
Justin Thaler
Graham Cormode and
Michael Mitzenmacher

Streaming Graph Computations with
a Helpful Advisor

Data Streaming Model
  Stream: m elements from universe of size n

  e.g., S=<x1, x2, ... , xm> = 3,5,3,7,5,4,8,7,5,4,8,6,3,2, …

• Goal: Compute a function of stream, e.g., median, number of
distinct elements, frequency moments, heavy hitters.

• Challenge:
 (i) Limited working memory, i.e., sublinear(n,m).
 (ii) Sequential access to adversarially ordered data.
 (iii) Process each update quickly.

Slide derived from [McGregor 10]

Graph Streams
  S = <x1, x2, …, xm>; xi ∈[n] x [n]

  A defines a graph G on n vertices.

  Goal: compute properties of G.

  Challenge: subject to usual streaming
constraints.

Snapshot of Internet Graph
Source: Wikipedia

Bad News
  Many graph problems are impossible in

standard streaming model (require linear
space or many passes over data).

  E.g. Ω(n) space needed for connectivity,
bipartiteness. Ω(n2) space needed for
counting triangles, diameter, perfect
matching.

  Often hard even to approximate.

  Graph problems ripe for outsourcing.

Outsourcing Models
  Stream Punctuation [Tucker et al. 05], Proof Infused Streams

[Li et al. 07], Stream Outsourcing [Yi et al. 08], Best-Order
Model [Das Sarma et al. 09] (is a special case of our model)

Outsourcing Models
  Stream Punctuation [Tucker et al. 05], Proof Infused Streams

[Li et al. 07], Stream Outsourcing [Yi et al. 08], Best-Order
Model [Das Sarma et al. 09] (is a special case of our model)

  [Chakrabarti et al. 09] Online Annotation Model: Give
streaming algorithm access to powerful helper H who can
annotate the stream.

 Main motivation: Commercial cloud computing services such
as Amazon EC2. Helper is untrusted.

 Also, Volunteer Computing (SETI@home. Great Internet
Mersenne Prime Search, etc.)

 Weak peripheral devices.

Online Annotation Model
  Problem: Given stream S, want to compute f(S):

S=<x1, x2, x3, x4, x5, x6, ... , xm>

  Helper H: augments stream with h-word annotation:

(S,a)=<x1, x2, x3, x4, x5, x6, …, xm, a1, a2, ... , ah>

  Verifier V: using v words of space and random string r, run verification
algorithm to compute g(S,a,r) such that for all a either:

 a)Prr[g(S,a,r) =f(S)]=1 (we say a is valid for S) or

 b) Prr[g(S,a,r) =⊥]≥1-δ (we say a is δ-invalid for S)

 c) And at least one a is valid for S.

Note: this model differs slightly from [Chakrabarti et al. 09].

Online Annotation Model

  Two costs: words of annotation h and working memory v.
 We refer to (h, v)-protocols.
  Primarily interested in minimizing v.
  But strive for optimal tradeoffs between h and v.
  Proves more challenging for graph streams than numerical

streams. Algebraic structure seems critical.

Fingerprinting
  Need a way to test multiset equality (e.g. to see if two

streams have the same frequency distribution).
  But need to do so in a streaming fashion.
 We often use this to make sure H is “consistent”.

  Solution: fingerprints.
 Hash functions that can be computed by a streaming verifier.
  If S≠ S’ as frequency distributions, then f(S) ≠ f(S’) w.h.p.

  We choose a fingerprint function f that is linear. f(S ∘S’) =
f(S) + f(S’) where ∘ denotes concatenation. Will need this
for matrix-vector multiplication.

Two Approaches To Designing Protocols
1.  Prove matching upper and lower bounds on a quantity.

  One bound often easy: just give feasible solution.
  Proving optimality more difficult. Usually requires

problem structure.

2.  Use H to “verify” execution of a non-streaming algorithm.

Streaming LP problem
  Suppose stream A contains (only the non-zero) entries of matrix

A, vectors b and c, interleaved in any order (updates are of the
form e.g. “add y to entry (i,j) of A”). The LP streaming problem
on A is to determine max {cT x | Ax ≤ b}.

Streaming LP problem
  Suppose stream A contains (only the non-zero) entries of matrix

A, vectors b and c, interleaved in any order (updates are of the
form e.g. “add y to entry (i,j) of A”). The LP streaming problem
on A is to determine max {cT x | Ax ≤ b}.

  Theorem: There is a (|A|, 1) protocol for the LP streaming
problem, where |A| is number of non-zero entries in A.

Streaming LP problem
  Suppose stream A contains (only the non-zero) entries of matrix

A, vectors b and c, interleaved in any order (updates are of the
form e.g. “add y to entry (i,j) of A”). The LP streaming problem
on A is to determine max {cT x | Ax ≤ b}.

  Theorem: There is a (|A|, 1) protocol for the LP streaming
problem, where |A| is number of non-zero entries in A.
  Protocol (“naïve” matrix-vector multiplication):

1.  H provides primal-feasible solution x.
2.  For each row i of A:

 Repeat entries of x and row i of A in order to prove feasibility.
Fingerprints ensure consistency.

3.  Repeat for dual-feasible solution y. Accept if value(x)=value(y).

Streaming LP problem
  Suppose stream A contains (only the non-zero) entries of matrix

A, vectors b and c, interleaved in any order (updates are of the
form e.g. “add y to entry (i,j) of A”). The LP streaming problem
on A is to determine max {cT x | Ax ≤ b}.

  Theorem: There is a (|A|, 1) protocol for the LP streaming
problem, where |A| is number of non-zero entries in A.
  Protocol (“naïve” matrix-vector multiplication):

1.  H provides primal-feasible solution x.
2.  For each row i of A:

 Repeat entries of x and row i of A in order to prove feasibility.
Fingerprints ensure consistency.

3.  Repeat for dual-feasible solution y. Accept if value(x)=value(y).

  Details on precision of rationals are skipped.

Application to Graph Streams
  Corollary: Protocol for TUM IPs, since optimality can be

proven via a solution to the dual of its LP relaxation.

Application to Graph Streams
  Corollary: Protocol for TUM IPs, since optimality can be

proven via a solution to the dual of its LP relaxation.
  Corollary: (m, 1) protocols for max-flow, min-cut,

minimum-weight bipartite perfect matching, and shortest s-t
path. Lower bound of hv=Ω(n2) for all four.

Application to Graph Streams
  Corollary: Protocol for TUM IPs, since optimality can be

proven via a solution to the dual of its LP relaxation.
  Corollary: (m, 1) protocols for max-flow, min-cut,

minimum-weight bipartite perfect matching, and shortest s-t
path. Lower bound of hv=Ω(n2) for all four.

  A is sparse for the problems above, which suits the naïve protocol.
For denser A, can get optimal tradeoffs between h and v.

Dense Matrix-Vector Multiplication
  We will get optimal (n1+α, n1-α) protocol. Lower bound:

hv=Ω(n2).
 Corollary I: Protocols for dense LPs, effective resistances,

verifying eigenvalues of Laplacian.

Dense Matrix-Vector Multiplication
  We will get optimal (n1+α, n1-α) protocol. Lower bound:

hv=Ω(n2).
 Corollary I: Protocols for dense LPs, effective resistances,

verifying eigenvalues of Laplacian.
 Corollary II: Optimal tradeoffs for Quadratic Programs,

Second-Order Cone Programs. (n2, 1) protocol for Semi-
definite Programs.

Dense Matrix-Vector Multiplication
  First idea: Treat as n separate inner-product queries, one for

each row of A.
 Worse than “naïve” solution.
 Multiplies both h and v by n, as compared to a single inner-

product query.

Dense Matrix-Vector Multiplication
  First idea: Treat as n separate inner-product queries, one for

each row of A.
 Worse than “naïve” solution.
 Multiplies both h and v by n, as compared to a single inner-

product query.

  Key observation: one vector, x, in each inner-product query
is constant.
 This plus linear fingerprints lets us just multiply h by n.
  v will be the same as for a single inner product query.

Approach 2: Simulate an Algorithm
  Main tool: Offline memory checker [Blum et al. ’94]. Allows

efficient verification of a sequence of accesses to a large
memory.

  Lets us convert any deterministic algorithm into a protocol
in our model.

  Running time of the algorithm in the RAM model becomes
annotation size h.

Memory Checker [Blum et al. ’94]
  Consider a memory transcript of a sequence of reads and writes

to memory.
  A transcript is valid if each read of address i returns the last

value written to that address.
  Memory checker requires transcript be provided in a

carefully chosen (“augmented”) format.
 Augmentation blows up transcript size only by constant factor.

  V checks validity by keeping a constant number of
fingerprints and performing simple local checks on the
transcript.

Simulation Theorem
 Any graph algorithm M in RAM model requiring time t

can be (verifiably) simulated by an (m+t, 1)-protocol.

  Proof sketch:
  Step 1: H first plays a valid adjacency-list representation of G to

“initialize memory”.

  Step 2: H provides a valid augmented transcript T of the read
and write operations performed by algorithm.

  V checks validity using memory-checker. V also checks all read/
write operations are as prescribed by M.

Simulation Theorem
 Corollary: (m, 1)-protocol for MST; (m + n log n, 1)-protocol

to verify single-source shortest paths; (n3,1)-protocol for all-
pairs shortest paths.

Simulation Theorem
 Corollary: (m, 1)-protocol for MST; (m + n log n, 1)-protocol

to verify single-source shortest paths; (n3,1)-protocol for all-
pairs shortest paths.

  Proof for MST: Given a spanning tree T, there exists a linear-
time algorithm M for verifying that T is minimum e.g. [King
‘97].

Simulation Theorem
 Corollary: (m, 1)-protocol for MST; (m + n log n, 1)-protocol

to verify single-source shortest paths; (n3,1)-protocol for all-
pairs shortest paths.

  Proof for MST: Given a spanning tree T, there exists a linear-
time algorithm M for verifying that T is minimum e.g. [King
‘97].

  Lower bounds: hv=Ω(n2) for single source and all-pairs
shortest paths. hv=Ω(n2) for MST if edge weights specified
incrementally.

Pitfall of Memory-Checking
Cannot simulate randomized algorithms

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix

multiplication.

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix

multiplication.

  Let A be adjacency matrix of G.

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix

multiplication.

  Let A be adjacency matrix of G.

  (I + A)l
ij >0 if and only if there is a path of length at most l

from i to j.

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix

multiplication.

  Let A be adjacency matrix of G.

  (I + A)l
ij >0 if and only if there is a path of length at most l

from i to j.
  Protocol:
1.  H claims diameter is l

2.  Use repeated squaring to prove (I+A) l has an entry that is 0,
 and (I+A) l+1

 ≠ 0 for all (i,j).

Summary
  (m, 1)-protocol for max-matching. hv=Ω(n2) lower bound

for dense graphs, so we can’t do better.
  (m, 1)-protocols for LPs TUM IPs. hv=Ω(n2) lower bound

for several TUM IPs.
  Optimal (n1+α, n1-α)-protocol for dense matrix-vector

multiplication. (n1+α, n1-α)-protocols for effective
resistance, verifying eigenvalues of Laplacian or Adjacency
matrix, LPs, QPs, SOCPs.

  General simulation theorem; applications to MST, shortest
paths.

  (n2log n, 1) protocol for Diameter. hv=Ω(n2) lower bound.

Open questions
  Tradeoffs between h, v for matching, MST, diameter?

  Distributed computation: Protocols that work with Map-
Reduce.

  What if we allow multiple rounds of interaction between H
and V? Can we get exponentially better protocols?

Thank you!

