Justin Thaler Georgetown University

Talk Outline

- 1. Definition of Interactive Proofs
- 2. The Power of Randomness
 - Reed-Solomon Fingerprinting
 - Freivalds' Protocol for Verifying Matrix Products
- 3. Technical Concepts: low-degree extensions, arithmetization
- 4. The Sum-Check Protocol
- 5. An Interactive Proof for #SAT
- 6. Doubly-Efficient Interactive Proofs

Interactive Proofs: Motivation and Model

Business/Agency/Scientist

Business/Agency/Scientist

- Prover **P** and Verifier **V**.
- P solves problem, tells V the answer.
 - Then P and V have a conversation.
 - P's goal: convince V the answer is correct.
- Requirements:
 - 1. Completeness: an honest P can convince V to accept.
 - 2. Soundness: V will catch a lying P with high probability.

- Prover **P** and Verifier **V**.
- P solves problem, tells V the answer.
 - Then **P** and **V** have a conversation.
 - P's goal: convince V the answer is correct.
- Requirements:
 - 1. Completeness: an honest P can convince V to accept.
 - 2. Soundness: V will catch a lying P with high probability.
 - This must hold even if P is computationally unbounded and trying to trick V into accepting the incorrect answer.

The Power of Randomness: A Demonstration

$\boldsymbol{a} = (a_1, \dots, a_n) \in \{0, 1\}^n$ $\boldsymbol{b} = (b_1, \dots, b_n) \in \{0, 1\}^n$

Alice and Bob's Goal: Determine whether $\boldsymbol{a} = \boldsymbol{b}$, while exchanging as few bits as possible.

Trivial solution: Alice sends \boldsymbol{a} to Bob, who checks whether $\boldsymbol{a} = \boldsymbol{b}$. Communication cost is \boldsymbol{n} .

Fact: Trivial solution is optimal amongst deterministic protocols.

A Logarithmic Cost Randomized Solution

- Notation:
 - Let \boldsymbol{F} be any finite field with $|\boldsymbol{F}| \ge n^2$.
 - Interpret each a_i , b_i as elements of F.
 - Let $p(x) = \sum_{i=1}^{n} a_i x^i$ and $q(x) = \sum_{i=1}^{n} b_i x^i$.

- Notation:
 - Let \boldsymbol{F} be any finite field with $|\boldsymbol{F}| \ge n^2$.
 - Interpret each a_i , b_i as elements of F.
 - Let $p(x) = \sum_{i=1}^{n} a_i x^i$ and $q(x) = \sum_{i=1}^{n} b_i x^i$.
 - The Protocol:
 - Alice picks a random $r \in F$ and sends (r, p(r)) to Bob.
 - Bob outputs EQUAL if p(r) = q(r). Otherwise he outputs NOT-EQUAL.

- Notation:
 - Let F be any finite field with $|F| \ge n^2$.
 - Interpret each a_i , b_i as elements of F.
 - Let $p(x) = \sum_{i=1}^{n} a_i x^i$ and $q(x) = \sum_{i=1}^{n} b_i x^i$.
- The Protocol:
 - Alice picks a random $r \in F$ and sends (r, p(r)) to Bob.
 - Bob outputs EQUAL if p(r) = q(r). Otherwise he outputs NOT-EQUAL.
- Total communication: $O(\log |F|) = O(\log n)$ bits.

- Notation:
 - Let F be any finite field with $|F| \ge n^2$.
 - Interpret each a_i , b_i as elements of F.
 - Let $p(x) = \sum_{i=1}^{n} a_i x^i$ and $q(x) = \sum_{i=1}^{n} b_i x^i$.
- The Protocol:
 - Alice picks a random $r \in F$ and sends (r, p(r)) to Bob.
 - Bob outputs EQUAL if p(r) = q(r). Otherwise he outputs NOT-EQUAL.
- Total communication: $O(\log |F|) = O(\log n)$ bits.
- Call p(r) the *Reed-Solomon fingerprint* of the vector \boldsymbol{a} at r.

• Claim 1: if a = b, then Bob outputs EQUAL with probability 1.

• Claim 2: $a \neq b$, then Bob outputs NOT-EQUAL with probability at least $1 - \frac{1}{n}$ over the choice of $r \in F$.

- Claim 1: if a = b, then Bob outputs EQUAL with probability 1.
 - Proof: Since a = b, p and q are the same polynomial, so p(r) = q(r) for all $r \in F$.
- Claim 2: $\boldsymbol{a} \neq \boldsymbol{b}$, then Bob outputs NOT-EQUAL with probability at least $1 \frac{1}{n}$ over the choice of $r \in \boldsymbol{F}$.

• Claim 2: $\mathbf{a} \neq \mathbf{b}$, then Bob outputs NOT-EQUAL with probability at least $1 - \frac{1}{n}$ over the choice of $r \in \mathbf{F}$.

• Claim 2: $\mathbf{a} \neq \mathbf{b}$, then Bob outputs NOT-EQUAL with probability at least $1 - \frac{1}{n}$ over the choice of $r \in \mathbf{F}$.

FACT: Let $p \neq q$ be univariate polynomials of degree at most n. Then p and q agree on at most n inputs. Equivalently: $\Pr_{r \in F}[p(r) = q(r)] \leq \frac{n}{|F|}$.

• Claim 2: $a \neq b$, then Bob outputs NOT-EQUAL with probability at least $1 - \frac{1}{n}$ over the choice of $r \in F$.

FACT: Let $p \neq q$ be univariate polynomials of degree at most n. Then p and q agree on at most n inputs. Equivalently: $\Pr_{r \in F}[p(r) = q(r)] \leq \frac{n}{|F|}$.

• If $a \neq b$, then p and q are **not** the same polynomial. By **FACT**, the probability Alice picks an r such that p(r) = q(r) is at most $\frac{n}{|F|} \leq \frac{n}{n^2} \leq \frac{1}{n}$.

Main Takeaways

- 1. Any two distinct low-degree polynomials differ almost everywhere: if $p \neq q$ then $\Pr_{r \in F}[p(r) = q(r)] \leq \frac{n}{|F|}$ where *n* bounds the degree of *p* and *q*.
 - Corollary: If two low-degree polynomials agree at a randomly chosen input, it is "safe" to believe they are the **same** polynomial.
- 2. Interpreting inputs as low-degree polynomials is powerful.
 - If two inputs differ **at all**, then once interpreted as polynomials, they differ **almost everywhere**.

Freivalds' Protocol for Verifying Matrix Products

Demonstrating the Power of Randomness in Verifiable Computing

- Input is two matrices $A, B \in F^{n \times n}$. Goal is to compute $A \cdot B$.
- Fastest known algorithm runs in time about $n^{2.37}$.

- Input is two matrices $A, B \in F^{n \times n}$. Goal is to compute $A \cdot B$.
- Fastest known algorithm runs in time about $n^{2.37}$.
- What if an untrusted prover P claims that the answer is a matrix C? Can V verify that $C = A \cdot B$ in $O(n^2)$ time?

- Input is two matrices $A, B \in F^{n \times n}$. Goal is to compute $A \cdot B$.
- Fastest known algorithm runs in time about $n^{2.37}$.
- What if an untrusted prover P claims that the answer is a matrix C? Can V verify that $C = A \cdot B$ in $O(n^2)$ time?
- Yes!

- The Protocol:
 - 1. V picks a random $r \in F$ and lets $x = (r, r^2, ..., r^n)$.
 - 2. V computes $C \cdot x$ and (AB) $\cdot x$, accepting iff they are equal.

• The Protocol:

- 1. V picks a random $r \in F$ and lets $x = (r, r^2, ..., r^n)$.
- 2. V computes $C \cdot x$ and (AB) $\cdot x$, accepting iff they are equal.
- Runtime Analysis:
 - V's runtime dominated by computing 3 matrix-vector products, each of which takes $O(n^2)$ time.
 - $C \cdot \mathbf{x}$ is one matrix-vector multiplication.
 - (AB) $\cdot \mathbf{x} = A \cdot (B \cdot \mathbf{x})$ takes two matrix-vector multiplications.

- Claim 1: If $C = A \cdot B$ then V accepts with probability 1.
- Claim 2: If $C \neq A \cdot B$, then V rejects with probability at least $1 \frac{n}{|F|} \ge 1 1/n$.

- Claim 1: If $C = A \cdot B$ then V accepts with probability 1.
- Claim 2: If $C \neq A \cdot B$, then V rejects with probability at least $1 - \frac{n}{|F|} \ge 1 - 1/n.$
 - Proof of Claim 2:
 - Recall that $\boldsymbol{x} = (r, r^2, \dots, r^n)$.
 - $(C \cdot \mathbf{x})_i = \sum_{j=1}^n C_{ij} r^j$ is the Reed-Solomon fingerprint at r of the *i*th row of C.

- Claim 1: If $C = A \cdot B$ then V accepts with probability 1.
- Claim 2: If $C \neq A \cdot B$, then V rejects with probability at least $1 \frac{n}{|F|} \ge 1 1/n$.
 - Proof of Claim 2:
 - Recall that $\boldsymbol{x} = (r, r^2, \dots, r^n)$.
 - $(C \cdot x)_i = \sum_{j=1}^n C_{ij} r^j$ is the Reed-Solomon fingerprint at r of the *i*th row of C.
 - Similarly, $((AB) \cdot x)_i$ is the Reed-Solomon fingerprint at r of the *i*th row of AB.
Correctness Analysis

- Claim 1: If $C = A \cdot B$ then V accepts with probability 1.
- Claim 2: If $C \neq A \cdot B$, then V rejects with probability at least $1 \frac{n}{|F|} \ge 1 1/n$.
 - Proof of Claim 2:
 - Recall that $\boldsymbol{x} = (r, r^2, \dots, r^n)$.
 - $(C \cdot \mathbf{x})_i = \sum_{j=1}^n C_{ij} r^j$ is the Reed-Solomon fingerprint at r of the *i*th row of C.
 - Similarly, $((AB) \cdot x)_i$ is the Reed-Solomon fingerprint at r of the *i*th row of AB.
 - So if even one row of C does not equal the corresponding row of AB, the fingerprints for that row will differ with probability at least 1 1/n, causing V to reject.

Interactive Proof Techniques: Preliminaries

Schwartz-Zippel Lemma

• Recall **FACT:** Let $p \neq q$ be univariate polynomials of degree at most d. Then $\Pr_{r \in F}[p(r) = q(r)] \leq \frac{d}{|F|}$.

Schwartz-Zippel Lemma

- Recall **FACT:** Let $p \neq q$ be univariate polynomials of degree at most d. Then $\Pr_{r \in F}[p(r) = q(r)] \leq \frac{d}{|F|}$.
- The **Schwartz-Zippel lemma** is a multivariate generalization:
 - Let $p \neq q$ be ℓ -variate polynomials of total degree at most d. Then $\Pr_{r \in F^{\ell}}[p(r) = q(r)] \leq \frac{d}{|F|}$.

Schwartz-Zippel Lemma

- Recall **FACT:** Let $p \neq q$ be univariate polynomials of degree at most d. Then $\Pr_{r \in F}[p(r) = q(r)] \leq \frac{d}{|F|}$.
- The **Schwartz-Zippel lemma** is a multivariate generalization:
 - Let $p \neq q$ be ℓ -variate polynomials of total degree at most d. Then $\Pr_{r \in F^{\ell}}[p(r) = q(r)] \leq \frac{d}{|F|}$.
 - "Total degree" refers to the maximum sum of degrees of all variables in any term. E.g., $x_1^2x_2 + x_1x_2$ has total degree 3.

Low-Degree and Multilinear Extensions

- Definition [Extensions]. Given a function $f: \{0,1\}^{\ell} \to F$, a ℓ -variate polynomial g over F is said to extend f if f(x) = g(x) for all $x \in \{0,1\}^{\ell}$.
- Definition [Multilinear Extensions]. Any function $f: \{0,1\}^{\ell} \rightarrow F$ has a unique multilinear extension (MLE), denoted \tilde{f} .

Low-Degree and Multilinear Extensions

- Definition [Extensions]. Given a function $f: \{0,1\}^{\ell} \to F$, a ℓ -variate polynomial g over F is said to extend f if f(x) = g(x) for all $x \in \{0,1\}^{\ell}$.
- Definition [Multilinear Extensions]. Any function $f: \{0,1\}^{\ell} \to F$ has a unique multilinear extension (MLE), denoted \tilde{f} .
 - Multilinear means the polynomial has degree at most 1 in each variable.
 - $(1 x_1)(1 x_2)$ is multilinear, $x_1^2 x_2$ is not.

 $f:\{0,1\}^2 \to \mathbf{F}$

 $\tilde{f}(x_1, x_2) = (1 - x_1)(1 - x_2) + 2(1 - x_1)x_2 + 8x_1(1 - x_2) + 10x_1x_2$

Low-Degree and Multilinear Extensions

- Fact [VSBW13]: Given as input all 2^ℓ evaluations of a function f: {0,1}^ℓ→ F, for any point r ∈ F^ℓ there is an O(2^ℓ)-time algorithm for evaluating f̃(r).
- Note: If f is "structured", there may extensions g for which g(r) can be evaluated **much** faster than $O(2^{\ell})$ -time.

Low-Degree and Multilinear Extensions

- Fact [VSBW13]: Given as input all 2^{ℓ} evaluations of a function $f: \{0,1\}^{\ell} \to F$, for any point $r \in F^{\ell}$ there is an $O(2^{\ell})$ -time algorithm for evaluating $\tilde{f}(r)$.
- Note: If f is "structured", there may extensions g for which g(r) can be evaluated **much** faster than $O(2^{\ell})$ -time.
 - We will see an example later when covering arithmetization of Boolean formulae.

The Sum-Check Protocol [LFKN90]

Sum-Check Protocol [LFKN90]

- Input: V given oracle access to a ℓ -variate polynomial g over field F.
- Goal: compute the quantity:

$$\sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$\sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

• **Round 1**: P sends **univariate** polynomial $S_1(X_1)$ claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

• V checks that $C_1 = s_1(0) + s_1(1)$.

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

• **Round 1**: P sends **univariate** polynomial $S_1(X_1)$ claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

• V checks that $C_1 = s_1(0) + s_1(1)$.

- If this check passes, it is safe for V to believe that C_1 is the correct answer, so long as V believes that $s_1 = H_1$.
- How to check this? Just check that s_1 and H_1 agree at a random point r_1 !

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

• **Round 1**: P sends **univariate** polynomial $S_1(X_1)$ claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

• V checks that $C_1 = s_1(0) + s_1(1)$.

- If this check passes, it is safe for V to believe that C_1 is the correct answer, so long as V believes that $s_1 = H_1$.
- How to check this? Just check that s_1 and H_1 agree at a random point r_1 !
- V can compute $S_1(r_1)$ directly from P's first message, but not $H_1(r_1)$.

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

- V checks that $C_1 = s_1(0) + s_1(1)$.
- V picks r_1 at random from F and sends r_1 to P.
- **Round 2**: They recursively check that $s_1(r_1) = H_1(r_1)$.

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

- V checks that $C_1 = s_1(0) + s_1(1)$.
- V picks r_1 at random from F and sends r_1 to P.
- Round 2: They recursively check that $s_1(r_1) = H_1(r_1)$. i.e., that $s_1(r_1) = \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(r_1, b_2, \dots, b_\ell)$.

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

- V checks that $C_1 = s_1(0) + s_1(1)$.
- V picks r_1 at random from F and sends r_1 to P.
- Round 2: They recursively check that $s_1(r_1) = H_1(r_1)$. i.e., that $s_1(r_1) = \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(r_1, b_2, \dots, b_\ell)$.
- Round ℓ (Final round): P sends univariate polynomial $S_{\ell}(X_{\ell})$ claimed to equal $H_{\ell} := g(r_1, ..., r_{\ell-1}, X_{\ell}).$
- V checks that $s_{\ell-1}(r_{\ell-1}) = s_{\ell}(0) + s_{\ell}(1)$.
- V picks r_{ℓ} at random, and needs to check that $s_{\ell}(r_{\ell}) = g(r_1, ..., r_{\ell})$.
 - No need for more rounds. V can perform this check with one oracle query.

Analysis of the Sum-Check Protocol

Completeness and Soundness

• Completeness holds by design: If **P** sends the prescribed messages, then all of **V**'s checks will pass.

Completeness and Soundness

- Completeness holds by design: If P sends the prescribed messages, then all of V's checks will pass.
- Soundness: If P does not send the prescribed messages, then V rejects with probability at least $1 - \frac{\ell \cdot d}{|F|}$, where d is the maximum degree of g in any variable.
- Proof is by induction on the number of variables ℓ .

Completeness and Soundness

- Completeness holds by design: If P sends the prescribed messages, then all of V's checks will pass.
- Soundness: If P does not send the prescribed messages, then V rejects with probability at least $1 - \frac{\ell \cdot d}{|F|}$, where d is the maximum degree of g in any variable.
- Proof is by induction on the number of variables ℓ .
 - Base case: $\ell = 1$. In this case, P sends a single message $S_1(X_1)$ claimed to equal $g(X_1)$. V picks r_1 at random, checks that $s_1(r_1) = g(r_1)$.

• By Fact, if $s_1 \neq g$, then $\Pr_{r_1 \in F}[s_1(r_1) = g(r_1)] \leq \frac{d}{|F|}$.

- Inductive case: $\ell > 1$.
 - Recall: P's first message $S_1(X_1)$ is claimed to equal

$$H_1(X_1) \coloneqq \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell).$$

• Then V picks a random r_1 and sends r_1 to P. They (recursively) invoke sumcheck to confirm that $s_1(r_1) = H_1(r_1)$.

- Inductive case: $\ell > 1$.
 - Recall: P's first message $S_1(X_1)$ is claimed to equal $H_1(X_1) \coloneqq \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell).$
 - Then V picks a random r_1 and sends r_1 to P. They (recursively) invoke sumcheck to confirm that $s_1(r_1) = H_1(r_1)$.
- By **Fact**, if $s_1 \neq H_1$, then $\Pr_{r_1 \in F}[s_1(r_1) = H(r_1)] \leq \frac{d}{|F|}$.

- Inductive case: $\ell > 1$.
 - Recall: P's first message $S_1(X_1)$ is claimed to equal $H_1(X_1) \coloneqq \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell).$
 - Then V picks a random r_1 and sends r_1 to P. They (recursively) invoke sumcheck to confirm that $s_1(r_1) = H_1(r_1)$.
- By Fact, if $s_1 \neq H_1$, then $\Pr_{r_1 \in F}[s_1(r_1) = H(r_1)] \leq \frac{d}{|F|}$.
- If $s_1(r_1) \neq H(r_1)$, **P** is left to prove a false claim in the recursive call.

- Inductive case: $\ell > 1$.
 - Recall: P's first message $S_1(X_1)$ is claimed to equal $H_1(X_1) \coloneqq \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell).$
 - Then V picks a random r_1 and sends r_1 to P. They (recursively) invoke sumcheck to confirm that $s_1(r_1) = H_1(r_1)$.
- By Fact, if $s_1 \neq H_1$, then $\Pr_{r_1 \in F}[s_1(r_1) = H(r_1)] \leq \frac{d}{|F|}$.
- If $s_1(r_1) \neq H(r_1)$, **P** is left to prove a false claim in the recursive call.
 - The recursive call applies sum-check to $g(r_1, X_2, ..., X_\ell)$, which is ℓ -1 variate.
 - By induction, P fails to convince V in the recursive call with probability at least $1 \frac{d(\ell-1)}{|F|}$.

- Inductive case: $\ell > 1$.
 - Recall: P's first message $S_1(X_1)$ is claimed to equal $H_1(X_1) \coloneqq \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell).$
 - Then V picks a random r_1 and sends r_1 to P. They (recursively) invoke sumcheck to confirm that $s_1(r_1) = H_1(r_1)$.
- By Fact, if $s_1 \neq H_1$, then $\Pr_{r_1 \in F}[s_1(r_1) = H(r_1)] \leq \frac{d}{|F|}$.
- If $s_1(r_1) \neq H(r_1)$, **P** is left to prove a false claim in the recursive call.
 - The recursive call applies sum-check to $g(r_1, X_2, ..., X_\ell)$, which is ℓ -1 variate.
 - By induction, P fails to convince V in the recursive call with probability at least $1 \frac{d(\ell-1)}{|F|}$.
- **Summary:** if $S_1 \neq H_1$, the probability V accepts is at most:

$$\Pr_{r_1 \in F}[s_1(r_1) = H(r_1)] + \Pr_{r_2, \dots, r_\ell \in F}[\operatorname{Vaccepts}|s_1(r_1) \neq H(r_1)]$$
$$\leq \frac{d}{|F|} + \frac{d(\ell - 1)}{|F|} \leq \frac{d\ell}{|F|}.$$

Costs of the Sum-Check Protocol

- Total communication is $O(d\ell)$ field elements.
 - P sends ℓ messages, each a univariate polynomial of degree at most d. V sends $\ell 1$ messages, each consisting of one field elements.

Costs of the Sum-Check Protocol

- Total communication is $O(d\ell)$ field elements.
 - P sends ℓ messages, each a univariate polynomial of degree at most d. V sends $\ell 1$ messages, each consisting of one field elements.
- V's runtime is:

 $O(d\ell + [time required to evaluate g at one point]).$

Costs of the Sum-Check Protocol

- Total communication is $O(d\ell)$ field elements.
 - P sends ℓ messages, each a univariate polynomial of degree at most d. V sends $\ell 1$ messages, each consisting of one field elements.
- V's runtime is:

 $O(d\ell + [time required to evaluate g at one point]).$

• P's runtime is at most:

 $O(d \cdot 2^{\ell} \cdot [time required to evaluate g at one point]).$
First Application of Sum-Check: An IP For #SAT [LFKN]

• Let φ be a Boolean formula of size S over n variables.

- Let φ be a Boolean formula of size S over n variables.
- Goal: count the number of satisfying assignments of φ .
- i.e., Compute $\sum_{x \in \{0,1\}^n} \varphi(x)$.
- In the sum above, we are viewing φ as a function mapping $\{0,1\}^n \rightarrow \{0,1\}$. (0 interpreted as FALSE, 1 as TRUE).

- Let φ be a Boolean formula of size S over n variables.
- Goal: count the number of satisfying assignments of φ .
- i.e., Compute $\sum_{x \in \{0,1\}^n} \varphi(x)$.
- In the sum above, we are viewing φ as a function mapping $\{0,1\}^n \rightarrow \{0,1\}$. (0 interpreted as FALSE, 1 as TRUE).

- Let φ be a Boolean formula of size S over n variables.
- Goal: count the number of satisfying assignments of φ .
- i.e., Compute $\sum_{x \in \{0,1\}^n} \varphi(x)$.
- In the sum above, we are viewing φ as a function mapping $\{0,1\}^n \rightarrow \{0,1\}$. (0 interpreted as FALSE, 1 as TRUE).

- Let φ be a Boolean formula of size S over n variables.
- Goal: count the number of satisfying assignments of φ .
- i.e., Compute $\sum_{x \in \{0,1\}^n} \varphi(x)$.
- In the sum above, we are viewing φ as a function mapping $\{0,1\}^n \rightarrow \{0,1\}$. (0 interpreted as FALSE, 1 as TRUE).

- Let φ be a Boolean formula of size S over n variables.
- Goal: count the number of satisfying assignments of φ .
- i.e., Compute $\sum_{x \in \{0,1\}^n} \varphi(x)$.
- In the sum above, we are viewing φ as a function mapping $\{0,1\}^n \rightarrow \{0,1\}$. (0 interpreted as FALSE, 1 as TRUE).

- Let φ be a Boolean formula of size S over n variables.
- Goal: count the number of satisfying assignments of φ .
- i.e., Compute $\sum_{x \in \{0,1\}^n} \varphi(x)$.
- In the sum above, we are viewing φ as a function mapping $\{0,1\}^n \rightarrow \{0,1\}$. (0 interpreted as FALSE, 1 as TRUE).

- Let φ be a Boolean formula of size S over n variables.
- Goal: count the number of satisfying assignments of φ .
- i.e., Compute $\sum_{x \in \{0,1\}^n} \varphi(x)$.
- In the sum above, we are viewing φ as a function mapping $\{0,1\}^n \rightarrow \{0,1\}$. (0 interpreted as FALSE, 1 as TRUE).

- Let φ be a Boolean formula of size S over n variables.
- Goal: Compute $\sum_{x \in \{0,1\}^n} \varphi(x)$.

- Let φ be a Boolean formula of size S over n variables.
- Goal: Compute $\sum_{x \in \{0,1\}^n} \varphi(x)$.
- Protocol:
- Let g be an extension polynomial of arphi .
- Apply the sum-check protocol to compute $\sum_{x \in \{0,1\}^n} g(x)$.

- Let φ be a Boolean formula of size S over n variables.
- Goal: Compute $\sum_{x \in \{0,1\}^n} \varphi(x)$.

• Protocol:

- Let g be an extension polynomial of arphi .
- Apply the sum-check protocol to compute $\sum_{x \in \{0,1\}^n} g(x)$.
 - Note: in final round of sum-check, V needs to compute g(r) for some randomly chosen r in F^n .
 - To control V's runtime, we need this to be fast.

- Let φ be a Boolean formula of size S over n variables.
- Goal: Compute $\sum_{x \in \{0,1\}^n} \varphi(x)$.

• Protocol:

- Let g be an extension polynomial of arphi .
- Apply the sum-check protocol to compute $\sum_{x \in \{0,1\}^n} g(x)$.
 - Note: in final round of sum-check, V needs to compute g(r) for some randomly chosen r in F^n .
 - To control V's runtime, we need this to be fast.
 - To control communication and P and V's runtime, we need g to be "low-degree".

- Let φ be a Boolean formula of size S over n variables.
- Goal: Compute $\sum_{x \in \{0,1\}^n} \varphi(x)$.

• Protocol:

- Let g be an extension polynomial of arphi .
- Apply the sum-check protocol to compute $\sum_{x \in \{0,1\}^n} g(x)$.
 - Note: in final round of sum-check, V needs to compute g(r) for some randomly chosen r in F^n .
 - To control V's runtime, we need this to be fast.
 - To control communication and P and V's runtime, we need g to be "low-degree".
 - Key question: how to construct the extension polynomial g?

- Key question: how to construct the extension polynomial g?
- Answer: Arithmetize $oldsymbol{arphi}$
 - i.e., replace arphi with an **arithmetic** circuit computing extension g
 - Go gate-by-gate through φ , replacing each gate with the gate's multilinear extension.
 - $NOT(x) \rightarrow 1 x$
 - $AND(x, y) \rightarrow x \cdot y$
 - $OR(x, y) \rightarrow x + y x \cdot y$

- Key question: how to construct the extension polynomial *g*?
- Answer: Arithmetize φ
 - i.e., replace φ with an **arithmetic** circuit computing extension g
 - Go gate-by-gate through φ , replacing each gate with the gate's multilinear extension.
 - $NOT(x) \rightarrow 1 x$
 - $AND(x, y) \rightarrow x \cdot y$
 - $OR(x, y) \rightarrow x + y x \cdot y$

- Key question: how to construct the extension polynomial *g*?
- Answer: Arithmetize φ
 - i.e., replace φ with an **arithmetic** circuit computing extension g
 - Go gate-by-gate through φ , replacing each gate with the gate's multilinear extension.
 - $NOT(x) \rightarrow 1 x$
 - $AND(x, y) \rightarrow x \cdot y$
 - $OR(x, y) \rightarrow x + y x \cdot y$

- Key question: how to construct the extension polynomial *g*?
- Answer: Arithmetize φ
 - i.e., replace φ with an **arithmetic** circuit computing extension g
 - Go gate-by-gate through φ , replacing each gate with the gate's multilinear extension.
 - $NOT(x) \rightarrow 1 x$
 - $AND(x, y) \rightarrow x \cdot y$
 - $OR(x, y) \rightarrow x + y x \cdot y$

- Key question: how to construct the extension polynomial *g*?
- Answer: Arithmetize φ
 - i.e., replace φ with an **arithmetic** circuit computing extension g
 - Go gate-by-gate through φ , replacing each gate with the gate's multilinear extension.
 - $NOT(x) \rightarrow 1 x$
 - $AND(x, y) \rightarrow x \cdot y$
 - $OR(x, y) \rightarrow x + y x \cdot y$

- Key question: how to construct the extension polynomial *g*?
- Answer: Arithmetize φ
 - i.e., replace φ with an **arithmetic** circuit computing extension g
 - Go gate-by-gate through φ , replacing each gate with the gate's multilinear extension.
 - $NOT(x) \rightarrow 1 x$
 - $AND(x, y) \rightarrow x \cdot y$
 - $OR(x, y) \rightarrow x + y x \cdot y$

- Key question: how to construct the extension polynomial g?
- Answer: Arithmetize $oldsymbol{arphi}$
 - i.e., replace φ with an **arithmetic** circuit computing extension g
 - Go gate-by-gate through φ , replacing each gate with the gate's multilinear extension.

- Key question: how to construct the extension polynomial *g*?
- Answer: Arithmetize φ
 - i.e., replace φ with an **arithmetic** circuit computing extension g
 - Go gate-by-gate through φ , replacing each gate with the gate's multilinear extension.
 - $NOT(x) \rightarrow 1 x$
 - $AND(x, y) \rightarrow x \cdot y$

- Key question: how to construct the extension polynomial g?
- Answer: Arithmetize $oldsymbol{arphi}$
 - i.e., replace φ with an **arithmetic** circuit computing extension g
 - Go gate-by-gate through φ , replacing each gate with the gate's multilinear extension.
 - $NOT(x) \rightarrow 1 x$
 - $AND(x, y) \rightarrow x \cdot y$

- Key question: how to construct the extension polynomial g?
- Answer: Arithmetize $oldsymbol{arphi}$
 - i.e., replace φ with an **arithmetic** circuit computing extension g
 - Go gate-by-gate through φ , replacing each gate with the gate's multilinear extension.
 - $NOT(x) \rightarrow 1 x$
 - $AND(x, y) \rightarrow x \cdot y$

- Key question: how to construct the extension polynomial g?
- Answer: Arithmetize $oldsymbol{arphi}$
 - i.e., replace φ with an **arithmetic** circuit computing extension g
 - Go gate-by-gate through φ , replacing each gate with the gate's multilinear extension.

Transforming a Boolean formula φ of size S into an arithmetic circuit computing an extension g of φ .

Note: $deg(g) \leq S$, and g can be evaluated at any input, gate by gate, in time O(S).

Costs of #SAT Protocol Applied to g

• Let φ be a Boolean formula of size S over n variables, g the extension obtained by arithmetizing φ .

Rounds	Communication	V Time	P Time
n	P sends a degree S polynomial in reach round, V sends one field element in each round \longrightarrow $O(S \cdot n)$ field elements sent in total.	• $O(S)$ time to process each of the <i>n</i> messages of P • $O(S)$ time to evaluate g(r) \longrightarrow $O(S \cdot n)$ time total	P evaluates g at $O(S \cdot 2^n)$ points to determine each message \longrightarrow $O(S \cdot n \cdot 2^n)$ time in total.

- #SAT is a **#P**-complete problem.
 - Hence, the protocol we just saw implies **every** problem in **#P** has an interactive proof with a polynomial time verifier.
- It is not much harder to show that this in fact holds for every problem in **PSPACE** [LFKN, Shamir].

- #SAT is a **#P**-complete problem.
 - Hence, the protocol we just saw implies **every** problem in **#P** has an interactive proof with a polynomial time verifier.
- It is not much harder to show that this in fact holds for every problem in **PSPACE** [LFKN, Shamir].
- But is this a **practical** result?

- #SAT is a **#P**-complete problem.
 - Hence, the protocol we just saw implies **every** problem in **#P** has an interactive proof with a polynomial time verifier.
- It is not much harder to show that this in fact holds for every problem in **PSPACE** [LFKN, Shamir].
- But is this a **practical** result?
 - No. The main reason: P's runtime.

- #SAT is a **#P**-complete problem.
 - Hence, the protocol we just saw implies **every** problem in **#P** has an interactive proof with a polynomial time verifier.
- It is not much harder to show that this in fact holds for every problem in **PSPACE** [LFKN, Shamir].
- But is this a **practical** result?
 - No. The main reason: P's runtime.
 - When applying the protocols of [LFKN, Shamir] even to very simple problems, the honest prover would require **superpolynomial** time.

- #SAT is a **#P**-complete problem.
 - Hence, the protocol we just saw implies **every** problem in **#P** has an interactive proof with a polynomial time verifier.
- It is not much harder to show that this in fact holds for every problem in **PSPACE** [LFKN, Shamir].
- But is this a **practical** result?
 - No. The main reason: P's runtime.
 - When applying the protocols of [LFKN, Shamir] even to very simple problems, the honest prover would require **superpolynomial** time.
 - The #SAT prover took time at least 2^n .
 - This seems unavoidable for #SAT, since we don't know how to even solve the problem in less than 2^n time.
 - But we can hope to solve "easier" problems without turning those problems into #SAT instances.

Doubly-Efficient Interactive Proofs

Doubly-Efficient Interactive Proof

- A doubly-efficient interactive proof for a problem is one where:
 - V runs in time linear in the input size.
 - Pruns in polynomial time.

A Second Application of the Sum-Check Protocol

A Doubly-Efficient Interactive Proof for Counting Triangles

Counting Triangles

- Input: $A \in \{0,1\}^{n \times n}$, representing the adjacency matrix of a graph.
- Desired Output: $\frac{1}{6} \cdot \sum_{(i,j,k) \in [n]^3} A_{ij} A_{jk} A_{ik}$.
- Fastest known algorithm runs in matrix-multiplication time, currently about $n^{2.37}$.
Counting Triangles

- Input: $A \in \{0,1\}^{n \times n}$, representing the adjacency matrix of a graph.
- Desired Output: $\frac{1}{6} \cdot \sum_{(i,j,k) \in [n]^3} A_{ij} A_{jk} A_{ik}$.
- The Protocol:
 - View *A* as a function mapping $\{0,1\}^{\log n} \times \{0,1\}^{\log n}$ to *F*.
 - Recall that \tilde{A} denotes the multilinear extension of A.
 - Define the polynomial $g(X, Y, Z) = \tilde{A}(X, Y) \tilde{A}(Y, Z) \tilde{A}(X, Z)$
 - Apply the sum-check protocol to *g* to compute:

$$\sum_{(a,b,c) \in \{0,1\}^{3\log n}} g(a,b,c)$$

Counting Triangles

- Input: $A \in \{0,1\}^{n \times n}$, representing the adjacency matrix of a graph.
- Desired Output: $\frac{1}{6} \cdot \sum_{(i,j,k) \in [n]^3} A_{ij} A_{jk} A_{ik}$.
- The Protocol:
 - View A as a function mapping $\{0,1\}^{\log n} \times \{0,1\}^{\log n}$ to **F**.
 - Recall that \tilde{A} denotes the multilinear extension of A.
 - Define the polynomial $g(X, Y, Z) = \tilde{A}(X, Y) \tilde{A}(Y, Z) \tilde{A}(X, Z)$
 - Apply the sum-check protocol to g to compute:

$$\sum_{(a,b,c)\in\{0,1\}^{3\log n}}g(a,b,c$$

- Costs:
 - Total communication is $O(\log n)$, V runtime is $O(n^2)$, P runtime is $O(n^3)$.
 - V's runtime dominated by evaluating: $g(r_1, r_2, r_3) = \tilde{A}(r_1, r_2) \tilde{A}(r_2, r_3) \tilde{A}(r_1, r_3).$

The GKR Protocol

A General-Purpose Doubly-Efficient Interactive Proof

General-Purpose Doubly-Efficient Interactive Proofs

• [GKR 2008] gave a doubly-efficient interactive proof for any function computed by an efficient **parallel** algorithm.

General-Purpose Doubly-Efficient Protocols

- Start with a computer program written in high-level programming language (C, Java, etc.)
- Step 1: Turn the program into an equivalent model amenable to probabilistic checking.
 - Typically some type of arithmetic circuit.
 - Called the **Front End** of the system.
- Step 2: Run an interactive proof or argument on the circuit.
 - Called the **Back End** of the system.

P starts the conversation with an answer (output).

V sends series of challenges. P responds with info about next circuit level.

Finally, P says something about the (multilinear extension of the) input.

of the) input.

V sees input directly, so can check P's final statement directly.

Costs of the GKR protocol

- V time is O(n + D log S) where n is input size,
 D is circuit depth, and S is circuit size.
- Communication cost is $O(D \log S)$.

Costs of the GKR protocol

- V time is O(n + D log S) where n is input size,
 D is circuit depth, and S is circuit size.
- Communication cost is $O(D \log S)$.
- P time is O(S).
 - A naïve implementation of the prover in the GKR protocol with take $\Omega(S^4)$ time, where S is circuit size.
 - A sequence of works has brought this down to O(S), for arbitrary circuits! [CMT12, Thaler13, WBSTWW17, WTSTW18, XZZPS19]

[RRR16] and Open Questions

Another General-Purpose Doubly-Efficient Interactive Proof

- In the cloud computing scenario at the start of the talk, we really wanted the following:
 - 1. V asks P to run some computer program on her data.
 - 2. **P** proves that she correctly ran the program on the data.
- V should not do much more work than read the input.
- P should not do much more work than run the program.

- In the cloud computing scenario at the start of the talk, we really wanted the following:
 - 1. V asks P to run some computer program on her data.
 - 2. **P** proves that she correctly ran the program on the data.
- V should not do much more work than read the input.
- P should not do much more work than run the program.
 - If the program runs in time T, and space s, then P should run in time O(T) and space O(s).

- In the cloud computing scenario at the start of the talk, we really wanted the following:
 - 1. V asks P to run some computer program on her data.
 - 2. **P** proves that she correctly ran the program on the data.
- V should not do much more work than read the input.
- P should not do much more work than run the program.
 - If the program runs in time T, and space s, then P should run in time O(T) and space O(s).
- The GKR protocol only achieves a linear-time for V parallelizable programs.

- In the cloud computing scenario at the start of the talk, we really wanted the following:
 - 1. V asks P to run some computer program on her data.
 - 2. **P** proves that she correctly ran the program on the data.
- V should not do much more work than read the input.
- P should not do much more work than run the program.
 - If the program runs in time T, and space s, then P should run in time O(T) and space O(s).
- Unfortunately, we **cannot** hope for V to run in time O(n) for space-intensive computations.
 - If f has an **interactive proof** with V runtime c, then f can be solved in space $\tilde{O}(c)$.
 - So we can only hope to achieve a linear-time verifier for problems solvable in linear space.

- In the cloud computing scenario at the start of the talk, we really wanted the following:
 - 1. V asks P to run some computer program on her data.
 - 2. **P** proves that she correctly ran the program on the data.
- V should not do much more work than read the input.
- P should not do much more work than run the program.
 - If the program runs in time T, and space s, then P should run in time O(T) and space O(s).
- Unfortunately, we **cannot** hope for V to run in time O(n) for space-intensive computations.
 - If f has an **interactive proof** with V runtime c, then f can be solved in space $\tilde{O}(c)$.
 - So we can only hope to achieve a linear-time verifier for problems solvable in linear space.
 - [RRR16] come close to achieving the best we can hope for.

[RRR16]

- Let f be a problem solvable in time T and space s. Then for any constant $\varepsilon > 0$, f has an interactive proof where:
 - V runs in time $\tilde{O}(n + T^{\varepsilon} \cdot \text{poly}(s))$.
 - Pruns in time $\tilde{O}(T^{1+\varepsilon} \cdot \operatorname{poly}(s))$.

[RRR16]

- Let f be a problem solvable in time T and space s. Then for any constant $\epsilon > 0$, f has an interactive proof where:
 - V runs in time $\tilde{O}(n + T^{\varepsilon} \cdot \text{poly}(s))$.
 - Pruns in time $\tilde{O}(T^{1+\varepsilon} \cdot \operatorname{poly}(s))$.
- In particular, if T = poly(n) and S is a small enough polynomial in n, then this is a doubly-efficient interactive proof system.

[RRR16]

- Let f be a problem solvable in time T and space s. Then for any constant $\varepsilon > 0$, f has an interactive proof where:
 - V runs in time $\tilde{O}(n + T^{\varepsilon} \cdot \text{poly}(s))$.
 - Pruns in time $\tilde{O}(T^{1+\varepsilon} \cdot \operatorname{poly}(s))$.
- In particular, if T = poly(n) and S is a small enough polynomial in n, then this is a doubly-efficient interactive proof system.
- The number of rounds is **constant**.
 - More precisely, it is $\exp\left(\frac{1}{\varepsilon}\right)$.

Open Questions (Theory)

- Improve V's runtime in [RRR16] from $\tilde{O}(n + T^{\varepsilon} \cdot \text{poly}(s))$ to $\tilde{O}(n + \text{poly}(s, \log T))$? Maybe even $\tilde{O}(n + s \cdot \log T)$)?
- Improve the round complexity from $\exp\left(\frac{1}{\epsilon}\right)$ to $\operatorname{poly}\left(\frac{1}{\epsilon}\right)$?

Open Questions (Theory)

- Improve V's runtime in [RRR16] from $\tilde{O}(n + T^{\varepsilon} \cdot \text{poly}(s))$ to $\tilde{O}(n + \text{poly}(s, \log T))$? Maybe even $\tilde{O}(n + s \cdot \log T)$?
- Improve the round complexity from $\exp\left(\frac{1}{\epsilon}\right)$ to $\operatorname{poly}\left(\frac{1}{\epsilon}\right)$?
- Give an interactive proof for **batch-verification of NP statements**?
 - Under standard complexity assumptions, interactive proofs cannot be **succinct** [GH98, GVW01].
 - I.e., for a general **NP** relation, cannot do much better than just having the prover send the **NP** witness to the verifier.

Open Questions (Theory)

- Improve V's runtime in [RRR16] from $\tilde{O}(n + T^{\varepsilon} \cdot \text{poly}(s))$ to $\tilde{O}(n + \text{poly}(s, \log T))$? Maybe even $\tilde{O}(n + s \cdot \log T)$?
- Improve the round complexity from $\exp\left(\frac{1}{\epsilon}\right)$ to $\operatorname{poly}\left(\frac{1}{\epsilon}\right)$?
- Give an interactive proof for **batch-verification of NP statements**?
 - Under standard complexity assumptions, interactive proofs cannot be **succinct** [GH98, GVW01].
 - I.e., for a general **NP** relation, cannot do much better than just having the prover send the **NP** witness to the verifier.
 - Open: given *k* instances of the same **NP** problem, is there an interactive proof for verifying that the answer to all *k* instances is YES, with communication that grows sublinearly with *k*?

A Parting Remark

- We've seen some fundamental limitations of interactive proofs.
 - V can't run in linear time for space-intensive problems.
 - They cannot be succinct.
 - They are interactive.
 - They are not publicly verifiable.

A Parting Remark

- We've seen some fundamental limitations of interactive proofs.
 - V can't run in linear time for space-intensive problems.
 - They cannot be succinct.
 - They are interactive.
 - They are not publicly verifiable.
- All of these limitations can be addressed by combining interactive proofs with cryptography.
 - This yields succinct non-interactive arguments.
 - See tomorrow's talks.
- There are many practically-relevant open questions about the best way to combine interactive proofs with cryptography.

THANK YOU!