloud computing scenario at the start of the talk, we really
wanted the following:

1. Vasks P to run some computer program on her data.
2. Pproves that she correctly ran the program on the data.
® V should not do much more work than read the input.

* P should not do much more work than run the program.
® If the program runs in time T', and space S, then P should run in time
O(T) and space O(s).
® The GKR protocol only achieves a linear-time for V
parallelizable programs.

What We Really Want

* In the cloud computing scenario at the start of the talk, we really
wanted the following:

1. Vasks P to run some computer program on her data.
2. Pproves that she correctly ran the program on the data.

® V should not do much more work than read the input.

* P should not do much more work than run the program.
® If the program runs in time T', and space S, then P should run in time
O(T) and space O(s).
* Unfortunately, we cannot hope for V to run in time 0 (n) for
space-intensive computations.
* If f has an interactive proof with Vruntime ¢, then f can be solved
In space 0(c).
® So we can only hope to achieve a linear-time verifier for problems
solvable in linear space.

What We Really Want

* In the cloud computing scenario at the start of the talk, we really
wanted the following:

1. Vasks P to run some computer program on her data.
2. Pproves that she correctly ran the program on the data.

® V should not do much more work than read the input.

* P should not do much more work than run the program.
® If the program runs in time T', and space S, then P should run in time
O(T) and space O(s).
* Unfortunately, we cannot hope for V to run in time 0 (n) for
space-intensive computations.

* If f has an interactive proof with Vruntime ¢, then f can be solved
In space 0(c).

® So we can only hope to achieve a linear-time verifier for problems
solvable in linear space.

®* [RRR16] come close to achieving the best we can hope for.

[RRR16]

* Let f be a problem solvable in time T and space S. Then for

any constant € > 0, f has an interactive proof where:
® Vruns in time G(Tl + T¢ - poly(s)).
e Prunsin time O (T1+g - poly(s)).

[RRR16]

* Let f be a problem solvable in time T and space S. Then for

any constant € > 0, f has an interactive proof where:
® Vruns in time 5(71 + T¢ - poly(s)).
e Pruns in time O (T1+€ - poly(s)).

® In particular, if T = poly(n) and s is a small enough

polynomial in 11, then this is a doubly-efficient interactive proof

system.

[RRR16]

* Let f be a problem solvable in time T and space S. Then for

any constant € > 0, f has an interactive proof where:
® Vruns in time 5(71 + T¢ - poly(s)).
e Pruns in time O (Tlﬂ3 - poly(s)).

® In particular, if T = poly(n) and s is a small enough

polynomial in 11, then this is a doubly-efficient interactive proof

system.

® The number of rounds is constant.

1
® More precisely, it is €Xp (E) :

Open Questions (Theory)

® Improve V’s runtime in [RRR16] from 5(7’1 + T¢ - poly(s))
to O(n + poly(s,log T))? Maybe even O(n + s - log T))?

* Improve the round complexity from eXxp (1) to poly (§)7

€

Open Questions (Theory)

® Improve V’s runtime in [RRR16] from 5(1’1 + T¢ - poly(s))
to O(n + poly(s,log T))? Maybe even O(n + s - log T))?
* Improve the round complexity from eXxp (1) to poly (é)?

>
e (Give an interactive proof for batch-verification of NP

statements’

® Under standard complexity assumptions, interactive proofs cannot

be succinct [GH98, GVWO1].

I.e., for a general NP relation, cannot do much better than just having the

prover send the NP witness to the verifier.

Open Questions (Theory)

® Improve V’s runtime in [RRR16] from 6(7’1 + T¢ - poly(s))
to O(n + poly(s,log T))? Maybe even O(n + s - log T))?
* Improve the round complexity from eXxp (1) to poly (é)?

>
e (Give an interactive proof for batch-verification of NP

statements’

® Under standard complexity assumptions, interactive proofs cannot

be succinct [GH98, GVWO1].

I.e., for a general NP relation, cannot do much better than just having the

prover send the NP witness to the verifier.

e Open: given k instances of the same NP problem, is there an

interactive proof for Verifying that the answer to all Kk instances is

YES, with communication that grows sublinearly with k?

/

A Parting Remark

e We've seen some fundamental limitations of interactive proofs.
’
e \ can’t run in linear time for space-intensive problems.
° They cannot be succinct.
° They are interactive.

° They are not publicly verifiable.

A Parting Remark

* We’ve seen some fundamental limitations of interactive prootfs.
® V can’t run in linear time for space-intensive problems.
® They cannot be succinct.
® They are interactive.
® They are not publicly veritiable.

* All of these limitations can be addressed by combining
interactive proofs with cryptography.
® This yields succinct non-interactive arguments.
® See tomorrow’s talks.

® There are many practically—relevant open questions about the

best way to combine interactive proofs with cryptography.

THANK YOU!

