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Data Streaming Model 
  Stream: m elements from universe of size n 

   e.g., S=<x1, x2, ... , xm> = 3,5,3,7,5,4,8,7,5,4,8,6,3,2, … 

• Goal: Compute a function of stream, e.g., median, number of 
distinct elements, frequency moments, heavy hitters.  

• Challenge:  
 (i) Limited working memory, i.e., sublinear(n,m). 
 (ii) Sequential access to adversarially ordered data. 
 (iii) Process each update quickly. 

Slide derived from [McGregor 10] 



Graph Streams 
  S = <x1, x2, …, xm>; xi ∈[n] x [n] 

  A defines a graph G on n vertices. 

  Goal: compute properties of G.  

  Challenge: subject to usual streaming 
constraints. 

Snapshot of Internet Graph 
Source: Wikipedia 



Bad News 
  Many graph problems are impossible in 

standard streaming model (require linear 
space or many passes over data). 

  E.g. Ω(n) space needed for connectivity, 
bipartiteness. Ω(n2) space needed for 
counting triangles, diameter, perfect 
matching. 

  Often hard even to approximate.  

  Graph problems  ripe for outsourcing. 



Outsourcing Models 
  Stream Punctuation [Tucker et al. 05], Proof Infused Streams 

[Li et al. 07], Stream Outsourcing [Yi et al. 08], Best-Order 
Model [Das Sarma et al. 09] (is a special case of our model) 



Outsourcing Models 
  Stream Punctuation [Tucker et al. 05], Proof Infused Streams 

[Li et al. 07], Stream Outsourcing [Yi et al. 08], Best-Order 
Model [Das Sarma et al. 09] (is a special case of our model) 

  [Chakrabarti et al. 09] Online Annotation Model: Give 
streaming algorithm access to powerful helper H who can 
annotate the stream. 

 Main motivation: Commercial cloud computing services such 
as Amazon EC2. Helper is untrusted. 

 Also, Volunteer Computing (SETI@home. Great Internet 
Mersenne Prime Search, etc.) 

 Weak peripheral devices. 



Online Annotation Model 
  Problem: Given stream S, want to compute f(S):  

S=<x1, x2, x3, x4, x5, x6, ... , xm>  

  Helper H: augments stream with h-word annotation:  

(S,a)=<x1, x2, x3, x4, x5, x6, …, xm, a1, a2, ... , ah>  

   Verifier V: using v words of space and random string r, run verification 
algorithm to compute g(S,a,r) such that for all a either:  

 a)Prr[g(S,a,r) =f(S)]=1 (we say a is valid for S) or 

 b) Prr[g(S,a,r) =⊥]≥1-δ  (we say a is δ-invalid for S) 

 c) And at least one a is valid for S. 

Note: this model differs slightly from [Chakrabarti et al. 09].  



Online Annotation Model 

  Two costs: words of annotation h and working memory v. 
 We refer to (h, v)-protocols. 
  Primarily interested in minimizing v. 
  But strive for optimal tradeoffs between h and v. 
  Proves more challenging for graph streams than numerical 

streams. Algebraic structure seems critical. 



Fingerprinting 
  Need a way to test multiset equality (e.g. to see if two 

streams have the same frequency distribution). 
  But need to do so in a streaming fashion. 
 We often use this to make sure H is “consistent”. 

  Solution: fingerprints.  
 Hash functions that can be computed by a streaming verifier. 
  If S≠ S’ as frequency distributions, then f(S) ≠ f(S’) w.h.p. 

  We choose a fingerprint function f  that is linear. f(S ∘S’) = 
f(S) + f(S’) where  ∘ denotes concatenation. Will need this 
for matrix-vector multiplication. 



Two Approaches To Designing Protocols 
1.  Prove matching upper and lower bounds on a quantity. 

  One bound often easy: just give feasible solution. 
  Proving optimality more difficult. Usually requires 

problem structure. 

2.  Use H to “verify” execution of a non-streaming  algorithm. 



Streaming LP problem 
  Suppose stream A contains (only the non-zero) entries of matrix 

A, vectors b and c, interleaved in any order (updates are of the 
form e.g. “add y to entry (i,j) of A”). The LP streaming problem 
on A is to determine max {cT x | Ax ≤ b}.  
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  Suppose stream A contains (only the non-zero) entries of matrix 

A, vectors b and c, interleaved in any order (updates are of the 
form e.g. “add y to entry (i,j) of A”). The LP streaming problem 
on A is to determine max {cT x | Ax ≤ b}.  

  Theorem: There is a (|A|, 1) protocol for the LP streaming 
problem, where |A| is number of non-zero entries in A. 
  Protocol (“naïve” matrix-vector multiplication):  

1.  H provides primal-feasible solution x.  
2.  For each row i of A: 

 Repeat entries of x and row i of A in order to prove feasibility. 
Fingerprints ensure consistency. 

3.  Repeat for dual-feasible solution y. Accept if value(x)=value(y). 

  Details on precision of rationals are skipped. 
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proven via a solution to the dual of its LP relaxation. 
  Corollary: (m, 1) protocols for max-flow, min-cut, 

minimum-weight bipartite perfect matching, and shortest s-t 
path. Lower bound of hv=Ω(n2) for all four. 

  A is sparse for the problems above, which suits the naïve protocol. 
For denser A, can get optimal tradeoffs between h and v. 
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hv=Ω(n2). 
 Corollary I: Protocols for dense LPs, effective resistances, 

verifying eigenvalues of Laplacian. 
 Corollary II: Optimal tradeoffs for Quadratic Programs,  

Second-Order Cone Programs. (n2, 1) protocol for Semi-
definite Programs. 
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Dense Matrix-Vector Multiplication 
  First idea: Treat as n separate inner-product queries, one for 

each row of A.  
 Worse than “naïve” solution. 
 Multiplies both h and v by n, as compared to a single inner-

product query. 

  Key observation: one vector, x, in each inner-product query 
is constant. 
 This plus linear fingerprints lets us just multiply h by n.  
  v will be the same as for a single inner product query. 



Approach 2: Simulate an Algorithm 
  Main tool: Offline memory checker [Blum et al. ’94]. Allows 

efficient verification of a sequence of accesses to a large 
memory.  

   Lets us convert any deterministic algorithm into a protocol 
in our model. 

  Running time of the algorithm in the RAM model becomes 
annotation size h. 



Memory Checker [Blum et al. ’94] 
  Consider a memory transcript of a sequence of reads and writes 

to memory. 
  A transcript is valid if each read of address i returns the last 

value written to that address. 
  Memory checker requires transcript be provided in a 

carefully chosen (“augmented”) format.  
 Augmentation blows up transcript size only by constant factor. 

  V checks validity by keeping a constant number of 
fingerprints and performing simple local checks on the 
transcript.  



Simulation Theorem 
 Any graph algorithm M in RAM model requiring time t 

can be (verifiably) simulated by an (m+t, 1)-protocol. 

   Proof sketch:  
  Step 1: H first plays a valid adjacency-list representation of G to 

“initialize memory”.  

  Step 2: H provides a valid augmented transcript T of the read 
and write operations performed by algorithm.  

  V checks validity using memory-checker. V also checks all read/
write operations are as prescribed by M. 
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Simulation Theorem 
 Corollary: (m, 1)-protocol for MST; (m + n log n, 1)-protocol 

to verify single-source shortest paths; (n3,1)-protocol for all-
pairs shortest paths.  

  Proof for MST: Given a spanning tree T, there exists a linear-
time algorithm M for verifying that T is minimum e.g. [King 
‘97]. 

  Lower bounds: hv=Ω(n2) for single source and all-pairs 
shortest paths. hv=Ω(n2) for MST if edge weights specified 
incrementally.  



Pitfall of Memory-Checking 
Cannot simulate randomized algorithms 
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Diameter 
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2). 
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix 

multiplication. 

  Let A be adjacency matrix of G. 

  (I + A)l
ij >0 if and only if there is a path of length at most l 

from i to j. 
  Protocol: 
1.  H claims diameter is l 

2.  Use repeated squaring to prove (I+A) l has an entry that is 0, 
 and (I+A) l+1

  ≠ 0 for all (i,j). 



Summary 
  (m, 1)-protocol for max-matching. hv=Ω(n2) lower bound 

for dense graphs, so we can’t do better.  
  (m, 1)-protocols for LPs TUM IPs. hv=Ω(n2) lower bound 

for several TUM IPs. 
  Optimal (n1+α,  n1-α)-protocol for dense matrix-vector 

multiplication. (n1+α,  n1-α)-protocols for effective 
resistance, verifying eigenvalues of Laplacian or Adjacency 
matrix, LPs, QPs, SOCPs. 

  General simulation theorem; applications to MST, shortest 
paths. 

  (n2log n, 1) protocol for Diameter. hv=Ω(n2) lower bound. 



Open questions 
  Tradeoffs between h, v for matching, MST, diameter? 

  Distributed computation: Protocols that work with Map-
Reduce. 

  What if we allow multiple rounds of interaction between H 
and V? Can we get exponentially better protocols? 



Thank you! 


