
COSC 544 Probabilistic Proof Systems 10/19/17

PCPs and Succinct Arguments
Lecturer: Justin Thaler

1 PCPs: Definitions and Relationship to MIPs

In an MIP, if a prover is asked multiple questions by the verifier, then the prover can behave adaptively,
which means that the prover’s responses to any question can depend on the earlier questions asked by the
verifier. This adaptivity was potentially good for efficiency (since it means that the prover only has to “think
about” its answers to questions that are actually asked), but potentially bad for soundness, since the ability
to behave adaptive makes it harder to “pin down” the prover(s) in a lie.

In contrast, Probabilistically Checkable Proofs (PCPs) have non-adaptivity baked directly into the defi-
nition, by considering a verifier V who is given oracle access to a static proof string π . Since π is static, V
can ask several queries to π , and π’s response to any query qi can depend only on qi, and not on q j for j 6= i.

Definition 1.1. A probabilistically checkable proof system (PCP) for a language L ⊆ {0,1}∗ consists of a
probabilistic polynomial time verifier V who is given access to an input x, and oracle access to a proof string
π ∈ Σ`. The PCP has completeness error δc and soundness error δs if the following two properties hold.

1. (Completeness) For every x ∈ L, there exists a proof string π ∈ Σ` such that Pr[Vπ(x) = accept] ≥
1−δc.

2. (Soundness) For every x /∈ L and every proof string π ∈ Σ`, Pr[Vπ(x) = accept]≤ δs.

` is referred to as the size of the proof, Σ as the alphabet used for the proof. We think of all of these
parameters as functions of the input size n. We refer to the time required to generate the honest proof string
π as the prover time of the PCP.

Remark 1. The PCP model was introduced by Fortnow, Rompel, and Sipser [FRS88], who referred to it as
the “oracle” model (we used this terminology in Lemma 1.2 of Lecture 13). The term Probability Checkable
Proofs was coined by Arora and Safra [AS98].

Remark 2. Traditionally, the notation PCPδc,δs [r,q]Σ is used to denote the class of languages that have a
PCP verifier with completeness error δc, soundness error δs, and in which the verifier uses at most r random
bits, and makes at most q queries to a proof string π over alphabet Σ. This notation is motivated in part by
the importance of the parameters r, q, and Σ in applications to hardness of approximation. In the setting
of verifiable computing, the most important parameters are the verifier’s runtime and the prover’s runtime.
Note however that the proof size ` is a lower bound on the prover’s runtime in any PCP system (since it
takes time at least ` to write down a proof of length `). Hence, obtaining a PCP with a small proof size is
necessary, but not sufficient, for developing a PCP system with an efficient prover.

PCPs and MIPs are closely related: any MIP can turned into a PCP, and vice versa. However, both
transformations can result in a substantial increase in costs.

The easier direction is turning an MIP into a PCP. This simple transformation dates back to Fortnow,
Rompel, and Sipser, who introduced the PCP model, albeit under a different name.
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Lemma 1.2. Suppose L⊆ {0,1}∗ has a k-prover MIP in which V sends exactly one message to each prover,
with each message consisting of at most rQ bits, and each prover sends at most rA bits in response to the
verifier. Then L has a k-query PCP system over alphabet Σ = [2rA ], where the proof size is k ·2rQ , with the
same verifier runtime and soundness and completeness errors as the MIP.

Sketch. For every prover Pi : i ∈ k in the MIP, the PCP proof has an entry for every possible message that V
might send to Pi. The entry is equal to the the prover’s response that message from V’s. The PCP verifier
simulates the MIP verifier, treating the proof entries as prover answers in the MIP.

Remark 3. It is also straightforward to obtain a PCP from a k-prover MIP in which V sends multiple
messages to each prover: if prover Pi is sent m messages in the MIP, obtain a new MIP by replacing Pi with
m provers Pi,1, · · · ,Pi,m who are each sent one message (the message to Pi, j being the concatenation of the
first j messages sent to Pi). Then apply Lemma 1.2 to the resulting (m · k)-prover MIP.

Lemma 1.2 highlights a fundamental difference between MIPs and PCPs: in a PCP, the prover must pre-
compute a response for every possible query of the verifier, which will result in a very large prover runtime
unless the number of possible queries from the verifier is small. Whereas in an MIP, the provers only need
to compute responses “on demand”, ignoring any queries that the verifier might have asked, but did not.
Hence, the MIP =⇒ PCP transformation of Lemma 1.2 may cause a huge blowup in prover runtime.

Lemma 1.2 of Lecture 13 gave a transformation from a PCP to a 2-prover MIP, but this transformation
was also expensive. In summary, the tasks of constructing efficient MIPs and PCPs are incomparable. On the
one hand, PCP provers are inherently non-adaptive, but they must pre-compute the answers to all possible
queries of the verifier. MIP provers only need to compute answers “on demand”, but they can behave
adaptively, and while there are generic techniques to force them to behave non-adaptively, these techniques
are expensive.

2 A First PCP, From an MIP

In light of Lemma 1.2, it is reasonable to ask whether the MIP of Lecture 14 can be transformed into a
useful PCP for non-deterministic circuit evaluation. The answer is yes, but the costs of the PCP are not quite
optimal.

Suppose we are give an instance (C, x, y) of arithmetic circuit satisfiability. Recall that in the MIP of
Lecture 14, the verifier used the first prover to run the sum-check protocol to a certain O(logS)-variate
polynomial hx,y,Z over F. The verifier used the second prover to apply a low-degree test to the O(logS)-
variate polynomial Z. which required the verifier to send P2 a random plane in FlogS. In order to achieve a
soundness error of, say, 1/ log(n), it was sufficient to work over a field F of size polylog(S).

The total number of bits that the verifier sent to the each prover was rQ =Θ(logS log |F|)=Θ(logS log logS),
since the verifier had to send a field element for each variable over which hx,y,Z was defined. Applying
Lemma 1.2 to transform this MIP into a PCP, we obtain a PCP of length 2rQ = SO(log logS). Assuming
S = poly(n), we obtain a PCP in which the proof string can be generated in nO(log logn) time, which is slightly
superpolynomial. On the plus side, the verifier runs in linear time O(n).

However, by tweaking the parameters used within the MIP itself, we can reduce rQ from O(logS log |F|)
to O(logS). Recall that within the PCP, each gate in C was assigned a binary label, and defined the functions
addi, multi, io, I, and W to take as input O(logS) binary variables representing the binary labels of one
or more gates. The polynomial hx,y,Z was then defined in terms of the multilinear extensions of these
functions. This led to a highly efficient MIP, in which the provers’ runtime was O(S logS). But by defining
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Communication Queries V time P time
polylog(S) bits O(logS/ log logS) O(n+polylog(S)) poly(S)

Table 1: Costs of PCP of Section 2 (obtained from the MIP of Lecture 14), when run on a non-deterministic circuit C
of size S. The stated bound on P’s time assumes P knows a witness w for C.

the polynomials to be over Ω(logS) many variables, rQ became slightly super logarithmic, resulting in a
PCP of superpolynomial size.

Instead, we can assign each gate in C a label in base b, for b = log(S)/ log log(S). Each gate label
consists of only b digits in base b, since bb = S. Hence, we can redefine the functions addi, multi, io, I,
and W to take as input O(b) = O(log(S)/ log log(S)) variables representing the b-ary labels of one or more
gates, rather than having them take as input O(logS) variables.

We can then define hx,y,Z exactly as before, except higher-degree extensions of addi, multi, io, I, and
W must be used in the definition, since the multilinear extensions of the functions may not exist. Specif-
ically, the functions each have a suitable extension of degree at most b in each variable. Compared to the
MIP, the use of the higher-degree extensions increases the degrees of all of the polynomials exchanged
in the sum-check protocol and in the low-degree test by polylog(S) factors, but soundness still holds if
a F of size polylog(S) is used, for a sufficiently large polynomial in logS. Hence, rQ = O(b · log |F|) =
O((log(S)/ log log(S)) · log logS) = O(logS).

This yields a PCP for non-deterministic circuit evaluation in which the prover’s runtime is poly(S), the
verifier’s is O(n), the number of queries the verifier makes to the proof oracle is O(log(S)/ log log(S)). The
alphabet size is |Σ| = 2polylog(S), which means that each symbol of the alphabet requires polylog(S) bits to
represent. Hence all of the answers to the verifier’s queries can be communicated in polylog(S) bits in total.

Remark 4. To clarify, the use of labels in base b = 2 rather than base b = log(S)/ log log(S) is the superior
choice in interactive settings such as IPs and MIPs. The reason is that binary labels allows P to manipulate
and send polynomials of degree O(1) in each round. In the context of the GKR protocol, the MIP described
in the previous section, and other interactive protocols that appear in the literature [BC12], the difference
between the two parameter settings is a factor of at least b, and sometimes b2, in both the provers’ runtime
and the total communication costs.

To recap, we have obtained a PCP for arithmetic circuit satisfiability with a linear time verifier, and a
prover who can generate the proof in time polynomial in the size of the circuit. But to get a PCP that has
any hope of being practical, we really need the prover time to be close to linear in the size of the circuit.
Obtaining such PCPs is quite challenging, and we defer treatment of how to achieve this until a later lecture.

3 Compiling a PCP Into a Succinct Argument

We saw in Lecture 11 that one can turn the GKR interactive proof circuit evaluation into a succinct argument
for circuit satisfiability: at the start of the argument, the prover sends a cryptographic commitment to the
multilinear extension w̃ of a witness w; the prover and verifier then run the GKR protocol to check that
C(x,w) = y, and the verifier checks the prover’s final claim about w̃(r) for a random point r in the GKR
protocol against the corresponding claim derived from the commitment.

The polynomial commitment scheme described in Lecture 11 consisted of two pieces; a set-commitment
scheme using a Merkle tree, which allowed the prover to commit to some fixed function claim to equal w̃,
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and a low-degree test, which allowed the verifier to check that the function committed to was indeed (close
to) a low-degree polynomial.

If our goal is to transform a PCP rather than an interactive proof into a succinct argument, we can use a
similar approach, but omit the low-degree test. Specifically, Kilian [Kil92] (see also Micali [Mic00]) showed
that any PCP can be combined with Merkle-hashing to yield four-message argument systems for all of NP,
assuming that collision-resistant hash functions exist. The prover and verifier runtimes are the same as in the
underlying PCP, up to low-order factors, and the total communication cost is just O(log2 n) per PCP query,
assuming an exponentially hard collision-resistant hash function.

The idea is the following. The argument system consists of two phases: commit and reveal. In the
commit phase, the prover writes down the PCP π , but doesn’t send it to the verifier. Instead, the prover
builds a Merkle tree, with the symbols of the PCP as the leaves, and sends the root hash of the tree to the
verifier. This binds the prover to the string π . In the reveal phase, the argument system verifier simulates the
PCP verifier to determine which symbols of π need to be examined (call the locations that the PCP verifier
queries q1, . . . ,qk). The verifier sends q1, . . . ,qk to the prover to P , and the prover sends back the answers
π(q1), . . . ,π(qk), along with their authentication paths.

Completeness can be argued as follows. If the PCP satisfies perfect completeness, and then whenever
there exists a w such that C(x,w) = y, there is always some proof π that would convince the PCP verifier
to accept. Hence, if the prover commits to π in the argument system, and executes the reveal phase as
prescribed, the argument system verifier will also be convinced to accept.

Soundness can be argued as follows. The analysis of Lecture 12 showed that the use of the Merkle tree
binds the prover to a fixed string π ′, in the sense that after the commit phase, for each possible query qi,
there is at most one value π ′(qi) that the prover can successfully reveal without finding a collision under the
hash function used to build the Merkle tree. Hence, if the argument system prover convinces the argument
system verifier to accept, π ′ would convince the PCP verifier to accept. Soundness of the argument system
is then immediate from soundness of the PCP system.

Remark 5. In order to turn a PCP into a succinct argument, we used a Merkle tree, and did not need to
use a low-degree test. This is in contrast to Lecture 12, where we turned an interactive proof into a succinct
argument by using a polynomial commitment scheme; the polynomial commitment scheme given in Lecture
12 combined a Merkle tree and a low-degree test. The low-degree test tends to be concretely quite expensive;
one would not actually want to use the polynomial commitment scheme from Lecture 12 in practice. In later
lectures, we will describe new, more efficient approaches to designing polynomial commitment schemes
that avoid low-degree tests entirely.

However, the PCP approach to building succinct arguments has not “really” gotten rid of the low-degree
test; it has just pushed it out of the commitment scheme and “into” the PCP. That is, short PCPs are them-
selves typically based on low-degree polynomials, and the PCP itself typically makes use of a low-degree
test.

A difference between the low-degree tests that normally go into short PCPs and the low-degree tests
we’ve already seen is that short PCPs are typically based on low-degree univariate polynomials (whereas
efficient interactive proofs and MIPs are typically based on low-degree multivariate polynomials). So the
low-degree tests that go into short PCPs are targeted at univariate rather than multi-variate polynomials.
Low-degree univariate polynomials are often referred to as Reed-Solomon codes, which is why many papers
on PCPs refer to “Reed-Solomon PCPs”.
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