
COSC 544 Probabilistic Proof Systems 10/12/17

Introduction to MIPs
Lecturer: Justin Thaler

This lecture introduces the notions of multi-prover interactive proofs (MIPs). In the next lecture, we will see
a state of the art MIP.

While MIPs are of some interest in their own right, we will see later that they can be building blocks
for constructing succinct arguments. In particular, at the end of the next lecture, we briefly outlines how
to get a succinct argument from a state of the art MIP.1 We also cover them because of their historical
importance, and because the state of the art MIP in the next lecture exhibits several ideas that will recur in
more complicated forms later in the course.

1 MIPs: Definitions and Basic Results

Definition 1.1. A k-prover interactive proof protocol for a language L ⊆ {0,1}∗ involves k+ 1 parties: a
probabilistic polynomial time verifier, and k provers. The verifier exchanges a sequence of messages with
each prover; each prover’s message is a function of the input and the messages from V that it has seen so far.
The interaction produces a transcript t = (V(r),P1, . . . ,Pk)(x), where r denotes V’s internal randomness.
After the transcript t is produced, V decides whether to output accept or reject based on r, t, and x. Denote
by out(V,x,r,P1, . . . ,Pk) the output of verifier V on input x given prover strategies (P1, . . . ,Pk) and that
V’s internal randomness is equal to r.

The interactive proof system has completeness error δc and soundness error δs if the following two
properties hold.

1. (Completeness) There exists a tuple of prover strategies (P1, . . . ,Pk) such that for every x ∈ L,

Pr[out(V,x,r,P1, . . . ,Pk) = accept]≥ 1−δc.

2. (Soundness) For every x /∈ L and every tuple of prover strategy (P ′1, . . . ,P ′k),

Pr[out(V,x,r,P ′1, . . . ,P ′k) = accept]≤ δs.

Say that a k-prover interactive proof system is valid if δc,δs ≤ 1/3. The complexity class MIP is the
class of all languages possessing valid k-prover interactive proof systems, for some k = poly(n).

The MIP model was introduced by Ben-Or, Goldwasser, Kilian, and Wigderson [BGKW88]. It is crucial
in Definition 1.1 that each prover’s message is a function only of the input and the messages from V that
it has seen so far. In particular, Pi cannot tell P j what messages V has sent it, or vice versa, for any i 6= j.
If such “cross-talk” between Pi and P j were allowed, then it would be possible to simulate any MIP by a
single-prover interactive proof, and the classes MIP and IP would become equal.

It can be helpful to think of MIP as follows. The provers are like prisoners who are about to be in-
terrogated. The prisoners get placed in separate interrogation rooms. Prior to going into these rooms, the

1The approach to obtaining succinct arguments described in the next lecture has not been previously published; the only
published approach to turning MIPs into succinct arguments [BC12] makes use of a cryptographic primitive known as fully homo-
morphic encryption, which is currently impractical.

1

prisoners can talk amongst themselves, plotting a strategy for answering questions. But once they are placed
in the rooms, they can no longer talk to each other, and in particular prover i cannot tell the other provers
what questions the verifier is asking it. The verifier is like the interrogator, trying to determine if the prover’s
stories are consistent with each other, and with the claim being asserted.

The next section shows that, up to polynomial blowups in V’s runtime, 2-prover MIPs are just as expres-
sive as k-prover MIPs, for any k = poly(n).

1.1 What Does a Second Prover Buy?

Non-Adaptivity. In a single-prover interactive proof, the proverP is allowed to act adaptively, in the sense
that P’s response to the ith message mi sent from V is allowed to depend on the preceding i−1 messages.
Intuitively, the reason that MIPs are more expressive than IPs is that the presence of a second prover (who
does not know V’s messages to the first prover) prevents the first prover from behaving in this adaptive
manner. This can be formalized via the following easy lemma showing that the complexity class MIP is
equivalent to the class of languages satisfied by polynomial time randomized oracle machines. Here, an
oracle machine is essentially a computer that has query access to a giant string O that is fixed at the start
of the computer’s execution. The string O may be enormous, but the computer is allowed to look at any
desired symbol Oi (i.e., the ith symbol of O) in unit time. One can think of any query that the computer
makes to O as a question, and Oi as the answer. Because O is fixed at the start of the computer execution,
the answers are returned byO are non-adaptivem in the sense that the answer to the computer’s jth question
does not depend on which questions the computer asked previously.

Lemma 1.2 ([FRS88]). Let L be a language, and M a probabilistic Turing Machine such that x ∈ L=⇒∃
an oracle O such that MO accepts x with probability 1, and x 6∈ L =⇒ ∀ oracles O, MO rejects x with
probability at least 2/3. Then there is a (2-prover) MIP for L.

Remark 1. In Lemma 1.2, one can think of O as a giant purported proof that x ∈ L, and machine M
only looks at a small (i.e., polynomial) number of symbols of the proof. This is the same notion as a
probabilistically checkable proof, which we will introduce in a couple of lectures. In this terminology,
Lemma 1.2 states that any PCP with a polynomial time verifier can be turned into a 2-prover MIP with a
polynomial time verifier.

Proof. V simulates M, and every time M poses a query q to the oracle, V asks the query to P1, treating P1’s
response as O(q). At the end of the protocol, V picks a query q uniformly at random from all queries that
were posed to P1, and poses it to P2, rejecting if P2’s response to q does not equal P1’s. Finally, the protocol
is repeatedly independently 3m times, where m is (an upper bound on) the number of queries M poses to the
oracle on any input x ∈ {0,1}n. V accepts only if all instances accept.

Completeness is clear: if x ∈ L, there is some oracle O∗ causing M to accept x with probability 1. If
P1 and P2 respond to any query q with O∗(q), then V will accept x on each of the runs of the protocol with
probability 1.

For soundness, observe that since P2 is only asked a single query, we can treat P2 as an oracle O. That
is, P2’s answer on query q is a function only of q. On any run of the protocol, let q1, . . . ,qm denote the
queries that V poses to P1 on input x. On the one hand, if P1 ever answers a query qi differently thanO(qi),
the verifier will pick that query to pose to P2 and reject, with probability at least 1/m. On the other hand, if
P1 answers every query qi with O(qi), then V will reject with probability at least 2/3 because MO rejects
with that probability. Therefore, V rejects on each run of the protocol with probability at least 1/m, and
hence V rejects on at least one run of the protocol with probability at least 1− (1−1/m)3m > 2/3.

2

The same argument implies that any k-prover MIP (with completeness error at most δc ≤ 1/(9m), where
m is the total number of queries asked) can be simulated by a 2-prover MIP [BGKW88]: in the simulation,
V poses all of the questions from the k-prover MIP to P1, then picks a question at random and pose it P2,
rejecting if the answers do not agree. P2 can be treated as an oracle, and if P1 answers even a single query qi

“non-adaptively” (i.e. different than how P2 would answer), the probability this is detected is at least 1/m.
The whole 2-prover protocol must be repeated Ω(m) times to drive the soundness error from 1/m down to
1/3.

In summary, one can both force non-adaptivity and reduce the number of provers to 2 by posing all
queries to P1 and choosing one of the queries at random to pose to P2. While this conveys much of the
intuition for why MIPs are more expressive than IPs, the technique is very expensive in practice, due to
the need for Ω(m) repetitions (typically, m is on the order of logn, and can easily be in the hundreds
in implementations). Fortunately, the MIP that we describe in the next lecture requires only two provers
without the need for repetition to force non-adaptivity or reduce the number of provers to 2.

But What Does Non-Adaptivity Buy? We will see next lecture that non-adaptivity buys succinctness.
That is, we will give a MIP for arithmetic circuit satisfiability in which the total communication and verifier
runtime is sublinear in the size of the witness w.

This should not be surprising, as we saw essentially the same phenemenon in the previous lecture. There,
we used a polynomial commitment scheme to bind the prover to a multilinear polynomial w̃ that was fixed
at the start of the interaction with the verifier. In particular, the polynomial commitment scheme forced the
prover to tell the verifier w̃(r), without allowing the prover to “change its answer” based on the interaction
with the verifier.

References

[BC12] Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover interactive proofs
and their efficiency benefits. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO,
volume 7417 of Lecture Notes in Computer Science, pages 255–272. Springer, 2012.

[BGKW88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover interactive
proofs: How to remove intractability assumptions. In Janos Simon, editor, Proceedings of the
20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA,
pages 113–131. ACM, 1988.

[FRS88] Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-power interactive
protocols. In Structure in Complexity Theory Conference, 1988. Proceedings., Third Annual,
pages 156–161. IEEE, 1988.

3

	MIPs: Definitions and Basic Results
	What Does a Second Prover Buy?

