
COSC 544 Probabilistic Proof Systems 10/31/17

GGPR: A Linear PCP Of Size |F|O(S)

Lecturer: Justin Thaler

1 A Linear PCP Of Size O(|F|S) for Arithmetic Circuit-SAT

In a breakthrough result, Gennaro, Gentry, Parno, and Raykova [GGPR13] gave a linear PCP for non-
deterministic circuit evaluation of size O(|F|S), referring to their linear PCP as a Quadratic Arithmetic
Program (QAP).1,2 The QAPs of [GGPR13] have been highly influential, and form the foundation of many
of the implementations of argument systems.

QAPs use the same constraint-based formalism as the linear PCP described in the previous lecture.
Recall that there are `= S+ |y|− |w| constraints Qi(W ) = 0, where Qi is a polynomial in the variables of W
that always takes one of three forms. The three forms are: (1) Wi− ci = 0 for some constant ci depending
on the input x or outputs y, (2) Wi− (Wj ·Wk) = 0, or (3) Wi− (Wj +Wk) = 0. A crucial observation is
that in all three cases, Qi can always be written in the form f1,i(W ) · f2,i(W )− f3,i(W ) = 0, for some linear
functions f1,i, f2,i, and f3,i. This is a stronger notion of structure than was exploited in the previous lecture
(the previous lecture only exploited that each constraint is a polynomial in W of total degree at most 2).

Let H := {σ1, . . . ,σ`} be arbitrary distinct values in F.
For each gate i in C, define three univariate polynomials Ai, Bi, and Ci, each of degree `−1, via interpo-

lation as follows.
Ai(σ j) = the coefficient ofWi in f1, j.

Bi(σ j) = the coefficient ofWi in f2, j.

Ci(σ j) = the coefficient ofWi in f3, j.

Finally, define via interpolation 3 univariate polynomials of degree S−1 via interpolation as follows.

A′(σ j) = the constant term in f1, j.

B′(σ j) = the constant term in f2, j.

C′(σ j) = the constant term in f3, j.

Let gx,y,W (t) denote the univariate polynomial

gx,y,W (t)=

((
∑

gates i in C
Wi ·Ai(t)

)
+A′(t)

)
·

((
∑

gates i in C
Wi ·Bi(t)

)
+B′i(t)

)
−

((
∑

gates i in C
Wi ·Ci(t)

)
+C′i(t)

)
.

By design, gx,y,W vanishes on H if and only all constraints are satisfied, i.e., if and only if W is a correct
transcript for {C,x,y}.

1The argument system of Gennaro et al. can be understood in multiple ways, and [GGPR13] did not present it within the
framework of linear PCPs. Subsequent work [SBV+13, BCI+13] identified QAPs as an example of a linear PCP.

2The focus of Gennaro et al. [GGPR13] was on the development of non-interactive argument systems satisfying various addi-
tional properties, such as zero-knowledge. We will describe such non-interactive arguments in the next lecture. The QAP-based
interactive argument from this section was described and implemented by Setty et al. [SBV+13].
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Note that checking whether checking whether gx,y,W vanishes on H is very similar to the core statement
checked in our MIP from Lecture 14. There, we checked that a multivariate polynomial derived from
x,y, and W vanished on all Boolean inputs. Here, we are checking whether a univariate polynomial gx,y,W

vanishes on all inputs in a pre-specified set H. We will rely on the following key lemma.

Lemma 1.1 ( [BS08]). Let hH(t) = ∏
`
j=1(t−σ j). A degree d univariate polynomial gx,y,W (z) vanishes on

H if and only if the polynomial hH(t) divides gx,y,W (z), i.e., if and only if there exists a polynomial h∗ with
deg(h∗)≤ d−|H| such that gx,y,W (z) = hH(z) ·h∗(z).

Proof. If gx,y,W (z) = hH(z) ·h∗(z), then for any α ∈ H, it holds that gx,y,W (α) = hH(α) ·h∗(α) = 0 ·α = 0,
so gx,y,W indeed vanishes on H.

For the other direction, observe that if gx,y,W (α) = 0, then the polynomial (z−α) divides gx,y,W (z). It
follows immediately that if gx,y,W vanishes on H, then gx,y,W is divisible by hH .

By inspection, the degree of the polynomial gx,y,W is at most d = 2(`−1), where `= |S|+ |y|−|w| is the
number of constraints. By Lemma 1.1, to convince V that gx,y,Z vanishes on H, the proof merely needs to
convince V that gx,y,Z(z) = hH(z) ·h∗(z) for some polynomial h∗ of degree d−|H|= `−1. To be convinced
of this, V can pick a random point r ∈ F and check that

gx,y,Z(r) = hH(r) ·h∗(r). (1)

Indeed, because any two distinct degree (`− 1) polynomials can agree on at most d + 1 points, if gx,y,Z 6=
hH ·h∗, then this equality will fail with probability at least 1− (`−1)/|F|.

To this end, a correct proof represents two linear functions. The first is fcoeff(h∗), where coeff(h∗) denotes
the vector of coefficients of h∗ The second is fW . Note that fcoeff(h∗)(1,r,r2, . . . ,rS)= h∗(r), so V can evaluate
h∗(r) with a single query to the proof. Similarly, V can evaluate gx,y,W at r by evaluating fW at the three
vectors (A1(r), . . . ,AS(r)), (B1(r), . . . ,BS(r)), and (C1(r), . . . ,CS(r)).

Just as in the linear PCP of the previous section, the verifier also has to perform linearity testing on
fcoeff(h∗) and fW . The verifier must also replace the four queries described above with two queries each to
ensure that all queries are uniformly distributed.

Protocol Costs. The costs of the argument system obtained by combining QAPs with the commitment
protocol are summarized in Table 1. The honest prover P needs to perform the following steps, assuming
P knows a witness w for C. First, evaluate C gate-by-gate to find a correct transcript W . Second, compute
the polynomial gx,y,W (t). Third, divide gx,y,W by hH to find the quotient polynomial h∗. Fourth run the linear
commitment/reveal protocol described in Lecture 16, to commit to fcoeff(h∗) and fW and answer the verifier’s
queries.

The first and fourth steps can clearly be done in time O(S). The second step can be done in time
O(S log2 S) using standard FFT-based multipoint interpolation algorithms. The third step can be done in
time O(S logS) using FFT-based polynomial division algorithms.
V’s time and P’s time are both Θ̃(S), but if V is simultaneously verifying C’s execution over a large

batch of inputs, then the Θ(S) cost for V can be amortized over the entire batch. Total communication from
V to P is Θ(S) as well (this cost can also be amortized), but the communication in the reverse direction is
just a constant number of field elements per input.
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V →P Communication P → V Communication Queries V time P time
O(S) field elements O(1) field elements O(1) Õ(S) Õ(S)

Table 1: Costs of the argument system from Section 1 when run on a non-deterministic circuit C of size S. The Õ
notation hides polylogarithmic factors in S. Note that the verifier’s cost and the communication cost can be amortized
when outsourcing C’s execution on a batch of inputs. The stated bound on P’s time assumes P knows a witness w for
C.
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