
COSC 544 Probabilistic Proof Systems 10/11/17

A First Succinct Argument
Lecturer: Justin Thaler

1 Overview of This Lecture

Last lecture we saw an efficient way to turn any computer program into an equivalent instance of the arith-
metic circuit satisfiability problem. Roughly, we showed that the problem of checking whether a random
access machine M taking at most T steps on an input of size x produces output y can be reduced to a circuit
satisfiability instance (C,x,y), where C has size close to T and depth close to O(logT). That is, M outputs y
on x if and only if there exists a w such that C(x,w) = y.

This transformation is only useful in the context of interactive proofs and arguments if we can design
efficient proof systems for solving instances of circuit satisfiability. Today, we will see our first example of
such an argument system, by combining the GKR protocol with a cryptographic primitive called a polyno-
mial commitment scheme.

2 A trivial approach to argument systems for circuit satisfiability

A trivial way to use the GKR protocol to solve circuit satisfiability is to have the prover explicitly send to
the verifier the witness w satisfying C(x,w) = y, and then running the GKR protocol to check that indeed
C(x,w) = y. The problem with this simple approach is that in many settings w can be very large. For
example, in the transformation from last lecture, the witness w is supposed to be a transcript of M’s entire
execution on input x, and hence w has size at least T . This means that in the time that the verifier would take
to read the whole witness, the verifier could have run M on x without any help from the prover.

3 Succinct Arguments

If an argument system avoids the above bottleneck of sending the entire witness to the verifier, then it is
called succinct. Formally, an argument system for circuit satisfiability is succinct if the total communication
is sublinear in the size of the witness |w|.1. Succinctness is important for a variety of reasons:

• Shorter proofs are always better. For example, in applications to block-chains that we will see later
in the course, proofs must be stored in the block chain permanently. If proofs are long, it drastically
increases the global storage requirements of the block chain.

• In some applications, witnesses are naturally large. For example, consider a hospital that publishes
cryptographic hash of a massive database w of patient records, and later wants to prove that it ran a
specific analysis on w.

• As mentioned above, known transformations from computer programs to circuit satisfiability produce
circuits with very large witnesses.

1Some works use succinctness more informally to broadly refer to argument systems with short proofs

1

• The ability to use very large witnesses also makes it easier to generate circuits with “regular” wiring
patterns, which is essential for obtaining argument systems that do not involve an expensive pre-
processing phase for the verifier. For example, the ability to use large witnesses makes it easier to
generate circuits such that ãddi and m̃ulti can be evaluated in logarithmic time at any point. When
applying to GKR protocol to such circuits, one avoids a pre-processing phase (see Lecture 8 notes).

The next several lectures will describe a variety of approaches to obtaining succinct arguments. This
lecture will cover one specific approach.

4 A First Succinct Argument

4.1 The Approach

The approach of this lecture is to “simulate” the trivial application of the GKR protocol to circuit satisfia-
bility described in Section 2, but without requiring the prover to explicitly send w to the verifier. We will
accomplish this by using a cryptographic primitive called a polynomial commitment scheme. The idea of
combining the GKR protocol with polynomial commitment schemes to obtain succinct arguments was first
put forth in very recent work of Zhang et al. [ZGK+17].

Polynomial Commitment Schemes Roughly speaking, a polynomial commitment scheme allows a prover
to commit to a low-degree polynomial w̃ and later reveal w̃(r) for a point r of the verifier’s choosing. Even
though in the commitment phase the prover does not send all of w to the verifier, the commitment still
effectively binds the prover to a specific w. That is, at a later time, the verifier can ask the prover to reveal
w̃(r) for any desired r of the verifier’s choosing, and the prover is effectively forced to reveal w̃(r) for a fixed
polynomial w̃ determined at the time of the original commitment.

Combining Polynomial Commitment Schemes and the GKR Protocol When applying the GKR protocol
to check that C(x,w) = y, the verifier does not need to know any information whatsoever about w until the
very end of the protocol, when (as explained in Section 4.2.1 below) the verifier merely needs to know w̃(r)
for a randomly chosen input r.

So rather than having the prover send w in full to the verifier as in Section 2, we can have the prover
merely send a commitment to w̃ at the start of the protocol. The prover and verifier can then happily apply
the GKR protocol to the claim that C(x,w) = y, ignoring the commitment entirely until the very end of the
protocol. At this point, the verifier needs to know w̃(r). The verifier can force the prover to reveal this
quantity using the commitment protocol.

Because the polynomial commitment scheme bound the prover to a fixed low-degree polynomial w̃, the
soundness analysis of the argument system is essentially the same as if the prover had sent all of w explicitly
to the verifier at the start of the protocol as in Section 2.

4.2 Details

4.2.1 What The GKR Verifier Needs to Know About The Witness

In this Subsection, we justify the assertion from Section 4.1 that the only information the verifier needs
about w in order to apply the GKR protocol to check that C(x,w) = y is w̃(r1, . . . ,rlogn).

Let z denote the concatenation of x and w. Let us assume for simplicity throughout this section that x
and w are both of length n, so that each entry of z can be assigned a unique label in {0,1}1+logn, with the ith
entry of x assigned label (0, i), and the ith entry of w assigned label (1, i).

2

Figure 1: A hash tree. Image source: http://commons.wikimedia.org/wiki/File:Hash_tree.png

A key observation is that when applying the GKR protocol to check that C(z) = y, the verifier doesn’t
need to know the exact value of z. Rather, the verifier only needs to know z̃(r0, . . . ,rlogn) at a single, randomly
chosen input (r0, . . . ,rlogn). Moreover, the verifier doesn’t even need to know z̃(r) until the very end of the
protocol, after the interactive with the prover has finished. We now explain that in order to calculate z̃(r), it
suffices for the verifier to know w̃(r1, . . . ,rlogn).

It is straightforward to check that

z̃(r0,r1, . . . ,rlogn) = r0 · x̃(r1, . . . ,rlogn)+(1− r0) · w̃(r1, . . . ,rlogn). (1)

Indeed, the left hand side and right hand side are both multilinear polynomials, and they agree whenever
(r0 . . .rlogn) ∈ {0,1}1+logn; hence, they must be the same polynomial.

Equation (1) implies that, given w̃(r1, . . . ,rlogn), the verifier can evaluate z̃(r0, . . . ,rlogn) in O(n) time,
since the verifier can evaluate x̃(r1, . . . ,rlogn) in O(n) time (cf. Lemma 1.8 of Lecture 4).

4.2.2 A First Polynomial Commitment Scheme

There are a number of ways to design polynomial commitment schemes. In this lecture, we describe a simple
commitment scheme that is likely folklore, and was recently explicitly proposed by Yael Kalai [Kal17].
This scheme is impractical owing to a large prover runtime, but it provides a clean and simple introduction
to cryptographic commitment schemes. We will see more efficient examples of polynomial commitment
schemes later in the course.

The scheme makes essential use of two important concepts: Merkle Trees and low-degree tests.

Merkle Trees. The scheme makes essential use of a concept known as a Merkle tree or hash tree [Mer79].
A Merkle tree can be used to design a string-commitment scheme, which allows a sender to send a short
commitment to a string s ∈ Σn for any finite alphabet Σ. Later, the sender can efficiently reveal the value of
any entries of s that are requested by the receiver.

Specifically, a Merkle tree makes use of a collision-resistant hash function h. The leaves of the treee are
hashes of data blocks (i.e., each leaf is a symbol of a string s), and every internal node of the tree is assigned
the hash of its two children. Figure 1 provides a visual depiction of a hash tree.

3

http://commons.wikimedia.org/wiki/File:Hash_tree.png

One obtains a string-commitment protocol from a Merkle tree as follows. In the commitment step, the
sender commits to the string s by sending the root of the hash-tree (this need be just O(logn) bits assuming
an exponentially hard collision-resistant hash function).

If the sender is later asked to reveal the ith symbol in s, the sender sends the value of the ith leaf in the
tree (i.e., si), as well as the value of every node v along the root-to-leaf path for si, and the sibling of each
such node v. We call all of this information the authentication information for si. The receive checks that
the hash of every two siblings sent equals the claimed value of their parent.

Since the tree has depth O(logn), this is just O(log2 n) bits of communication per symbol of s that is
revealed.

The scheme is binding in the following sense. For each index i, there is at most one value si that the
sender can successfully reveal without finding a collision under the hash function h. This is because, if the
sender is abel to send valid authentication information for two different values si and s′i, then there must
be at least one collision under h along the root-to-leaf path connection the root to the ith leaf, since the
authentication information for both si and s′i result in the same root hash value, but differ in at least one leaf
hash value.

Low-Degree Tests. Suppose a receiver is given oracle access to a giant string s, which is claimed to contain
all evaluations of an m-variate function over a finite field F (note that there are |F|m such inputs). A low-
degree test allows one determine whether or not the string is consistent with a low-degree polynomial, by
looking at only a tiny fraction of symbols within the string.

Unfortunately, because the low-degree test only looks at a tiny fraction of s, it cannot determine whether
s is exactly consistent with a low-degree polynomial (imagine if s were obtained from a low-degree poly-
nomial p by changing its value on only one input. Then unless the test gets lucky and chooses the input on
which s and p disagree, the test has no hope of distinguishing between s and p itself).

What the low-degree test can guarantee, however, is that s is close (in Hamming distance) to a low-
degree polynomial. That is, if the test passes with probability γ , then there is a low-degree polynomial that
agrees with s on close to a γ fraction of points.

Typically, low-degree tests are extremely simple procedures, but they are often very complicated to
analyze (and existing analyses often involve very large constants that result in weak guarantees unless the
field size is very large). An example of such a low-degree test is the point-versus-line test of Rubinfeld and
Sudan, with a tighter analysis subsequently given by by Arora and Sudan [AS03]. In this test, one evaluates
s along a randomly chosen line in Fm, and confirms that s restricted to this line is consistent with a univariate
polynomial of degree at most m. Clearly, if the string s agrees perfectly with a multilinear then this test will
always pass. The works [RS96,AS03] roughly show that if the test passes with probability γ , then there is a
low-degree polynomial that agrees with s at close to a γ fraction of points.2

A Polynomial Commitment Scheme by Combining Merkle Trees and Low-Degree Tests. Let w̃ : Flogn→
F be a (logn)-variate multilinear polynomial over F. Let s be the string consisting of |F|logn the string con-
sisting of all evaluations of w̃. One obtains a polynomial commitment scheme by applying the Merkle-tree
based string commitment scheme of Section 4.2.2, and then applying a low-degree test to s (i.e., if the point-
versus-line low-degree test is used, then the receiver picks a random line in Flogn, asks the sender to provide
authentication information for all points along the line, and checks that the revealed values are consistent
with a univariate polynomial of degree at most logn).

The guarantee of this polynomial commitment scheme is the same as in the string-commitment scheme

2More precisely, there is a low-degree polynomial that agrees with s on at least a γ−mO(1)/|F|Ω(1) fraction of points. This is
γ−o(1) as long as |F| is super-polynomially large in m.

4

of Section 4.2.2, except that the use of the low-degree test ensures that if the sender passes all of the receivers
checks with probability γ , then not only is the sender bound to a fixed string s, but there is some low-degree
polynomial that agrees with s at close to a γ fraction of points.

This guarantee is enough to use the polynomial commitment scheme in conjunction with the GKR
protocol applied to the claim C(x,w) = y, as outlined in Section 4.1. Specifically, if the verifier’s checks in
the polynomial commitment scheme pass with probability at least (say) 1/2, then the prover is bound to a
string s such that there is a multilinear polynomial p that agrees with s on close to a 1/2 fraction of points.
As long as the point (r1, . . . ,rlogn) at which the verifier in the GKR protocol evaluates s is not one of the
“bad” points on which s and p disagree, then the soundness analysis of the GKR protocol applies exactly as
if the prover were bound to the multilinear polynomial p itself.

This is enough to argue that if the prover passes all of the verifier’s checks with probability significantly
larger than 1/2, then indeed there exists a w (namely, the restriction of p to the domain {0,1}logn) such that
C(x,w) = y. The soundness error can be reduced from roughly 1/2 to arbitrarily close to 0 by repeating the
protocol many times and rejecting if any of the executions ever results in a rejection.

Costs of this succinct argument system. In addition to the communication involved in applying the GKR
protocol to check that C(x,w) = y, the argument system above requires additional communication for the
prover to commit to w̃ and execute the point-versus-line low-degree test. Assuming an exponentially hard
collision-resistant hash function, the total communication cost due to the polynomial commit scheme is
O(|F| · log2 n) bits (the cost is dominated by the cost of the prover revealing the value of w̃ on all |F| points
along a line chosen by the verifier). This is O(n) as long as |F| ≤ n/ log2 n (note that, while in practice we
prefer to work over large fields, the soundness error of the GKR protocol is O(d log |C|), so working over a
field of size O(n/ log2 n) is enough to ensure soundness in the GKR protocol as long as d log |C|� n/ log2 n.)

The verifier’s runtime is the same as in the GKR protocol, plus the time required to play its part of
the polynomial commit scheme. Assuming the collision-resistant hash function h can be evaluated in con-
stant time, and the field size is O(n/ log2 n), the verifier spends O(n) to execute its part of the polynomial
commitment scheme.

The prover’s runtime in the above argument system is dominated by the time required to commit to w̃.
This requires building a Merkle tree over all possible evaluations of w̃, of which there are |F|logn. If we work
over a field of size (say) O(n), then this runtime is nO(logn)), which is superpolynomial. So, as described,
this polynomial commitment scheme is asymptotically efficient for the verifier, but not the prover.

Remark 1. It is possible to reduce the prover’s runtime to O(nc) for some constant c in the above argument
system. The way to do this is to tweak the parameters within the GKR protocol to enable working over a
much smaller field, of size O(logn/ log logn). This will be explained in more detail in a couple of lectures
when we talk about designing succinct arguments from multi-prover interactive proofs.

References

[AS03] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications. Combina-
torica, 23(3):365–426, 2003.

[Kal17] Yael Kalai. A new perspective on delegating computation. Talk at Workshop on Probabilistically
Checkable and Interactive Proofs @ STOC 2017 Theory Fest, 2017.

[Mer79] Ralph Merkle. Secrecy, authentication, and public key systems. PhD thesis, Electrical Engineer-
ing, Stanford, 1979.

5

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

[ZGK+17] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos Pa-
pamanthou. vsql: Verifying arbitrary SQL queries over dynamic outsourced databases. In 2017
IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017,
pages 863–880, 2017.

6

	Overview of This Lecture
	A trivial approach to argument systems for circuit satisfiability
	Succinct Arguments
	A First Succinct Argument
	The Approach
	Details
	What The GKR Verifier Needs to Know About The Witness
	A First Polynomial Commitment Scheme

