
Justin Thaler, Harvard University
Mike Roberts, Harvard University

Michael Mitzenmacher, Harvard University
Hanspeter Pfister, Harvard University

Verifiable Computation with
Massively Parallel Interactive Proofs

Outsourcing
�  Many applications require outsourcing computation to

untrusted service providers.
� Main motivation: Commercial cloud computing services.
� Also, weak peripheral devices; fast but faulty co-processors.
� Volunteer Computing (SETI@home,World Community

Grid, etc.)

�  User requires a guarantee that the cloud performed the
computation correctly.

�  One solution: require cloud to prove correctness of answer.

Goals of Verifiable Computation
�  Provide user with a correctness guarantee, without requiring

her to perform the requested computations herself.
�  Ideally user will not even maintain a local copy of the data.
� User may have resorted to the cloud in the first place because

she has more data than she can store.

�  Minimize the amount of extra bookkeeping the cloud has to
do to prove the integrity of the computation.

�  Ideally our protocols will be secure against arbitrarily
malicious clouds, but sufficiently lightweight for use in more
benign settings.

Interactive Proofs
�  Two Parties: Prover P and Verifier V.

�  Think of P and powerful, V as weak. P solves a
problem, tells V the answer.
� Then P and V have a conversation.
�  P’s goal: convince V the answer is correct.

�  Requirements:
�  1. Completeness: An honest P can convince V

she’s telling the truth.
�  2. Soundness: V will catch a lying P with high

probability no matter what P says to try to
convince V (Secure even if P is computationally
unbounded).

Interactive Proofs
�  IPs have revolutionized Complexity Theory in the last 25

years.
�  IP=PSPACE [Shamir 90].
�  PCP Theorem e.g. [AS 98]. Hardness of approximation.
� Zero Knowledge Proofs.

�  But IPs have had very little impact in real delegation scenarios.
� Why?
� Not due to lack of applications!

Interactive Proofs
�  Old Answer: Most results on IPs dealt with hard

problems, needed P to be too powerful.
�  But recent constructions focus on “easy” problems

(e.g. “Interactive Proofs for Muggles” [GKR 08]).
� Allows V to run very quickly, so outsourcing is

useful even though problems are “easy”.
�  P does not need “much” more time to prove

correctness than she does to solve the problem in
the first place!

Interactive Proofs
�  Why does GKR not yield a practical protocol out

of the box?
�  P has to do a lot of extra bookkeeping (cubic

blowup in runtime).
� Naively, V has to retain the full input.
�  Substantial overhead due to finite field arithmetic

and other technical issues.

Engineering Practical IPs
[CMT12, TRMP12]

A Two-Pronged Approach
�  The present paper is part of a recent line of work aiming to

develop practical IPs [CCMT12, CMT10, CTY12, CMT12]
�  Ideal: General purpose implementation allowing to verify

arbitrary computation.
�  Based on general-purpose “Interactive Proofs for Muggles”

construction [GKR 08].
�  Also develop highly optimized protocols for specific important

problems.
�  Reporting queries (what value is stored in memory location x of my

database?)
�  Matrix multiplication.
�  Graph problems like perfect matching.
�  Certain kinds of linear programs.
�  Etc.

Main Results: Part 1
�  Can save V substantial amounts of space essentially for free.

� Reason: GKR protocol (and several others) only requires V to
store a fingerprint of the data.

� This fingerprint can be computed in a single, light-weight pass
over the input.

�  Fingerprint serves as a sort of "secret" that V can use to catch
the cloud in a lie.

�  Fits cloud computing well: pass by V can occur while
uploading data to cloud.

�  V never needs to store entirety of data!
�  The fingerprint is a few KBs in size, even if the input contains

terabytes of data.

Main Results: Part 2
�  Can save V substantial amounts of time.
�  E.g. when multiplying two 512x512 matrices, V requires .12s

to process the input, while naive matrix multiplication takes
about .70 seconds.

�  Savings for V will be much larger on at larger input sizes,
when applying our implementation to more time-intensive
computations than matrix multiplication (because V’s
runtime grows quasi-linearly with input size; she just needs
to compute a fingerprint of the input).

Main Results: Part 3
�  We've come a long way in making P more efficient.
�  In [CMT12], we brought the runtime of P down from cubic in

the size of a circuit computing the function of interest, to
quasilinear in the size of the circuit.

�  Lots of additional engineering in the implementation (helps make
V fast too).
�  Choosing the “right” finite field to work over.
�  Using the “right” circuits.
�  Etc.

�  Practically speaking, this is still not good enough on its own.
�  256 x 256 matrix multiplication takes P about 27 minutes for our

previous single-threaded implementation.

Main Results: Part 4 (Focus of [TRMP12])
�  Our implementation is extremely amenable to parallelization.
�  Holds for both P and V (although V runs quickly even without

parallelization, see Insight 2).

If V also has a GPU, we get close to 100-fold speedups for
V relative to single-threaded implementation. !

Problem! P time
(single-

threaded)!

P time
(GPU)!

V time! Rounds! Communi
cation!

F2!
(n=2^20)!

29.8 s! 0.36 s! .19 s! 118! 2.5 KB!

MatMult!
(256 x 256)!

27.6 !
Minutes!

39.6.s! .04 s! 3910! 91.6 KB!

Main Results: Part 4 (Focus of [TRMP12])
�  Main challenge to parallelizing and scaling to large inputs was

the memory-intensive nature of P’s computation in the GKR
protocol.
� Naïve n x n matrix multiplication only requires O(n2) space.
�  P has to store a circuit of size O(n3) (we use 40 bytes per gate).
�  Even 256 x 256 matrix multiplication over 1.5 GBs of space.
� Took steps to mitigate this issue despite limited device memory.

Related Work
�  Setty, McPherson, Blumberg, and Walfish [NDSS 12]

implement an argument system original due to Ishai,
Kushilevitz, and Ostrovsky [CCC 07].
�  Bring the runtime of the cloud down by a factor of 10^20

relative to a naive implementation.
� Advantages of our implementation: save V time even when

outsourcing a single computation, secure against
computationally unbounded clouds.

�  Canetti, Riva, and Rothblum [CCS 12] give highly practical
protocols which are secure when there are two clouds, at least
one of whom is honest.

�  Ben-Sasson, Chiesa, Genkin, and Tromer working toward
practical PCPs.

Conclusions
�  Interactive Proofs and other protocols for verifiable

computation represent some of the most celebrated results in
complexity theory.

�  They have the potential to mitigate trust issues in cloud
computing, but were wildly impractical until recently.

�  We can already save the user a lot of time and space.
�  The main remaining bottleneck is the extra bookkeeping the

cloud must do to provide integrity guarantees.
�  Parallelization helps mitigate this issue, but there is still much

work to be done.

Thank you!

Sample Variance of Data Stream
�  The (scaled) sample variance of a data stream is defined as

follows:
� Let X be the frequency vector of the stream
 (Xi is number of occurrences of i in the stream)
� F2(X)=∑i Xi

2

�  [CCM 09/CCMT 12] give a one-message protocol for F2

requiring O(√n) communication and O(√n) space for V.

�  This is optimal.

Sample-Variance Protocol
�  Recall: F2(X)=∑i Xi

2

�  View universe [n] as [√n] x [√n].

0
Frequency “Square” X

2 4

0 3 3

0 2 0

0 2 4 0 3 3 0 2 0

Frequency Vector X

�  First idea: Have P send the answer “in pieces”:
�  F2(row 1). F2(row 2). And so on. Requires √n communication.

�  V exactly tracks a row at random (denoted in yellow) so if P lies about
any piece, V has a chance of catching her. Requires space √n.

0

Frequency Square X

2 4

0 3 3

0 2 0

P sends

Slide derived from [McGregor 10]

20=22+42

18=32+32

4=22

�  Problem: If P lies in only one place, V has small chance of catching her.

�  We would like the following to hold: if P lies about even one piece,
she will have to lie about many.

�  Solution: Have P commit (succinctly) to second frequency moment

of rows of an error-corrected encoding of the input.

�  Need V to evaluate any row of the encoding in a streaming fashion.
Can do this for “low-degree extension” code. Note: this code is
systematic, meaning the first n symbols are just the input itself.

0

Error-corrected Encoding
of Frequency Square X

2 4

0 3 3

0 2 0

H sends

20=22+42

18=32+32

0 -1 -5

0 -6 -12

0 -13 -21

26=(-1)2+(-5)2

Input is
embedded in

encoding
(low-degree
extension)

These values
will all lie on
low-degree
polynomial s(X)

4=22

180=(-6)2+(-12)2

610=(-13)2+(-21)2

