
Justin Thaler
Georgetown University

Interactive Proofs

Talk Outline
1. Definition of Interactive Proofs
2. The Power of Randomness

� Reed-Solomon Fingerprinting
� Freivalds’ Protocol for Verifying Matrix Products

3. Technical Concepts: low-degree extensions, arithmetization
4. The Sum-Check Protocol
5. An Interactive Proof for #SAT
6. Doubly-Efficient Interactive Proofs

Interactive Proofs: Motivation and
Model

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Data

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Data

Data
Summary

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Question

Data

Answer
Data
Summary

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Question

Data

Answer

Challenge

Response

Data
Summary

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Question

Data

Answer

Challenge

Response

Challenge

Response

Data
Summary

Cloud Provider Business/Agency/Scientist

Interactive Proofs

Question

Data

Answer

Challenge

Response

Challenge

Response

Accept
or

Reject

Interactive Proofs
� Prover P and Verifier V.

� P solves problem, tells V the answer.
� Then P and V have a conversation.
� P’s goal: convince V the answer is correct.

� Requirements:
� 1. Completeness: an honest P can convince V

to accept.
� 2. Soundness: V will catch a lying P with high

probability.
This must hold even if P is computationally unbounded
and trying to trick V into accepting the incorrect
answer.

Interactive Proofs
� Prover P and Verifier V.

� P solves problem, tells V the answer.
� Then P and V have a conversation.
� P’s goal: convince V the answer is correct.

� Requirements:
� 1. Completeness: an honest P can convince V

to accept.
� 2. Soundness: V will catch a lying P with high

probability.
� This must hold even if P is computationally

unbounded and trying to trick V into accepting the
incorrect answer.

The Power of Randomness: A
Demonstration

EQUALITY Testing

Alice and Bob’s Goal: Determine whether ! = #, while
exchanging as few bits as possible.

$%&'()*+

! = ,-, … , ,0 ∈ {0, 1}0 # = (7-, … , 70) ∈ {0, 1}0

EQUALITY Testing

Trivial solution: Alice sends ! to Bob, who checks whether ! = #.
Communication cost is $.

%&'() *+,

! = -., … , -1 ∈ {0, 1}1 # = (8., … , 81) ∈ {0, 1}1

EQUALITY Testing

! = #$, … , #' ∈ {0, 1}' - = (/$, … , /') ∈ {0, 1}'

Fact: Trivial solution is optimal amongst deterministic protocols.

12345 678

A Logarithmic Cost Randomized
Solution

Randomized EQUALITY Testing Protocol

• Notation:
• Let ! be any finite field with |!| ≥ $%.
• Interpret each &', (' as elements of !.
• Let) * = ∑'-./ &' *' and 0 * = ∑'-./ (' *'.

• The Protocol:
• Alice picks a random r ∈ ! and sends (r,) 5) to Bob.
• Bob outputs EQUAL if) 5 = 0 5 . Otherwise he

outputs NOT-EQUAL.

Randomized EQUALITY Testing Protocol

• Notation:
• Let ! be any finite field with |!| ≥ $%.
• Interpret each &', (' as elements of !.
• Let) * = ∑'-./ &' *' and 0 * = ∑'-./ (' *'.

• The Protocol:
• Alice picks a random 1 ∈ ! and sends (1,) 1) to Bob.
• Bob outputs EQUAL if) 1 = 0(1). Otherwise he

outputs NOT-EQUAL.

• Notation:
• Let ! be any finite field with |!| ≥ $%.
• Interpret each &', (' as elements of !.
• Let) * = ∑'-./ &' *' and 0 * = ∑'-./ (' *'.

• The Protocol:
• Alice picks a random 1 ∈ ! and sends (1,) 1) to Bob.
• Bob outputs EQUAL if) 1 = 0(1). Otherwise he

outputs NOT-EQUAL.

• Total communication: 6 log ! = 6(log $) bits.
• We call) 1 the Reed-Solomon fingerprint of the vector :.

Randomized EQUALITY Testing Protocol

• Notation:
• Let ! be any finite field with |!| ≥ $%.
• Interpret each &', (' as elements of !.
• Let) * = ∑'-./ &' *' and 0 * = ∑'-./ (' *'.

• The Protocol:
• Alice picks a random 1 ∈ ! and sends (1,) 1) to Bob.
• Bob outputs EQUAL if) 1 = 0(1). Otherwise he

outputs NOT-EQUAL.

• Total communication: 6 log ! = 6(log $) bits.
• Call) 1 the Reed-Solomon fingerprint of the vector : at 1.

Randomized EQUALITY Testing Protocol

Correctness Analysis
• Claim 1: if ! = #, then Bob outputs EQUAL with probability 1.
• Proof: Since ! = #, $ and % are the same polynomial, so

$ & = % & for all & ∈ (.

• Claim 2: ! ≠ #, then Bob outputs NOT-EQUAL with
probability at least 1 − ,

- over the choice of & ∈ (.

Correctness Analysis
• Claim 1: if ! = #, then Bob outputs EQUAL with probability 1.
• Proof: Since ! = #, $ and % are the same polynomial, so

$ & = % & for all & ∈ (.

• Claim 2: ! ≠ #, then Bob outputs NOT-EQUAL with
probability at least 1 − ,

- over the choice of & ∈ (.

Correctness Analysis
• Claim 2: ! ≠ #, then Bob outputs NOT-EQUAL with probability at

least 1 − &
' over the choice of (∈ *.

• The proof relies on the following crucial fact:
FACT: Let p≠q be univariate polynomials of degree at most

n. Then p and q agree on at most n inputs. Equivalently:

Pr-∈* . (= 0 (≤ 2
* .

• If ! ≠ #, . and 0 are not the same polynomial. By FACT, the
probability Alice picks an (such that . (= 0 (is at most '|*| ≤
'
'5 ≤

&
' .

Correctness Analysis
• Claim 2: ! ≠ #, then Bob outputs NOT-EQUAL with probability at

least 1 − &
' over the choice of (∈ *.

FACT: Let + ≠ , be univariate polynomials of degree at most -.
Then + and , agree on at most - inputs. Equivalently:

Pr0∈* + (= , (≤ -
* .

• If ! ≠ #, + and , are not the same polynomial. By FACT, the
probability Alice picks an (such that + (= , (is at most '|*| ≤
'
'5 ≤

&
' .

Correctness Analysis
• Claim 2: ! ≠ #, then Bob outputs NOT-EQUAL with probability at

least 1 − &
' over the choice of (∈ *.

FACT: Let + ≠ , be univariate polynomials of degree at most -.
Then + and , agree on at most - inputs. Equivalently:

Pr0∈* + (= , (≤ -
* .

• If ! ≠ #, then + and , are not the same polynomial. By FACT, the
probability Alice picks an (such that + (= , (is at most '|*| ≤
'
'5 ≤

&
' .

Main Takeaways
1. Any two distinct low-degree polynomials differ almost

everywhere: if ! ≠ " then Pr%∈' ! (= " (≤ +
'

where , bounds the degree of ! and ".
• Corollary: If two low-degree polynomials agree at a

randomly chosen input, it is “safe” to believe they are the
same polynomial.

2. Interpreting inputs as low-degree polynomials is powerful.
• If two inputs differ at all, then once interpreted as

polynomials, they differ almost everywhere.

Freivalds’ Protocol for Verifying Matrix
Products

Demonstrating the Power of
Randomness in Verifiable Computing

Verifying Matrix Multiplication
• Input is two matrices A, B ∈ %&×&. Goal is to compute A) B.
• Fastest known algorithm runs in time about *+.,-.
• What if an untrusted prover P claims that the answer is a matrix .?

Can V verify that .= A) B in linear time?
• Yes!

• The proof relies on the following crucial fact:

FACT: Any two distinct polynomials of degree at most n
agree on at most n inputs.

• Proof of Claim 2: Since / ≠ 1, 2 and 3 are not the same
polynomial. By FACT, 2 4 = 3 4 for at most * values of 4. So

the probability Alice picks such an 4 is at most & ≤ & ≤ 7

Verifying Matrix Multiplication
• Input is two matrices A, B ∈ %&×&. Goal is to compute A) B.
• Fastest known algorithm runs in time about *+.,-.
• What if an untrusted prover P claims that the answer is a matrix .?

Can V verify that .= A) B in / *+ time?
• Yes!

• The proof relies on the following crucial fact:

FACT: Any two distinct polynomials of degree at most n
agree on at most n inputs.

• Proof of Claim 2: Since 0 ≠ 2, 3 and 4 are not the same
polynomial. By FACT, 3 5 = 4 5 for at most * values of 5. So

the probability Alice picks such an 5 is at most & ≤ & ≤ 8

Verifying Matrix Multiplication
• Input is two matrices A, B ∈ %&×&. Goal is to compute A) B.
• Fastest known algorithm runs in time about *+.,-.
• What if an untrusted prover P claims that the answer is a matrix .?

Can V verify that .= A) B in / *+ time?
• Yes!

• The proof relies on the following crucial fact:

FACT: Any two distinct polynomials of degree at most n
agree on at most n inputs.

• Proof of Claim 2: Since 0 ≠ 2, 3 and 4 are not the same
polynomial. By FACT, 3 5 = 4 5 for at most * values of 5. So

the probability Alice picks such an 5 is at most & ≤ & ≤ 8

Verifying Matrix Multiplication
• The Protocol:

1. V picks a random ! ∈ # and lets $ = !, !', … , !) .
2. V computes + , $ and (AB) , $, accepting iff they are equal.

V runs in 1 2' time.
• V computes 3 matrix-vector products, each of which can be

computed in 1 2' time.
• + , $ is one matrix-vector multiplication.
• (AB) , $= A , (B , $) takes two matrix-vector

multiplications.

Verifying Matrix Multiplication
• The Protocol:

1. V picks a random ! ∈ # and lets $ = !, !', … , !) .
2. V computes + , $ and (AB) , $, accepting iff they are equal.

• Runtime Analysis:
• V’s runtime dominated by computing 3 matrix-vector products,

each of which takes 1 2' time.
• + , $ is one matrix-vector multiplication.
• (AB) , $= A , (B , $) takes two matrix-vector

multiplications.

Correctness Analysis

• Claim 1: If != A # B then V accepts with probability 1.
• Claim 2: If ! ≠ A # B, then V rejects with probability at least

1 − (
) ≥ 1 − 1/(.

• Proof:
• Recall that - = 1, 0, 01, … , 0345 .
• The 6th entry of ! # - is the Reed-Solomon fingerprint of the

6th row of !.
• Similarly, the 6th entry of (89)- is the Reed-Solomon

fingerprint of the 6th row of 89.
• So if even one row of ! does not equal the corresponding row

of A # 9, the fingerprints for that row will differ with
probability at least 1 − 1/(.

Correctness Analysis

• Claim 1: If != A # B then V accepts with probability 1.
• Claim 2: If ! ≠ A # B, then V rejects with probability at least

1 − (
) ≥ 1 − 1/(.

• Proof of Claim 2:
• Recall that - = /, /1, … , /3 .
• (! # -)6= ∑89:3 !68/8 is the Reed-Solomon fingerprint at /

of the ;th row of !.
• Similarly, ((AB) # -)6 is the Reed-Solomon fingerprint of the

;th row of AB.
• So if even one row of ! does not equal the corresponding row

of A # <, the fingerprints for that row will differ with
probability at least 1 − 1/(.

Correctness Analysis

• Claim 1: If != A # B then V accepts with probability 1.
• Claim 2: If ! ≠ A # B, then V rejects with probability at least

1 − (
) ≥ 1 − 1/(.

• Proof of Claim 2:
• Recall that - = /, /1, … , /3 .
• (! # -)6= ∑89:3 !68/8 is the Reed-Solomon fingerprint at /

of the ;th row of !.
• Similarly, ((AB) # -)6 is the Reed-Solomon fingerprint at / of

the ;th row of AB.
• So if even one row of ! does not equal the corresponding row

of A # <, the fingerprints for that row will differ with
probability at least 1 − 1/(.

Correctness Analysis

• Claim 1: If != A # B then V accepts with probability 1.
• Claim 2: If ! ≠ A # B, then V rejects with probability at least

1 − (
) ≥ 1 − 1/(.

• Proof of Claim 2:
• Recall that - = /, /1, … , /3 .
• (! # -)6= ∑89:3 !68/8 is the Reed-Solomon fingerprint at /

of the ;th row of !.
• Similarly, ((AB) # -)6 is the Reed-Solomon fingerprint at / of

the ;th row of AB.
• So if even one row of ! does not equal the corresponding row

of AB, the fingerprints for that row will differ with probability
at least 1 − 1/(, causing V to reject.

Interactive Proof Techniques:
Preliminaries

Schwartz-Zippel Lemma
� Recall FACT: Let ! ≠ " be univariate polynomials of degree at

most #. Then Pr&∈(!) = ") ≤ ,
(.

The Schwartz-Zippel lemma is a multivariate generalization:
Let ! ≠ " be ℓ-variate polynomials of total degree at most #. Then

Pr/∈(ℓ ! / = " / ≤ ,
(.

Total degree refers to the maximum sum of degrees of all variables
in any term. E.g., 01202 + 0102 has total degree 3.
is not.

Schwartz-Zippel Lemma
� Recall FACT: Let ! ≠ " be univariate polynomials of degree at

most #. Then Pr&∈(!) = ") ≤ ,
(.

� The Schwartz-Zippel lemma is a multivariate
generalization:
� Let ! ≠ " be ℓ-variate polynomials of total degree at most #.

Then Pr&∈(ℓ !) = ") ≤ ,
(.

Total degree refers to the maximum sum of degrees of all variables
in any term. E.g., /01/1 + /0/1 has total degree 3.
is not.

Schwartz-Zippel Lemma
� Recall FACT: Let ! ≠ " be univariate polynomials of degree at

most #. Then Pr&∈(!) = ") ≤ ,
(.

� The Schwartz-Zippel lemma is a multivariate
generalization:
� Let ! ≠ " be ℓ-variate polynomials of total degree at most #.

Then Pr&∈(ℓ !) = ") ≤ ,
(.

� “Total degree” refers to the maximum sum of degrees of all
variables in any term. E.g., /01/1 + /0/1 has total degree 3.

Low-Degree and Multilinear Extensions
� Definition [Extensions]. Given a function !: {0,1}ℓ→ *,

a ℓ-variate polynomial + over F is said to extend ! if ! , =
+(,) for all , ∈ {0,1}ℓ.

� Definition [Multilinear Extensions]. Any function
!: {0,1}ℓ→ * has a unique multilinear extension (MLE),
denoted 2!.
Multilinear means the polynomial has degree at most 1 in each
variable.
(1 − ,4)(1 − ,5) is multilinear, ,4(,5)5 is not.

Low-Degree and Multilinear Extensions
� Definition [Extensions]. Given a function !: {0,1}ℓ→ *,

a ℓ-variate polynomial + over F is said to extend ! if ! , =
+(,) for all , ∈ {0,1}ℓ.

� Definition [Multilinear Extensions]. Any function
!: {0,1}ℓ→ * has a unique multilinear extension (MLE),
denoted 2!.
� Multilinear means the polynomial has degree at most 1 in each

variable.
� (1 − ,4)(1 − ,5) is multilinear, ,45,5 is not.

1 2

8 10

f : {0,1}2 → F

1 2

8 10

f :F2 → F~

3 4

12 14

15 18

22 26

21 24

30 34

29 34

36 42

39 44

48 54

5 6

16 18

27 30

38 42

49 56

60 68

1 2

8 10

3 4

12 14

15 18

22 26

21 24

30 34

29 34

36 42

39 44

48 54

5 6

16 18

27 30

38 42

49 56

60 68

!" #$, #& = (1 − #$)(1 − #&) + 2(1 − #$)#&+ 8#$(1 − #&)+10#$#&

Can	check:
!" 0, 0 = 1
!" 0, 1 = 2
!" 1, 0 = 8
!" 1, 1 = 10

1 2

8 10

3 4

12 14

13 16

16 20

19 22

24 28

17 22

16 22

27 32

28 34

5 6

16 18

25 28

32 36

37 42

40 44

Another (non-multilinear) extension of !:
" #$, #& = −#$& + #$#&+8 #$ + #& + 1

Can	check:
" 0, 0 = 1
" 0, 1 = 2
" 1, 0 = 8
" 1, 1 = 10

Low-Degree and Multilinear Extensions
� Fact [VSBW13]: Given as input all 2ℓ evaluations of a function
#: {0,1}ℓ→ +, for any point , ∈ +ℓ there is an .(2ℓ)-time
algorithm for evaluating 1# , .

� Note: If # is “structured”, there may extensions 3 for which
3(,) can be evaluated much faster than .(2ℓ)-time.

Can view as error

Low-Degree and Multilinear Extensions
� Fact [VSBW13]: Given as input all 2ℓ evaluations of a function
#: {0,1}ℓ→ +, for any point , ∈ +ℓ there is an .(2ℓ)-time
algorithm for evaluating 1# , .

� Note: If # is “structured”, there may extensions 3 for which
3(,) can be evaluated much faster than .(2ℓ)-time.
� We will see an example later when covering arithmetization of

Boolean formulae.
Can view as error

The Sum-Check Protocol [LFKN90]

Sum-Check Protocol [LFKN90]
� Input: V given oracle access to a ℓ-variate polynomial "

over field #.
� Goal: compute the quantity:

$
%&∈{),+}

$
%-∈{),+}

… $
%ℓ∈{),+}

"(0+, … , 0ℓ).

� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

Round 1: P sends univariate polynomial 4"(5") claimed to equal:

6" 5" := $
%,∈{),"}

… $
%ℓ∈),"

/(5", 18, … , 1ℓ)

V checks that !" = 4" 0 + 4" 1 .
V picks <" at random from = and sends <" to P.
Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈)," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ).

� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal:

6" 5" := $
%,∈{),"}

… $
%ℓ∈),"

/(5", 18, … , 1ℓ)

V checks that !" = 4" 0 + 4" 1 .
V picks <" at random from = and sends <" to P.
Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈)," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ).

Costs one oracle query for V.

� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal:

6" 5" := $
%,∈{),"}

… $
%ℓ∈),"

/(5", 18, … , 1ℓ)

V checks that !" = 4" 0 + 4" 1 .
V picks <" at random from = and sends <" to P.
Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈)," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ).

Costs one oracle query for V.

� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal:

6" 5" := $
%,∈{),"}

… $
%ℓ∈),"

/(5", 18, … , 1ℓ)

� V checks that !" = 4" 0 + 4" 1 .
V picks <" at random from = and sends <" to P.
Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈)," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ).

Costs one oracle query for V.

� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal:

6" 5" := $
%,∈{),"}

… $
%ℓ∈),"

/(5", 18, … , 1ℓ)

� V checks that !" = 4" 0 + 4" 1 .
� If this check passes, it is safe for V to believe that !" is the correct answer, so long

as V believes that 4"= 6".
� How to check this? Just check that 4" and 6" agree at a random point <"!
Note:V can compute 4"(<") directly from P’s first message, but not 6"(<").

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈)," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ>" <ℓ>" = /(<", … , <ℓ>", 0) + /(<", … , <ℓ>", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ>", 5ℓ). V checks
that 4ℓ>"(<ℓ>") = 4ℓ 0 + 4ℓ 1 .
V picks at random, checks that /().

� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal:

6" 5" := $
%,∈{),"}

… $
%ℓ∈),"

/(5", 18, … , 1ℓ)

� V checks that !" = 4" 0 + 4" 1 .
� If this check passes, it is safe for V to believe that !" is the correct answer, so long

as V believes that 4"= 6".
� How to check this? Just check that 4" and 6" agree at a random point <"!
� V can compute 4"(<") directly from P’s first message, but not 6"(<").

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈)," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ>" <ℓ>" = /(<", … , <ℓ>", 0) + /(<", … , <ℓ>", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ>", 5ℓ). V checks
that 4ℓ>"(<ℓ>") = 4ℓ 0 + 4ℓ 1 .
V picks at random, checks that /().

� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal:

6" 5" := $
%,∈{),"}

… $
%ℓ∈),"

/(5", 18, … , 1ℓ)

� V checks that !" = 4" 0 + 4" 1 .
� V picks <" at random from = and sends <" to P.
� Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈)," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ).

Costs one oracle query for V.

� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal:

6" 5" := $
%,∈{),"}

… $
%ℓ∈),"

/(5", 18, … , 1ℓ)

� V checks that !" = 4" 0 + 4" 1 .
� V picks <" at random from = and sends <" to P.
� Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈)," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ).

Costs one oracle query for V.

� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal:

6" 5" := $
%,∈{),"}

… $
%ℓ∈),"

/(5", 18, … , 1ℓ)

� V checks that !" = 4" 0 + 4" 1 .
� V picks <" at random from = and sends <" to P.
� Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈)," /(<", 18, … , 1ℓ).
� Round ℓ (Final round): P sends univariate polynomial 4ℓ(5ℓ) claimed to equal

6ℓ ∶= /(<", … , <ℓ@", 5ℓ).
� V checks that 4ℓ@"(<ℓ@") = 4ℓ 0 + 4ℓ 1 .
� V picks <ℓ at random, and needs to check that 4ℓ <ℓ = /(<", … , <ℓ).

� No need for more rounds. V can perform this check with one oracle query.

Analysis of the Sum-Check Protocol

Completeness and Soundness
� Completeness holds by design: If P sends the prescribed

messages, then all of V’s checks will pass.
Soundness: If !" ≠ ∑ %&,…,%ℓ ∈ +," ℓ ,(.", … , .ℓ), then V

rejects with probability at least 1- ℓ01|3| , where 4 is the total

degree of ,.
Proof is by induction on the number of variables ℓ.

Completeness and Soundness
� Completeness holds by design: If P sends the prescribed

messages, then all of V’s checks will pass.
� Soundness: If P does not send the prescribed messages,

then V rejects with probability at least 1- ℓ"#|%| , where ' is

the maximum degree of (in any variable.
� Proof is by induction on the number of variables ℓ.

Completeness and Soundness
� Completeness holds by design: If P sends the prescribed

messages, then all of V’s checks will pass.
� Soundness: If P does not send the prescribed messages,

then V rejects with probability at least 1- ℓ"#|%| , where ' is

the maximum degree of (in any variable.
� Proof is by induction on the number of variables ℓ.

� Base case: ℓ = 1. In this case, P sends a single message ,- .-
claimed to equal (.- . V picks /- at random, checks that
,- /- = ((/-).

� By Fact, if ,- ≠ (, then Pr56∈%[,- /- = ((/-)] ≤ #
|%|.

Soundness: Inductive Case
� Inductive case: ℓ > 1.

� Recall: P’s first message %& '& is claimed to equal
(& '& ≔ ∑+,∈{/,&} …∑+ℓ∈ /,& 3('&, 56, … , 5ℓ).

� Then V picks a random 8& and sends 8& to P. They (recursively) invoke sum-
check to confirm that %& 8& = (& 8& .

By Fact, if %& ≠ (&, then Pr=>∈?[%& 8& ≠ ((8&)] ≥ 1 −
D

|?|
.

If %& 8& ≠ (8& , P is left to prove a false claim in the recursive call.
The recursive call applies sum-check to 3 8&, '6, … , 'ℓ , which is ℓ-1 variate.
By induction, P fails to convince V in the recursive call with probability at least

1 −
D(ℓF&)

|?|
.

So if %& ≠ (&, the probability V rejects is at least:

1 − Pr=>∈?[%& 8& = ((8&)] − Pr[V accepts|%& 8& ≠ ((8&)]

≥ 1 −
D

|?|
−

D ℓF&

?
≥ 1 −

Dℓ

?
.

Soundness: Inductive Case
� Inductive case: ℓ > 1.

� Recall: P’s first message %& '& is claimed to equal
(& '& ≔ ∑+,∈{/,&} …∑+ℓ∈ /,& 3('&, 56, … , 5ℓ).

� Then V picks a random 8& and sends 8& to P. They (recursively) invoke sum-
check to confirm that %& 8& = (& 8& .

� By Fact, if %& ≠ (&, then Pr=>∈?[%& 8& = ((8&)] ≤
C

|?|
.

If %& 8& ≠ (8& , P is left to prove a false claim in the recursive call.
The recursive call applies sum-check to 3 8&, '6, … , 'ℓ , which is ℓ-1 variate.
By induction, P fails to convince V in the recursive call with probability at least

1 −
C(ℓF&)

|?|
.

So if %& ≠ (&, the probability V rejects is at least:

1 − Pr=>∈?[%& 8& = ((8&)] − Pr[V accepts|%& 8& ≠ ((8&)]

≥ 1 −
C

|?|
−

C ℓF&

?
≥ 1 −

Cℓ

?
.

Soundness: Inductive Case
� Inductive case: ℓ > 1.

� Recall: P’s first message %& '& is claimed to equal
(& '& ≔ ∑+,∈{/,&} …∑+ℓ∈ /,& 3('&, 56, … , 5ℓ).

� Then V picks a random 8& and sends 8& to P. They (recursively) invoke sum-
check to confirm that %& 8& = (& 8& .

� By Fact, if %& ≠ (&, then Pr=>∈?[%& 8& = ((8&)] ≤
C

|?|
.

� If %& 8& ≠ (8& , P is left to prove a false claim in the recursive call.
The recursive call applies sum-check to 3 8&, '6, … , 'ℓ , which is ℓ-1 variate.
By induction, P fails to convince V in the recursive call with probability at least

1 −
C(ℓF&)

|?|
.

So if %& ≠ (&, the probability V rejects is at least:

1 − Pr=>∈?[%& 8& = ((8&)] − Pr[V accepts|%& 8& ≠ ((8&)]

≥ 1 −
C

|?|
−

C ℓF&

?
≥ 1 −

Cℓ

?
.

Soundness: Inductive Case
� Inductive case: ℓ > 1.

� Recall: P’s first message %& '& is claimed to equal
(& '& ≔ ∑+,∈{/,&} …∑+ℓ∈ /,& 3('&, 56, … , 5ℓ).

� Then V picks a random 8& and sends 8& to P. They (recursively) invoke sum-
check to confirm that %& 8& = (& 8& .

� By Fact, if %& ≠ (&, then Pr=>∈?[%& 8& = ((8&)] ≤
C

|?|
.

� If %& 8& ≠ (8& , P is left to prove a false claim in the recursive call.
� The recursive call applies sum-check to 3 8&, '6, … , 'ℓ , which is ℓ-1 variate.
� By induction, P fails to convince V in the recursive call with probability at least

1 −
C(ℓF&)

|?|
.

So if %& ≠ (&, the probability V rejects is at least:

1 − Pr=>∈?[%& 8& = ((8&)] − Pr[V accepts|%& 8& ≠ ((8&)]

≥ 1 −
C

|?|
−

C ℓF&

?
≥ 1 −

Cℓ

?
.

Soundness: Inductive Case
� Inductive case: ℓ > 1.

� Recall: P’s first message %& '& is claimed to equal
(& '& ≔ ∑+,∈{/,&} …∑+ℓ∈ /,& 3('&, 56, … , 5ℓ).

� Then V picks a random 8& and sends 8& to P. They (recursively) invoke sum-
check to confirm that %& 8& = (& 8& .

� By Fact, if %& ≠ (&, then Pr=>∈?[%& 8& = ((8&)] ≤
C

|?|
.

� If %& 8& ≠ (8& , P is left to prove a false claim in the recursive call.
� The recursive call applies sum-check to 3 8&, '6, … , 'ℓ , which is ℓ-1 variate.
� By induction, P fails to convince V in the recursive call with probability at least

1 −
C(ℓF&)

|?|
.

� Summary: if %& ≠ (&, the probability V accepts is at most:

Pr=>∈?[%& 8& = ((8&)] + Pr=,,…,=ℓ∈?[V accepts|%& 8& ≠ ((8&)]

≤
C

|?|
+

C ℓF&

?
≤

Cℓ

?
.

Costs of the Sum-Check Protocol
� Total communication is ! "ℓ field elements.

� P sends ℓ messages, each a univariate polynomial of degree at
most ".V sends ℓ − 1 messages, each consisting of one field
elements.

V’s runtime is:
! "' + [*+,- .-/0+.-" *1 -'2302*- 4 2* 15- 61+5*] .

P’s runtime is at most:
! " 8 2: 8 [*+,- .-/0+.-" *1 -'2302*- 4 2* 15- 61+5*] .

Costs of the Sum-Check Protocol
� Total communication is ! "ℓ field elements.

� P sends ℓ messages, each a univariate polynomial of degree at
most ".V sends ℓ − 1 messages, each consisting of one field
elements.

� V’s runtime is:
! "ℓ + [)*+, -,./*-,")0 ,123/2), 4 2) 05, 60*5)] .

P’s runtime is at most:
! " 8 2: 8 [)*+, -,./*-,")0 ,123/2), 4 2) 05, 60*5)] .

Costs of the Sum-Check Protocol
� Total communication is ! "ℓ field elements.

� P sends ℓ messages, each a univariate polynomial of degree at
most ".V sends ℓ − 1 messages, each consisting of one field
elements.

� V’s runtime is:
! "ℓ + [)*+, -,./*-,")0 ,123/2), 4 2) 05, 60*5)] .

� P’s runtime is at most:
! " 8 2ℓ 8 [)*+, -,./*-,")0 ,123/2), 4 2) 05, 60*5)] .

First Application of Sum-Check:
An IP For #SAT [LFKN]

#SAT Problem
� Let ! be a Boolean formula of size " over # variables.

x1 x2 x3 x4

¬

∧
∨∧

#SAT Problem
� Let ! be a Boolean formula of size " over # variables.
� Goal: count the number of satisfying assignments of !.

� i.e., Compute ∑%∈{(,*}, !(.).
� In the sum above, we are viewing ! as a function mapping
{0,1}2→ 0, 1 . (0 interpreted as FALSE, 1 as TRUE).

Protocol: Apply sum-check to an extension polynomial g of

#SAT Problem
� Let ! be a Boolean formula of size " over # variables.
� Goal: count the number of satisfying assignments of !.

� i.e., Compute ∑%∈{(,*}, !(.).
� In the sum above, we are viewing ! as a function mapping
{0,1}2→ 0, 1 . (0 interpreted as FALSE, 1 as TRUE).

Protocol: Apply sum-check to an extension polynomial g of

x1 x2 x3 x4

¬

∧
∨∧

#SAT Problem
� Let ! be a Boolean formula of size " over # variables.
� Goal: count the number of satisfying assignments of !.

� i.e., Compute ∑%∈{(,*}, !(.).
� In the sum above, we are viewing ! as a function mapping
{0,1}2→ 0, 1 . (0 interpreted as FALSE, 1 as TRUE).

Protocol: Apply sum-check to an extension polynomial g of

1 10 0

¬

∧
∨∧

#SAT Problem
� Let ! be a Boolean formula of size " over # variables.
� Goal: count the number of satisfying assignments of !.

� i.e., Compute ∑%∈{(,*}, !(.).
� In the sum above, we are viewing ! as a function mapping
{0,1}2→ 0, 1 . (0 interpreted as FALSE, 1 as TRUE).

Protocol: Apply sum-check to an extension polynomial g of

1

1 10 0

∧
∨∧

#SAT Problem
� Let ! be a Boolean formula of size " over # variables.
� Goal: count the number of satisfying assignments of !.

� i.e., Compute ∑%∈{(,*}, !(.).
� In the sum above, we are viewing ! as a function mapping
{0,1}2→ 0, 1 . (0 interpreted as FALSE, 1 as TRUE).

Protocol: Apply sum-check to an extension polynomial g of

1

1 10 0

1
∧

∨

#SAT Problem
� Let ! be a Boolean formula of size " over # variables.
� Goal: count the number of satisfying assignments of !.

� i.e., Compute ∑%∈{(,*}, !(.).
� In the sum above, we are viewing ! as a function mapping
{0,1}2→ 0, 1 . (0 interpreted as FALSE, 1 as TRUE).

Protocol: Apply sum-check to an extension polynomial g of

1

1 10 0

1 1
∧

#SAT Problem
� Let ! be a Boolean formula of size " over # variables.
� Goal: count the number of satisfying assignments of !.

� i.e., Compute ∑%∈{(,*}, !(.).
� In the sum above, we are viewing ! as a function mapping
{0,1}2→ 0, 1 . (0 interpreted as FALSE, 1 as TRUE).

Protocol: Apply sum-check to an extension polynomial g of

1

1

1 10 0

1 1

#SAT Problem
� Let ! be a Boolean formula of size " over # variables.
� Goal: Compute ∑%∈{(,*}, !(.).

Protocol:

Let 0 be an extension polynomial of !.
Apply the sum-check protocol to compute ∑%∈{(,*}, 0 . ..

Note: in final round of sum-check, V needs to compute 0(2) for
some randomly chosen 2 in 34.

#SAT Problem
� Let ! be a Boolean formula of size " over # variables.
� Goal: Compute ∑%∈{(,*}, !(.).

� Protocol:

� Let 0 be an extension polynomial of !.
� Apply the sum-check protocol to compute ∑%∈{(,*}, 0 . ..

Note: in final round of sum-check, V needs to compute 0(2) for
some randomly chosen 2 in 34.

#SAT Problem
� Let ! be a Boolean formula of size " over # variables.
� Goal: Compute ∑%∈{(,*}, !(.).

� Protocol:

� Let 0 be an extension polynomial of !.
� Apply the sum-check protocol to compute ∑%∈{(,*}, 0 . ..

� Note: in final round of sum-check, V needs to compute 0(2) for
some randomly chosen 2 in 34.
� To control V’s runtime, we need this to be fast.

To control communication and P and V’s runtime, we need 0 to be
“low-degree”.
Key question: how to construct the extension polynomial 0?

#SAT Problem
� Let ! be a Boolean formula of size " over # variables.
� Goal: Compute ∑%∈{(,*}, !(.).

� Protocol:

� Let 0 be an extension polynomial of !.
� Apply the sum-check protocol to compute ∑%∈{(,*}, 0 . ..

� Note: in final round of sum-check, V needs to compute 0(2) for
some randomly chosen 2 in 34.
� To control V’s runtime, we need this to be fast.

� To control communication and P and V’s runtime, we need 0 to
be “low-degree”.

Key question: how to construct the extension polynomial 0?

#SAT Problem
� Let ! be a Boolean formula of size " over # variables.
� Goal: Compute ∑%∈{(,*}, !(.).

� Protocol:

� Let 0 be an extension polynomial of !.
� Apply the sum-check protocol to compute ∑%∈{(,*}, 0 . ..

� Note: in final round of sum-check, V needs to compute 0(2) for
some randomly chosen 2 in 34.
� To control V’s runtime, we need this to be fast.

� To control communication and P and V’s runtime, we need 0 to
be “low-degree”.

� Key question: how to construct the extension polynomial 0?

Arithmetization
� Key question: how to construct the extension polynomial !?
� Answer: Arithmetize "

� i.e., replace " with an arithmetic circuit computing extension !
� Go gate-by-gate through ", replacing each gate with the gate’s

multilinear extension.
� #$% & è 1 − &
�)#* &, , è & - ,
� $. &, , è & + , − & - ,

Arithmetization
� Key question: how to construct the extension polynomial !?
� Answer: Arithmetize "

� i.e., replace " with an arithmetic circuit computing extension !
� Go gate-by-gate through ", replacing each gate with the gate’s

multilinear extension.
� #$% & è 1 − &
�)#* &, , è & - ,
� $. &, , è & + , − & - ,

x1 x2 x3 x4

-
× +

×

1

×

-

x1 x2 x3 x4

¬

∧
∨∧

Arithmetization

1 10 0

¬

∧
∨∧ -

× +

×

×

-

0 01 11

� Key question: how to construct the extension polynomial !?
� Answer: Arithmetize "

� i.e., replace " with an arithmetic circuit computing extension !
� Go gate-by-gate through ", replacing each gate with the gate’s

multilinear extension.
� #$% & è 1 − &
�)#* &, , è & - ,
� $. &, , è & + , − & - ,

Arithmetization

1

1 10 0

∧
∨∧ -

× +

×

×

-

0 01 11

� Key question: how to construct the extension polynomial !?
� Answer: Arithmetize "

� i.e., replace " with an arithmetic circuit computing extension !
� Go gate-by-gate through ", replacing each gate with the gate’s

multilinear extension.
� #$% & è 1 − &
�)#* &, , è & - ,
� $. &, , è & + , − & - ,

Arithmetization

1

1 10 0

∧
∨∧

× +

×

×

-

0 01 11

1

� Key question: how to construct the extension polynomial !?
� Answer: Arithmetize "

� i.e., replace " with an arithmetic circuit computing extension !
� Go gate-by-gate through ", replacing each gate with the gate’s

multilinear extension.
� #$% & è 1 − &
�)#* &, , è & - ,
� $. &, , è & + , − & - ,

Arithmetization

1

1 10 0

1
∧

∨
× +

×

×

-

0 01 11

1

� Key question: how to construct the extension polynomial !?
� Answer: Arithmetize "

� i.e., replace " with an arithmetic circuit computing extension !
� Go gate-by-gate through ", replacing each gate with the gate’s

multilinear extension.
� #$% & è 1 − &
�)#* &, , è & - ,
� $. &, , è & + , − & - ,

Arithmetization

1

1 10 0

1
∧

∨
+

×

×

-

0 01 11

1

1

� Key question: how to construct the extension polynomial !?
� Answer: Arithmetize "

� i.e., replace " with an arithmetic circuit computing extension !
� Go gate-by-gate through ", replacing each gate with the gate’s

multilinear extension.
� #$% & è 1 − &
�)#* &, , è & - ,
� $. &, , è & + , − & - ,

Arithmetization

1

1 10 0

1 1
∧ +

×

×

-

0 01 11

1

1

� Key question: how to construct the extension polynomial !?
� Answer: Arithmetize "

� i.e., replace " with an arithmetic circuit computing extension !
� Go gate-by-gate through ", replacing each gate with the gate’s

multilinear extension.
� #$% & è 1 − &
�)#* &, , è & - ,
� $. &, , è & + , − & - ,

Arithmetization

1

1 10 0

1 1
∧

×

0 01 11

1

1 1 0

1

� Key question: how to construct the extension polynomial !?
� Answer: Arithmetize "

� i.e., replace " with an arithmetic circuit computing extension !
� Go gate-by-gate through ", replacing each gate with the gate’s

multilinear extension.
� #$% & è 1 − &
�)#* &, , è & - ,
� $. &, , è & + , − & - ,

Arithmetization

1

1

1 10 0

1 1

×

0 01 11

1

1 1 0

1

� Key question: how to construct the extension polynomial !?
� Answer: Arithmetize "

� i.e., replace " with an arithmetic circuit computing extension !
� Go gate-by-gate through ", replacing each gate with the gate’s

multilinear extension.
� #$% & è 1 − &
�)#* &, , è & - ,
� $. &, , è & + , − & - ,

Arithmetization

1

1

1 10 0

1 1

0 01 11

1

1 1 0

1

1

� Key question: how to construct the extension polynomial !?
� Answer: Arithmetize "

� i.e., replace " with an arithmetic circuit computing extension !
� Go gate-by-gate through ", replacing each gate with the gate’s

multilinear extension.
� #$% & è 1 − &
�)#* &, , è & - ,
� $. &, , è & + , − & - ,

x1# x2# x3# x4#

¬#
�#

�#

�#

Figure 1: A Boolean formula f .

x1# x2# x3# x4#

'#
×# +#

×#

1#

×#

'#

Figure 2: An arithmetic circuit y computing a polynomial
extension g of f over a finite field F.

P can be computed in space poly(c(n)), as x 2 L if and only if this acceptance probability is larger 1/3 for
some P . Eliding some details, this acceptance probability for any prover strategy P can be computed by
enumerating over every possible setting of the verifier’s random coins and computing the fraction of settings
that lead the verifier to accept.

The more challenging direction is to show that PSPACE ✓ IP. The #SAT protocol of Lund et al.
[LFKN92] described above already contains the main ideas necessary to prove this. Shamir [Sha92] ex-
tended the #SAT protocol to solve the PSPACE-complete language TQBF, and Shen [She92] gave a simpler
proof (the cost of Shamir’s and Shen’s protocols are similar to those of the #SAT protocol described above).
We do not cover Shamir or Shen’s extensions here, since Lecture 2 will provide a different and quantitatively
stronger proof that PSPACE ✓ IP.

Open Problem: On The Power of the Prover, or Are Sum-Check Techniques Really Necessary to Solve
Languages in coNP? The prover in the protocol for the PSPACE-complete problem TQBF can itself be
implemented in PSPACE. Similarly, the prover in the #P-complete problem #SAT protocol can itself be
implemented via polynomially many calls to a function in #P. However, there is no known interactive for
the coNP-complete language ¯3SAT in which the prover need not solve #P-complete problems. Is there
a protocol for ¯3SAT with a prover that can be implemented in, say, PNP? Under plausible complexity
assumptions, PNP is powerful enough to approximate the number of satisfying assignments to a factor of
1±1/poly(n),4, but is not believed to be powerful enough to exactly count them, as can be done in #P.

1.7 A Second Application of Sum-Check: An Optimal Interactive Proof for Matrix Multi-
plication

This section describes a highly optimized IP protocol for matrix multiplication (MATMULT) from [Tha13].
While this MATMULT protocol is of interest in its own right, it is included here for didactic reasons: it
displays, in a clean and unencumbered setting, all of the algorithmic insights that are exploited later in this
survey to give more general IP and MIP protocols.

4See e.g. http://mathoverflow.net/questions/2218/characterize-pnp

12

x1# x2# x3# x4#

¬#
�#

�#

�#

Figure 1: A Boolean formula f .

x1# x2# x3# x4#

'#
×# +#

×#

1#

×#

'#

Figure 2: An arithmetic circuit y computing a polynomial
extension g of f over a finite field F.

P can be computed in space poly(c(n)), as x 2 L if and only if this acceptance probability is larger 1/3 for
some P . Eliding some details, this acceptance probability for any prover strategy P can be computed by
enumerating over every possible setting of the verifier’s random coins and computing the fraction of settings
that lead the verifier to accept.

The more challenging direction is to show that PSPACE ✓ IP. The #SAT protocol of Lund et al.
[LFKN92] described above already contains the main ideas necessary to prove this. Shamir [Sha92] ex-
tended the #SAT protocol to solve the PSPACE-complete language TQBF, and Shen [She92] gave a simpler
proof (the cost of Shamir’s and Shen’s protocols are similar to those of the #SAT protocol described above).
We do not cover Shamir or Shen’s extensions here, since Lecture 2 will provide a different and quantitatively
stronger proof that PSPACE ✓ IP.

Open Problem: On The Power of the Prover, or Are Sum-Check Techniques Really Necessary to Solve
Languages in coNP? The prover in the protocol for the PSPACE-complete problem TQBF can itself be
implemented in PSPACE. Similarly, the prover in the #P-complete problem #SAT protocol can itself be
implemented via polynomially many calls to a function in #P. However, there is no known interactive for
the coNP-complete language ¯3SAT in which the prover need not solve #P-complete problems. Is there
a protocol for ¯3SAT with a prover that can be implemented in, say, PNP? Under plausible complexity
assumptions, PNP is powerful enough to approximate the number of satisfying assignments to a factor of
1±1/poly(n),4, but is not believed to be powerful enough to exactly count them, as can be done in #P.

1.7 A Second Application of Sum-Check: An Optimal Interactive Proof for Matrix Multi-
plication

This section describes a highly optimized IP protocol for matrix multiplication (MATMULT) from [Tha13].
While this MATMULT protocol is of interest in its own right, it is included here for didactic reasons: it
displays, in a clean and unencumbered setting, all of the algorithmic insights that are exploited later in this
survey to give more general IP and MIP protocols.

4See e.g. http://mathoverflow.net/questions/2218/characterize-pnp

12

Transforming a Boolean formula ! of size " into an arithmetic
circuit computing an extension # of !.

Note: deg # ≤ ", and # can be evaluated at any input, gate by
gate, in time) " .

Summary of Arithmetization

Costs of #SAT Protocol Applied to !
� Let " be a Boolean formula of size # over $ variables, ! the

extension obtained by arithmetizing ".
Rounds Communication V Time P Time

$ P sends a degree #
polynomial in reach round,
V sends one field element

in each round

& # ' $
field elements sent in

total.

•& # time to process each
of the $ messages of P
•& # time to evaluate
!())

& # ' $ time total

P evaluates ! at
& # ' 2, points
to determine each

message

& # ' $ ' 2, time
in total.

⇒ ⇒⇒

IP=PSPACE
� #SAT is a #P-complete problem.

� Hence, the protocol we just saw implies every problem in #P has an
interactive proof with a polynomial time verifier.

� It is not much harder to show that this in fact holds for every
problem in PSPACE [LFKN, Shamir].

But is this a practical result?
No. The main reason: P’s runtime.
When applying the protocols of [LFKN, Shamir] even to very simple
problems, the honest prover would require superpolynomial time.
The #SAT prover took time at least 2".

This is unavoidable for #SAT, since we don’t know how to even solve the
problem in less than 2" time.
But we can hope to solve “easier” problems without turning those problems into
#SAT instances.

IP=PSPACE
� #SAT is a #P-complete problem.

� Hence, the protocol we just saw implies every problem in #P has an
interactive proof with a polynomial time verifier.

� It is not much harder to show that this in fact holds for every
problem in PSPACE [LFKN, Shamir].

� But is this a practical result?
No. The main reason: P’s runtime.
When applying the protocols of [LFKN, Shamir] even to very simple
problems, the honest prover would require superpolynomial time.
The #SAT prover took time at least 2".

This is unavoidable for #SAT, since we don’t know how to even solve the
problem in less than 2" time.
But we can hope to solve “easier” problems without turning those problems into
#SAT instances.

IP=PSPACE
� #SAT is a #P-complete problem.

� Hence, the protocol we just saw implies every problem in #P has an
interactive proof with a polynomial time verifier.

� It is not much harder to show that this in fact holds for every
problem in PSPACE [LFKN, Shamir].

� But is this a practical result?
� No. The main reason: P’s runtime.
When applying the protocols of [LFKN, Shamir] even to very simple
problems, the honest prover would require superpolynomial time.
The #SAT prover took time at least 2".

This is unavoidable for #SAT, since we don’t know how to even solve the
problem in less than 2" time.
But we can hope to solve “easier” problems without turning those problems into
#SAT instances.

IP=PSPACE
� #SAT is a #P-complete problem.

� Hence, the protocol we just saw implies every problem in #P has an
interactive proof with a polynomial time verifier.

� It is not much harder to show that this in fact holds for every
problem in PSPACE [LFKN, Shamir].

� But is this a practical result?
� No. The main reason: P’s runtime.
� When applying the protocols of [LFKN, Shamir] even to very simple

problems, the honest prover would require superpolynomial time.
The #SAT prover took time at least 2".

This is unavoidable for #SAT, since we don’t know how to even solve the
problem in less than 2" time.
But we can hope to solve “easier” problems without turning those problems into
#SAT instances.

IP=PSPACE
� #SAT is a #P-complete problem.

� Hence, the protocol we just saw implies every problem in #P has an
interactive proof with a polynomial time verifier.

� It is not much harder to show that this in fact holds for every
problem in PSPACE [LFKN, Shamir].

� But is this a practical result?
� No. The main reason: P’s runtime.
� When applying the protocols of [LFKN, Shamir] even to very simple

problems, the honest prover would require superpolynomial time.
� The #SAT prover took time at least 2".

� This seems unavoidable for #SAT, since we don’t know how to even solve the
problem in less than 2" time.

� But we can hope to solve “easier” problems without turning those problems
into #SAT instances.

Doubly-Efficient Interactive Proofs

Doubly-Efficient Interactive Proof
� A doubly-efficient interactive proof for a problem is one where:

� V runs in time linear in the input size.
� P runs in polynomial time.

A Second Application of the Sum-Check
Protocol

A Doubly-Efficient Interactive Proof for
Counting Triangles

Counting Triangles
� Input: ! ∈ {0,1}(×(, representing the adjacency matrix of a graph.

� Desired Output: *
+
, ∑ .,/,0 ∈[(]3 !./!/0!.0 .V

� Fastest known algorithm runs in matrix-multiplication time, currently about
56.78. as a function mapping 0,1 9:; (× 0,1 9:; (to <.
Recall that =! denotes the multilinear extension of !.
Define the polynomial > ?, @, A = =!(?, @) =!(@, Z) =!(?, Z)
Apply the sum-check protocol to > to compute:

E
(F,G,H) ∈{I,*}3JKL M

>(N, O, P)

Costs:
Total communication is Q(log 5), V runtime is Q 56 , P runtime is Q 57 .
V’s runtime dominated by evaluating:

> U*, U6, U7 = =!(U*, U6) =!(U6, U7) =!(U*, U7).

Counting Triangles
� Input: ! ∈ {0,1}(×(, representing the adjacency matrix of a graph.

� Desired Output: *
+
, ∑ .,/,0 ∈ (1 !./!/0!.0 .

� The Protocol:
� View ! as a function mapping 0,1 345 (× 0,1 345 (to 6.
� Recall that 7! denotes the multilinear extension of !.
� Define the polynomial 8 9, :, ; = 7!(9, :) 7!(:, Z) 7!(9, Z)
� Apply the sum-check protocol to 8 to compute:

?

(@,A,B) ∈{C,*}1DEF G

8(H, I, J)

Costs:
Total communication is K(log O), V runtime is K OP , P runtime is K OQ .
V’s runtime dominated by evaluating:

8 R*, RP, RQ = 7!(R*, RP) 7!(RP, RQ) 7!(R*, RQ).

Counting Triangles
� Input: ! ∈ {0,1}(×(, representing the adjacency matrix of a graph.

� Desired Output: *
+
, ∑ .,/,0 ∈ (1 !./!/0!.0 .

� The Protocol:
� View ! as a function mapping 0,1 345 (× 0,1 345 (to 6.
� Recall that 7! denotes the multilinear extension of !.
� Define the polynomial 8 9, :, ; = 7!(9, :) 7!(:, Z) 7!(9, Z)
� Apply the sum-check protocol to 8 to compute:

?

(@,A,B) ∈{C,*}1DEF G

8(H, I, J)

� Costs:
� Total communication is K(log O), V runtime is K OP , P runtime is K OQ .
� V’s runtime dominated by evaluating:

8 R*, RP, RQ = 7!(R*, RP) 7!(RP, RQ) 7!(R*, RQ).

The GKR Protocol

A General-Purpose Doubly-Efficient
Interactive Proof

General-Purpose Doubly-Efficient
Interactive Proofs
� [GKR 2008] gave a doubly-efficient interactive proof for any

function computed by an efficient parallel algorithm.

General-Purpose Doubly-Efficient Protocols
� Start with a computer program written in high-level

programming language (C, Java, etc.)
� Step 1: Turn the program into an equivalent model

amenable to probabilistic checking.
� Typically some type of arithmetic circuit.
� Called the Front End of the system.

� Step 2: Run an interactive proof or argument on the circuit.
� Called the Back End of the system.

Front End

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

F2 circuit

P and V run interactive proof (back end) on circuit.
Note: if the program is an efficient parallel algorithm,

then the circuit can be small-depth.

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 
P starts the
conversation with
an answer (output).

The GKR Protocol: Overview

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

V sends series of
challenges. P responds
with info about next
circuit level.

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

Challenges continue,
layer by layer down
to the the input.

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

Finally, P says
something about the
(multilinear extension
of the) input.

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

Finally, P says
something about the
(multilinear extension
of the) input.

V sees input directly, so can check
P’s final statement directly.

Costs of the GKR protocol
� V time is ! " + $ log (where " is input size,
$ is circuit depth, and (is circuit size.

� Communication cost is !($ log ().
P time is ! (.

A naïve implementation of the prover in the GKR
protocol with take Ω (, time, where (is circuit
size.
A sequence of works has brought this down to
! (, for arbitrary circuits! [CMT12, Thaler13,
WBSTWW17, WTSTW18, XZZPS19]

Costs of the GKR protocol
� V time is ! " + $ log (where " is input size,
$ is circuit depth, and (is circuit size.

� Communication cost is !($ log ().

� P time is ! (.
� A naïve implementation of the prover in the

GKR protocol with take Ω (, time, where (is
circuit size.

� A sequence of works has brought this down to
! (, for arbitrary circuits! [CMT12, Thaler13,
WBSTWW17, WTSTW18, XZZPS19]

[RRR16] and Open Questions

Another General-Purpose Doubly-
Efficient Interactive Proof

What We Really Want
� In the cloud computing scenario at the start of the talk, we really

wanted the following:
1. V asks P to run some computer program on her data.
2. P proves that she correctly ran the program on the data.

� V should not do much more work than read the input.
� P should not do much more work than run the program.

If the program runs in time !, and space ", then P should run in time
! and space # " .

Unfortunately, we cannot hope for V to run in time # $ for space-
intensive computations.

If % has an interactive proof with V runtime &, then % can be solved in
space '#(&)).
So we can only hope to achieve a linear-time verifier for problems solvable
in quadratic space.
[RRR16] come close to achieving this.

What We Really Want
� In the cloud computing scenario at the start of the talk, we really

wanted the following:
1. V asks P to run some computer program on her data.
2. P proves that she correctly ran the program on the data.

� V should not do much more work than read the input.
� P should not do much more work than run the program.

� If the program runs in time !, and space ", then P should run in time
! and space # " .

The GKR protocol only achieves this for parallelizable programs
Unfortunately, we cannot hope for V to run in time # $ for space-
intensive computations.

If % has an interactive proof with V runtime &, then % can be solved in
space '#(&)).
So we can only hope to achieve a linear-time verifier for problems solvable
in quadratic space.
[RRR16] come close to achieving this.

What We Really Want
� In the cloud computing scenario at the start of the talk, we really

wanted the following:
1. V asks P to run some computer program on her data.
2. P proves that she correctly ran the program on the data.

� V should not do much more work than read the input.
� P should not do much more work than run the program.

� If the program runs in time !, and space ", then P should run in time
! and space # " .

� The GKR protocol only achieves a linear-time for V
parallelizable programs.

Unfortunately, we cannot hope for V to run in time # $ for space-
intensive computations.

If % has an interactive proof with V runtime &, then % can be solved in
space '#(&)).
So we can only hope to achieve a linear-time verifier for problems solvable
in quadratic space.

What We Really Want
� In the cloud computing scenario at the start of the talk, we really

wanted the following:
1. V asks P to run some computer program on her data.
2. P proves that she correctly ran the program on the data.

� V should not do much more work than read the input.
� P should not do much more work than run the program.

� If the program runs in time !, and space ", then P should run in time
! and space # " .

� Unfortunately, we cannot hope for V to run in time # $ for
space-intensive computations.

� If % has an interactive proof with V runtime &, then % can be solved
in space '#(&).

� So we can only hope to achieve a linear-time verifier for problems
solvable in linear space.

[RRR16] come close to achieving this.

What We Really Want
� In the cloud computing scenario at the start of the talk, we really

wanted the following:
1. V asks P to run some computer program on her data.
2. P proves that she correctly ran the program on the data.

� V should not do much more work than read the input.
� P should not do much more work than run the program.

� If the program runs in time !, and space ", then P should run in time
! and space # " .

� Unfortunately, we cannot hope for V to run in time # $ for
space-intensive computations.

� If % has an interactive proof with V runtime &, then % can be solved
in space '#(&).

� So we can only hope to achieve a linear-time verifier for problems
solvable in linear space.

� [RRR16] come close to achieving the best we can hope for.

[RRR16]
� Let ! be a problem solvable in time " and space #. Then for

any constant ε > 0, ! has an interactive proof where:
� V runs in time)* + + "- . poly(#) .
� P runs in time)* ("56- . poly #).

In particular, if " = poly(+) and # is a small enough polynomial
in +, then this is a doubly-efficient interactive proof system.
The number of rounds is constant.

More precisely, it is exp 5
: .

[RRR16]
� Let ! be a problem solvable in time " and space #. Then for

any constant ε > 0, ! has an interactive proof where:
� V runs in time)* + + "- . poly(#) .
� P runs in time)* ("56- . poly #).

� In particular, if " = poly(+) and # is a small enough
polynomial in +, then this is a doubly-efficient interactive proof
system.

The number of rounds is constant.

More precisely, it is exp 5
: .

[RRR16]
� Let ! be a problem solvable in time " and space #. Then for

any constant ε > 0, ! has an interactive proof where:
� V runs in time)* + + "- . poly(#) .
� P runs in time)* ("56- . poly #).

� In particular, if " = poly(+) and # is a small enough
polynomial in +, then this is a doubly-efficient interactive proof
system.

� The number of rounds is constant.

� More precisely, it is exp 5
: .

Open Questions (Theory)
� Improve V’s runtime in [RRR16] from !" # + %& ' poly(-)

to !" # + poly(-, log %) ? Maybe even !" # + - ' log %) ?
� Improve the round complexity from exp 4

5 to poly 4
5 ?

Give an interactive proof for batch-verification of NP
statements?

i.e., given 6 instances of the same NP problem, can you give an
interactive proof for verifying that the answer to all 6 instances is
YES, with communication that grows sublinearly with 6?

Open Questions (Theory)
� Improve V’s runtime in [RRR16] from !" # + %& ' poly(-)

to !" # + poly(-, log %) ? Maybe even !" # + - ' log %) ?
� Improve the round complexity from exp 4

5 to poly 4
5 ?

� Give an interactive proof for batch-verification of NP
statements?
� Under standard complexity assumptions, interactive proofs cannot

be succinct [GH98, GVW01].
� I.e., for a general NP relation, cannot do much better than just having the

prover send the NP witness to the verifier.

Open: given 6 instances of the same NP problem, is there an
interactive proof for verifying that the answer to all 6 instances is
YES, with communication that grows sublinearly with 6?

Open Questions (Theory)
� Improve V’s runtime in [RRR16] from !" # + %& ' poly(-)

to !" # + poly(-, log %) ? Maybe even !" # + - ' log %) ?
� Improve the round complexity from exp 4

5 to poly 4
5 ?

� Give an interactive proof for batch-verification of NP
statements?
� Under standard complexity assumptions, interactive proofs cannot

be succinct [GH98, GVW01].
� I.e., for a general NP relation, cannot do much better than just having the

prover send the NP witness to the verifier.

� Open: given 6 instances of the same NP problem, is there an
interactive proof for verifying that the answer to all 6 instances is
YES, with communication that grows sublinearly with 6?

A Parting Remark
� We’ve seen some fundamental limitations of interactive proofs.

� V can’t run in linear time for space-intensive problems.
� They cannot be succinct.
� They are interactive.
� They are not publicly verifiable.

All of these limitations can be addressed by combining interactive
proofs with cryptography.

This yields succinct non-interactive arguments.
See tomorrow’s talks.

There are many practically-relevant open questions about the best
way to combine interactive proofs with cryptography.

A Parting Remark
� We’ve seen some fundamental limitations of interactive proofs.

� V can’t run in linear time for space-intensive problems.
� They cannot be succinct.
� They are interactive.
� They are not publicly verifiable.

� All of these limitations can be addressed by combining
interactive proofs with cryptography.
� This yields succinct non-interactive arguments.
� See tomorrow’s talks.

� There are many practically-relevant open questions about the
best way to combine interactive proofs with cryptography.

THANK YOU!

