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Interactive Proofs
� Prover P and Verifier V.

� P solves problem, tells V the answer.
� Then P and V have a conversation.
� P’s goal: convince V the answer is correct.

� Requirements: 
� 1. Completeness: an honest P can convince V

to accept.
� 2. Soundness: V will catch a lying P with high 

probability. 
This must hold even if P is computationally unbounded 
and trying to trick V into accepting the incorrect 
answer.
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The Power of Randomness: A 
Demonstration



EQUALITY Testing

Alice and Bob’s Goal: Determine whether ! = #, while 
exchanging as few bits as possible. 

$%&'( )*+

! = ,-, … , ,0 ∈ {0, 1}0 # = (7-, … , 70) ∈ {0, 1}0



EQUALITY Testing

Trivial solution: Alice sends ! to Bob, who checks whether ! = #. 
Communication cost is $.

%&'() *+,

! = -., … , -1 ∈ {0, 1}1 # = (8., … , 81) ∈ {0, 1}1



EQUALITY Testing

! = #$, … , #' ∈ {0, 1}' - = (/$, … , /') ∈ {0, 1}'

Fact: Trivial solution is optimal amongst deterministic protocols.

12345 678



A Logarithmic Cost Randomized 
Solution 



Randomized EQUALITY Testing Protocol

• Notation: 
• Let ! be any finite field with |!| ≥ $%. 
• Interpret each &', (' as elements of !.
• Let ) * = ∑'-./ &' *' and 0 * = ∑'-./ (' *'.

• The Protocol:
• Alice picks a random r ∈ ! and sends (r, ) 5 ) to Bob.
• Bob outputs EQUAL if ) 5 = 0 5 . Otherwise he

outputs NOT-EQUAL.
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Correctness Analysis
• Claim 1: if ! = #, then Bob outputs EQUAL with probability 1.
• Proof: Since ! = #, $ and % are the same polynomial, so

$ & = % & for all & ∈ (. 

• Claim 2: ! ≠ #, then Bob outputs NOT-EQUAL with 
probability at least 1 − ,

- over the choice of & ∈ (.
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Correctness Analysis
• Claim 2: ! ≠ #, then Bob outputs NOT-EQUAL with probability at 

least 1 − &
' over the choice of ( ∈ *.

• The proof relies on the following crucial fact:
FACT: Let p≠q be univariate polynomials of degree at most 

n. Then p and q agree on at most n inputs. Equivalently:

Pr-∈* . ( = 0 ( ≤ 2
* .

• If ! ≠ #, . and 0 are not the same polynomial. By FACT, the 
probability Alice picks an ( such that . ( = 0 ( is at most '|*| ≤
'
'5 ≤

&
' .



Correctness Analysis
• Claim 2: ! ≠ #, then Bob outputs NOT-EQUAL with probability at 

least 1 − &
' over the choice of ( ∈ *.

FACT: Let + ≠ , be univariate polynomials of degree at most -. 
Then + and , agree on at most - inputs. Equivalently:

Pr0∈* + ( = , ( ≤ -
* .

• If ! ≠ #, + and , are not the same polynomial. By FACT, the 
probability Alice picks an ( such that + ( = , ( is at most '|*| ≤
'
'5 ≤

&
' .



Correctness Analysis
• Claim 2: ! ≠ #, then Bob outputs NOT-EQUAL with probability at 

least 1 − &
' over the choice of ( ∈ *.

FACT: Let + ≠ , be univariate polynomials of degree at most -. 
Then + and , agree on at most - inputs. Equivalently:

Pr0∈* + ( = , ( ≤ -
* .

• If ! ≠ #, then + and , are not the same polynomial. By FACT, the 
probability Alice picks an ( such that + ( = , ( is at most '|*| ≤
'
'5 ≤
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' .



Main Takeaways 
1. Any two distinct low-degree polynomials differ almost 

everywhere: if ! ≠ " then Pr%∈' ! ( = " ( ≤ +
'

where , bounds the degree of ! and ".
• Corollary: If two low-degree polynomials agree at a 

randomly chosen input, it is “safe” to believe they are the 
same polynomial.

2. Interpreting inputs as low-degree polynomials is powerful.
• If two inputs differ at all, then once interpreted as 

polynomials, they differ almost everywhere.



Freivalds’ Protocol for Verifying Matrix 
Products

Demonstrating the Power of 
Randomness in Verifiable Computing



Verifying Matrix Multiplication
• Input is two matrices A, B ∈ %&×&. Goal is to compute A ) B.
• Fastest known algorithm runs in time about *+.,-.
• What if an untrusted prover P claims that the answer is a matrix .? 

Can V verify that .= A ) B in linear time?
• Yes! 

• The proof relies on the following crucial fact:

FACT: Any two distinct polynomials of degree at most n 
agree on at most n inputs.

• Proof of Claim 2: Since / ≠ 1, 2 and 3 are not the same 
polynomial. By FACT, 2 4 = 3 4 for at most * values of 4. So 

the probability Alice picks such an 4 is at most & ≤ & ≤ 7
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Verifying Matrix Multiplication
• The Protocol:

1. V picks a random ! ∈ # and lets $ = !, !', … , !) .
2. V computes + , $ and (AB) , $, accepting iff they are equal.

V runs in 1 2' time.
• V computes 3 matrix-vector products, each of which can be 

computed in 1 2' time.
• + , $ is one matrix-vector multiplication.
• (AB) , $= A , (B , $) takes two matrix-vector 

multiplications.



Verifying Matrix Multiplication
• The Protocol:

1. V picks a random ! ∈ # and lets $ = !, !', … , !) .
2. V computes + , $ and (AB) , $, accepting iff they are equal.

• Runtime Analysis:
• V’s runtime dominated by computing 3 matrix-vector products, 

each of which takes 1 2' time.
• + , $ is one matrix-vector multiplication.
• (AB) , $= A , (B , $) takes two matrix-vector 

multiplications.



Correctness Analysis

• Claim 1: If != A # B then V accepts with probability 1.
• Claim 2: If ! ≠ A # B, then V rejects with probability at least 

1 − (
) ≥ 1 − 1/(.

• Proof: 
• Recall that - = 1, 0, 01, … , 0345 .
• The 6th entry of ! # - is the Reed-Solomon fingerprint of the 

6th row of !.
• Similarly, the 6th entry of (89)- is the Reed-Solomon 

fingerprint of the 6th row of 89.
• So if even one row of ! does not equal the corresponding row 

of A # 9, the fingerprints for that row will differ with 
probability at least 1 − 1/(.
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Correctness Analysis

• Claim 1: If != A # B then V accepts with probability 1.
• Claim 2: If ! ≠ A # B, then V rejects with probability at least 

1 − (
) ≥ 1 − 1/(.

• Proof of Claim 2: 
• Recall that - = /, /1, … , /3 .
• (! # -)6= ∑89:3 !68/8 is the Reed-Solomon fingerprint at /

of the ;th row of !.
• Similarly, ((AB) # -)6 is the Reed-Solomon fingerprint at / of 

the ;th row of AB.
• So if even one row of ! does not equal the corresponding row 

of AB, the fingerprints for that row will differ with probability 
at least 1 − 1/(, causing V to reject.



Interactive Proof Techniques: 
Preliminaries



Schwartz-Zippel Lemma
� Recall FACT: Let ! ≠ " be univariate polynomials of degree at 

most #. Then Pr&∈( ! ) = " ) ≤ ,
( .

The Schwartz-Zippel lemma is a multivariate generalization:
Let ! ≠ " be ℓ-variate polynomials of total degree at most #. Then 

Pr/∈(ℓ ! / = " / ≤ ,
( .

Total degree refers to the maximum sum of degrees of all variables 
in any term. E.g., 01202 + 0102 has total degree 3.
is not.
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Low-Degree and Multilinear Extensions
� Definition [Extensions]. Given a function !: {0,1}ℓ→ *, 

a ℓ-variate polynomial + over F is said to extend ! if ! , =
+(,) for all , ∈ {0,1}ℓ.

� Definition [Multilinear Extensions]. Any function 
!: {0,1}ℓ→ * has a unique multilinear extension (MLE),   
denoted 2!.
Multilinear means the polynomial has degree at most 1 in each 
variable.
(1 − ,4)(1 − ,5 ) is multilinear, ,4(,5)5 is not.
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49 56

60 68

!" #$, #& = (1 − #$)(1 − #&) + 2(1 − #$)#&+ 8#$(1 − #&)+10#$#&

Can	check:
!" 0, 0 = 1
!" 0, 1 = 2
!" 1, 0 = 8
!" 1, 1 = 10
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12 14
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16 20

19 22

24 28

17 22

16 22

27 32

28 34

5 6

16 18

25 28

32 36

37 42

40 44

Another (non-multilinear) extension of !: 
" #$, #& = −#$& + #$#&+8 #$ + #& + 1

Can	check:
" 0, 0 = 1
" 0, 1 = 2
" 1, 0 = 8
" 1, 1 = 10



Low-Degree and Multilinear Extensions
� Fact [VSBW13]: Given as input all 2ℓ evaluations of a function 
#: {0,1}ℓ→ +, for any point , ∈ +ℓ there is an .(2ℓ)-time 
algorithm for evaluating 1# , .

� Note:  If # is “structured”, there may extensions 3 for which 
3(,) can be evaluated much faster than .(2ℓ)-time.

Can view as error



Low-Degree and Multilinear Extensions
� Fact [VSBW13]: Given as input all 2ℓ evaluations of a function 
#: {0,1}ℓ→ +, for any point , ∈ +ℓ there is an .(2ℓ)-time 
algorithm for evaluating 1# , .

� Note:  If # is “structured”, there may extensions 3 for which 
3(,) can be evaluated much faster than .(2ℓ)-time.
� We will see an example later when covering arithmetization of 

Boolean formulae.
Can view as error



The Sum-Check Protocol [LFKN90]



Sum-Check Protocol [LFKN90]
� Input: V given oracle access to a ℓ-variate polynomial "

over field #.
� Goal: compute the quantity: 

$
%&∈{),+}

$
%-∈{),+}

… $
%ℓ∈{),+}

"(0+, … , 0ℓ).



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

V checks that !" = 4" 0 + 4" 1 .
V picks <" at random from = and sends <" to P. 
Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks 
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ).
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� Start: P sends claimed answer !". The protocol must check that:
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Soundness: Inductive Case
� Inductive case: ℓ > 1.

� Recall: P’s first message %& '& is claimed to equal 
(& '& ≔ ∑+,∈{/,&} …∑+ℓ∈ /,& 3('&, 56, … , 5ℓ).

� Then V picks a random 8& and sends 8& to P. They (recursively) invoke sum-
check to confirm that %& 8& = (& 8& .

By Fact, if %& ≠ (&, then Pr=>∈?[%& 8& ≠ ((8&)] ≥ 1 −
D

|?|
.

If %& 8& ≠ ( 8& , P is left to prove a false claim in the recursive call.
The recursive call applies sum-check to 3 8&, '6, … , 'ℓ , which is ℓ-1 variate.
By induction, P fails to convince V in the recursive call with probability at least 

1 −
D(ℓF&)

|?|
.

So if %& ≠ (&, the probability V rejects is at least:

1 − Pr=>∈?[%& 8& = ((8&)] − Pr[V accepts|%& 8& ≠ ((8&)]
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Costs of the Sum-Check Protocol
� Total communication is ! "ℓ field elements. 

� P sends ℓ messages, each a univariate polynomial of degree at 
most ".V sends ℓ − 1 messages, each consisting of one field 
elements.

V’s runtime is:
! "' + [*+,- .-/0+.-" *1 -'2302*- 4 2* 15- 61+5*] .

P’s runtime is at most:
! " 8 2: 8 [*+,- .-/0+.-" *1 -'2302*- 4 2* 15- 61+5*] .
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First Application of Sum-Check: 
An IP For #SAT [LFKN]



#SAT Problem
� Let ! be a Boolean formula of size " over # variables. 
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Let 0 be an extension polynomial of !.
Apply the sum-check protocol to compute ∑%∈{(,*}, 0 . ..

Note: in final round of sum-check, V needs to compute 0(2) for 
some randomly chosen 2 in 34.
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� Key question: how to construct the extension polynomial !?
� Answer: Arithmetize "

� i.e., replace " with an arithmetic circuit computing extension !
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� $. &, , è & + , − & - ,
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Figure 2: An arithmetic circuit y computing a polynomial
extension g of f over a finite field F.

P can be computed in space poly(c(n)), as x 2 L if and only if this acceptance probability is larger 1/3 for
some P . Eliding some details, this acceptance probability for any prover strategy P can be computed by
enumerating over every possible setting of the verifier’s random coins and computing the fraction of settings
that lead the verifier to accept.

The more challenging direction is to show that PSPACE ✓ IP. The #SAT protocol of Lund et al.
[LFKN92] described above already contains the main ideas necessary to prove this. Shamir [Sha92] ex-
tended the #SAT protocol to solve the PSPACE-complete language TQBF, and Shen [She92] gave a simpler
proof (the cost of Shamir’s and Shen’s protocols are similar to those of the #SAT protocol described above).
We do not cover Shamir or Shen’s extensions here, since Lecture 2 will provide a different and quantitatively
stronger proof that PSPACE ✓ IP.

Open Problem: On The Power of the Prover, or Are Sum-Check Techniques Really Necessary to Solve
Languages in coNP? The prover in the protocol for the PSPACE-complete problem TQBF can itself be
implemented in PSPACE. Similarly, the prover in the #P-complete problem #SAT protocol can itself be
implemented via polynomially many calls to a function in #P. However, there is no known interactive for
the coNP-complete language ¯3SAT in which the prover need not solve #P-complete problems. Is there
a protocol for ¯3SAT with a prover that can be implemented in, say, PNP? Under plausible complexity
assumptions, PNP is powerful enough to approximate the number of satisfying assignments to a factor of
1±1/poly(n),4, but is not believed to be powerful enough to exactly count them, as can be done in #P.

1.7 A Second Application of Sum-Check: An Optimal Interactive Proof for Matrix Multi-
plication

This section describes a highly optimized IP protocol for matrix multiplication (MATMULT) from [Tha13].
While this MATMULT protocol is of interest in its own right, it is included here for didactic reasons: it
displays, in a clean and unencumbered setting, all of the algorithmic insights that are exploited later in this
survey to give more general IP and MIP protocols.

4See e.g. http://mathoverflow.net/questions/2218/characterize-pnp

12

x1# x2# x3# x4#

¬#
�#

�#

�#

Figure 1: A Boolean formula f .

x1# x2# x3# x4#

'#
×# +#

×#

1#

×#

'#

Figure 2: An arithmetic circuit y computing a polynomial
extension g of f over a finite field F.

P can be computed in space poly(c(n)), as x 2 L if and only if this acceptance probability is larger 1/3 for
some P . Eliding some details, this acceptance probability for any prover strategy P can be computed by
enumerating over every possible setting of the verifier’s random coins and computing the fraction of settings
that lead the verifier to accept.

The more challenging direction is to show that PSPACE ✓ IP. The #SAT protocol of Lund et al.
[LFKN92] described above already contains the main ideas necessary to prove this. Shamir [Sha92] ex-
tended the #SAT protocol to solve the PSPACE-complete language TQBF, and Shen [She92] gave a simpler
proof (the cost of Shamir’s and Shen’s protocols are similar to those of the #SAT protocol described above).
We do not cover Shamir or Shen’s extensions here, since Lecture 2 will provide a different and quantitatively
stronger proof that PSPACE ✓ IP.

Open Problem: On The Power of the Prover, or Are Sum-Check Techniques Really Necessary to Solve
Languages in coNP? The prover in the protocol for the PSPACE-complete problem TQBF can itself be
implemented in PSPACE. Similarly, the prover in the #P-complete problem #SAT protocol can itself be
implemented via polynomially many calls to a function in #P. However, there is no known interactive for
the coNP-complete language ¯3SAT in which the prover need not solve #P-complete problems. Is there
a protocol for ¯3SAT with a prover that can be implemented in, say, PNP? Under plausible complexity
assumptions, PNP is powerful enough to approximate the number of satisfying assignments to a factor of
1±1/poly(n),4, but is not believed to be powerful enough to exactly count them, as can be done in #P.

1.7 A Second Application of Sum-Check: An Optimal Interactive Proof for Matrix Multi-
plication

This section describes a highly optimized IP protocol for matrix multiplication (MATMULT) from [Tha13].
While this MATMULT protocol is of interest in its own right, it is included here for didactic reasons: it
displays, in a clean and unencumbered setting, all of the algorithmic insights that are exploited later in this
survey to give more general IP and MIP protocols.

4See e.g. http://mathoverflow.net/questions/2218/characterize-pnp

12

Transforming a Boolean formula ! of size " into an arithmetic 
circuit computing an extension # of !.

Note: deg # ≤ ", and # can be evaluated at any input, gate by 
gate, in time ) " .

Summary of Arithmetization



Costs of #SAT Protocol Applied to !
� Let " be a Boolean formula of size # over $ variables, ! the 

extension obtained by arithmetizing ".
Rounds Communication V Time P Time

$ P sends a degree #
polynomial in reach round, 
V sends one field element 

in each round

& # ' $
field elements sent in 

total.

•& # time to process each 
of the $ messages of P
•& # time to evaluate 
!())

& # ' $ time total

P evaluates ! at 
& # ' 2, points 
to determine each 

message 

& # ' $ ' 2, time 
in total.

⇒ ⇒⇒



IP=PSPACE
� #SAT is a #P-complete problem. 

� Hence, the protocol we just saw implies every problem in #P has an 
interactive proof with a polynomial time verifier.

� It is not much harder to show that this in fact holds for every 
problem in PSPACE [LFKN, Shamir].

But is this a practical result? 
No. The main reason: P’s runtime.
When applying the protocols of [LFKN, Shamir] even to very simple 
problems, the honest prover would require superpolynomial time. 
The #SAT prover took time at least 2". 

This is unavoidable for #SAT, since we don’t know how to even solve the 
problem in less than 2" time.
But we can hope to solve “easier” problems without turning those problems into 
#SAT instances. 
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Doubly-Efficient Interactive Proof
� A doubly-efficient interactive proof for a problem is one where:

� V runs in time linear in the input size.
� P runs in polynomial time.



A Second Application of the Sum-Check 
Protocol

A Doubly-Efficient Interactive Proof for 
Counting Triangles



Counting Triangles
� Input: ! ∈ {0,1}(×(, representing the adjacency matrix of a graph.

� Desired Output: *
+
, ∑ .,/,0 ∈[(]3 !./!/0!.0 .V

� Fastest known algorithm runs in matrix-multiplication time, currently about 
56.78. as a function mapping 0,1 9:; (× 0,1 9:; ( to <.
Recall that =! denotes the multilinear extension of !.
Define the polynomial > ?, @, A = =!(?, @) =!(@, Z) =!(?, Z)
Apply the sum-check protocol to > to compute:

E
(F,G,H) ∈{I,*}3JKL M

>(N, O, P)

Costs: 
Total communication is Q(log 5), V runtime is Q 56 , P runtime is Q 57 .
V’s runtime dominated by evaluating:

> U*, U6, U7 = =!(U*, U6) =!(U6, U7) =!(U*, U7).
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A General-Purpose Doubly-Efficient 
Interactive Proof



General-Purpose Doubly-Efficient 
Interactive Proofs
� [GKR 2008] gave a doubly-efficient interactive proof for any 

function computed by an efficient parallel algorithm.



General-Purpose Doubly-Efficient Protocols
� Start with a computer program written in high-level 

programming language (C, Java, etc.)
� Step 1: Turn the program into an equivalent model 

amenable to probabilistic checking.
� Typically some type of arithmetic circuit.
� Called the Front End of the system.

� Step 2: Run an interactive proof or argument on the circuit.
� Called the Back End of the system.



Front End

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview 

F2 circuit 

P and V run interactive proof (back end) on circuit. 
Note: if the program is an efficient parallel algorithm, 

then the circuit can be small-depth.
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The GKR Protocol: Overview



a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 
P starts the
conversation with 
an answer (output).

The GKR Protocol: Overview



a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

V sends series of  
challenges. P responds 
with info about next 
circuit level. 



a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

Challenges continue,
layer by layer down
to the the input. 
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x 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+ 

The GKR Protocol: Overview

Finally, P says 
something about the 
(multilinear extension 
of the) input. 



a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

Finally, P says 
something about the 
(multilinear extension 
of the) input. 

V sees input directly, so can check 
P’s final statement directly.  



Costs of the GKR protocol
� V time is ! " + $ log ( where " is input size, 
$ is circuit depth, and ( is circuit size.

� Communication cost is !($ log ().
P time is ! ( .

A naïve implementation of the prover in the GKR 
protocol with take Ω (, time, where ( is circuit 
size.
A sequence of works has brought this down to
! ( , for arbitrary circuits! [CMT12, Thaler13, 
WBSTWW17, WTSTW18, XZZPS19] 
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[RRR16] and Open Questions

Another General-Purpose Doubly-
Efficient Interactive Proof



What We Really Want
� In the cloud computing scenario at the start of the talk, we really 

wanted the following:
1. V asks P to run some computer program on her data.
2. P proves that she correctly ran the program on the data.

� V should not do much more work than read the input.
� P should not do much more work than run the program.

If the program runs in time !, and space ", then P should run in time 
# ! and space # " .

Unfortunately, we cannot hope for V to run in time # $ for space-
intensive computations.

If % has an interactive proof with V runtime &, then % can be solved in 
space '#(&)).
So we can only hope to achieve a linear-time verifier for problems solvable 
in quadratic space.  
[RRR16] come close to achieving this.
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[RRR16]
� Let ! be a problem solvable in time " and space #. Then for 

any constant ε > 0, ! has an interactive proof where:
� V runs in time )* + + "- . poly(#) .
� P runs in time )* ("56- . poly # ).

In particular, if " = poly(+) and # is a small enough polynomial 
in +, then this is a doubly-efficient interactive proof system.
The number of rounds is constant. 

More precisely, it is exp 5
: .
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Open Questions (Theory)
� Improve V’s runtime in [RRR16] from !" # + %& ' poly(-)

to !" # + poly(-, log %) ? Maybe even !" # + - ' log %) ?
� Improve the round complexity from exp 4

5 to poly 4
5 ?

Give an interactive proof for batch-verification of NP 
statements?

i.e., given 6 instances of the same NP problem, can you give an 
interactive proof for verifying that the answer to all 6 instances is 
YES, with communication that grows sublinearly with 6?
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A Parting Remark
� We’ve seen some fundamental limitations of interactive proofs.

� V can’t run in linear time for space-intensive problems.
� They cannot be succinct.
� They are interactive.
� They are not publicly verifiable.

All of these limitations can be addressed by combining interactive 
proofs with cryptography.

This yields succinct non-interactive arguments.
See tomorrow’s talks.

There are many practically-relevant open questions about the best 
way to combine interactive proofs with cryptography.
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