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Outsourcing 
�  Many applications require outsourcing computation to 

untrusted service providers. 
� Main motivation: Commercial cloud computing services. 
� Also, weak peripheral devices; fast but faulty co-processors. 
� Volunteer Computing (SETI@home,World Community 

Grid, etc.) 

�  User requires a guarantee that the cloud performed the 
computation correctly.  

�  One solution: require cloud to prove correctness of answer. 



Goals of Verifiable Computation 
�  Provide user with a correctness guarantee, without requiring 

her to perform the requested computations herself. 
�  Ideally user will not even maintain a local copy of the data. 
� User may have resorted to the cloud in the first place because 

she has more data than she can store. 

�  Minimize the amount of extra bookkeeping the cloud has to 
do to prove the integrity of the computation. 

�  Ideally our protocols will be secure against arbitrarily 
malicious clouds, but sufficiently lightweight for use in more 
benign settings. 



Interactive Proofs 
�  Two Parties: Prover P and Verifier V. 

�  Think of P and powerful, V as weak. P solves a 
problem, tells V the answer. 
� Then P and  V have a conversation. 
�  P’s goal: convince V the answer is correct. 

�  Requirements:  
�  1. Completeness: An honest P can convince V 

she’s telling the truth. 
�  2. Soundness: V will catch a lying P with high 

probability no matter what P says to try to 
convince V (Secure even if P is computationally 
unbounded). 



Interactive Proofs 
�  IPs have revolutionized Complexity Theory in the last 25 

years. 
�  IP=PSPACE [Shamir 90]. 
�  PCP Theorem e.g. [AS 98]. Hardness of approximation.  
� Zero Knowledge Proofs. 

�  But IPs have had very little impact in real delegation scenarios. 
� Why? 
� Not due to lack of applications! 



Interactive Proofs 
�  Old Answer: Most results on IPs dealt with hard 

problems, needed P to be too powerful. 
�  But recent constructions focus on “easy” problems 

(e.g. “Interactive Proofs for Muggles” [GKR 08]). 
� Allows V to run very quickly, so outsourcing is 

useful even though problems are “easy”. 
�   P does not need “much” more time to prove 

correctness than she does to solve the problem in 
the first place!  

 



Interactive Proofs 
�  Why does GKR not yield a practical protocol out 

of the box? 
�  P  has to do a lot of extra bookkeeping (cubic 

blowup in runtime). 
� Naively, V has to retain the full input. 
�  Substantial overhead due to finite field arithmetic 

and other technical issues. 
 



Engineering Practical IPs 
[CMT12, TRMP12] 



A Two-Pronged Approach 
�  The present paper is part of a recent line of work aiming to 

develop practical IPs [CCMT12, CMT10, CTY12, CMT12]  
�  Ideal: General purpose implementation allowing to verify 

arbitrary computation. 
�  Based on general-purpose  “Interactive Proofs for Muggles” 

construction [GKR 08].  
�  Also develop highly optimized protocols for specific important 

problems. 
�  Reporting queries (what value is stored in memory location x of my 

database?) 
�  Matrix multiplication. 
�  Graph problems like perfect matching.  
�  Certain kinds of linear programs. 
�  Etc. 
 

 



Main Results: Part 1 
�  Can save V substantial amounts of space essentially for free.  

� Reason: GKR protocol (and several others) only requires V to 
store a fingerprint of the data.  

� This fingerprint can be computed in a single, light-weight pass 
over the input.  

�  Fingerprint serves as a sort of "secret" that V can use to catch 
the cloud in a lie. 

�  Fits cloud computing well: pass by V can occur while 
uploading data to cloud.  

�  V never needs to store entirety of data! 
�  The fingerprint is a few KBs in size, even if the input contains 

terabytes of data. 

 



Main Results: Part 2 
�  Can save V substantial amounts of time. 
�  E.g. when multiplying two 512x512 matrices, V requires .12s 

to process the input, while naive matrix multiplication takes 
about .70 seconds. 

�  Savings for V will be much larger on at larger input sizes, 
when applying our implementation to more time-intensive 
computations than matrix multiplication (because V’s 
runtime grows quasi-linearly with input size; she just needs 
to compute a fingerprint of the input). 

 



Main Results: Part 3 
�  We've come a long way in making P more efficient. 
�  In [CMT12], we brought the runtime of P down from cubic in 

the size of a circuit computing the function of interest, to 
quasilinear in the size of the circuit. 

�  Lots of additional engineering in the implementation (helps make 
V fast too). 
�  Choosing the “right” finite field to work over. 
�  Using the “right” circuits. 
�  Etc. 

�  Practically speaking, this is still not good enough on its own.  
�  256 x 256 matrix multiplication takes P about 27 minutes for our 

previous single-threaded implementation. 



Main Results: Part 4 (Focus of [TRMP12]) 
�  Our implementation is extremely amenable to parallelization.  
�  Holds for both P and V (although V runs quickly even without 

parallelization, see Insight 2). 

If V also has a GPU, we get close to 100-fold speedups for 
V relative to single-threaded implementation. !

Problem! P time 
(single-

threaded)!

P time 
(GPU)!

V time! Rounds! Communi
cation!

F2!
(n=2^20)!

29.8 s! 0.36 s! .19 s! 118! 2.5 KB!

MatMult!
(256 x 256)!

27.6 !
Minutes!

39.6.s! .04 s! 3910! 91.6 KB!



Main Results: Part 4 (Focus of [TRMP12]) 
�  Main challenge to parallelizing and scaling to large inputs was 

the memory-intensive nature of P’s computation in the GKR 
protocol. 
� Naïve n x n matrix multiplication only requires O(n2) space. 
�  P has to store a circuit of size O(n3) (we use 40 bytes per gate). 
�  Even 256 x 256 matrix multiplication over 1.5 GBs of space. 
� Took steps to mitigate this issue despite limited device memory. 



Related Work 
�  Setty, McPherson, Blumberg, and Walfish [NDSS 12] 

implement an argument system original due to Ishai, 
Kushilevitz, and Ostrovsky [CCC 07].  
�  Bring the runtime of the cloud down by a factor of 10^20  

relative to a naive implementation. 
� Advantages of our implementation: save V time even when 

outsourcing a single computation, secure against 
computationally unbounded clouds. 

�  Canetti, Riva, and Rothblum [CCS 12] give highly practical 
protocols which are secure when there are two clouds, at least 
one of whom is honest.  

�  Ben-Sasson, Chiesa, Genkin, and Tromer working toward 
practical PCPs. 



Conclusions 
�  Interactive Proofs and other protocols for verifiable 

computation represent some of the most celebrated results in 
complexity theory. 

�  They have the potential to mitigate trust issues in cloud 
computing, but were wildly impractical until recently. 

�  We can already save the user a lot of time and space. 
�  The main remaining bottleneck is the extra bookkeeping the 

cloud must do to provide integrity guarantees. 
�  Parallelization helps mitigate this issue, but there is still much 

work to be done. 



 
Thank you! 



Sample Variance of Data Stream 
�  The (scaled) sample variance of a data stream is defined as 

follows:  
� Let X be the frequency vector of the stream  
    (Xi is number of occurrences of i in the stream) 
� F2(X)=∑i Xi

2 

 
�  [CCM 09/CCMT 12] give a one-message protocol for F2 

requiring       O(√n) communication and O(√n) space for V. 
 
�  This is optimal.  
 



Sample-Variance Protocol 
�  Recall: F2(X)=∑i Xi
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�  View universe [n] as [√n] x  [√n].  
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�  First idea: Have P send the answer “in pieces”:  
�  F2(row 1). F2(row 2). And so on. Requires √n communication. 

�  V exactly tracks a row at random (denoted in yellow) so if P lies about 
any piece, V has a chance of catching her. Requires space √n. 
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Slide derived from [McGregor 10] 
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�  Problem: If  P lies in only one place, V has small chance of catching her. 

�  We would like the following to hold: if  P  lies about even one piece, 
she will have to lie about many. 

 
�  Solution: Have  P  commit (succinctly) to second frequency moment 

of rows of an error-corrected encoding of the input.  

�  Need  V to evaluate any row of the encoding in a streaming fashion. 
Can do this for “low-degree extension” code. Note: this code is 
systematic, meaning the first n symbols are just the input itself. 
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These values 
will all lie on 
low-degree 
polynomial s(X) 
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