Algorithms for (strict) turnstile streams $\sigma = \langle A_i, d_i \rangle_{i=1}^{m}$: Point queries. Goal is to output a sketch from which one can derive, for any $i \in [n]$, an estimate \hat{f}_i of f_i such that

$$0 \leq \hat{f}_i - f_i \leq \epsilon \|f\|_1$$

$$\sum_i \hat{f}_i = M.$$

Subtle distinction in randomized case:

* "For-all error guarantee": with probability $\geq 1-\delta$, (*) hold simultaneously for all estimates \hat{f}_i returned by the algorithm.

* "For-each error guarantee": For each i, (*) holds with probability $1-\delta$.

One can turn any For-each sketch into a For-all sketch with an $O(\log n)$ blowup in space by reducing failure probability to δ/n using the median trick and then union bounding overall.
Recall: Misra-Gries achieves this goal for insert-only streams using \(O\left(\frac{\log n}{\epsilon}\right) \) bit of space (since it is deterministic, it is automatically a for-all sketch).

There is a trivial way to turn Misra-Gries into a turnstile streaming algorithm, but the error will grow since

\[
\epsilon \cdot \sum_{j=1}^{m} \left| f_j \right| \text{ instead of } \epsilon \cdot \sum_{i=1}^{n} f_i.
\]

Run separate instances of Misra-Gries on positive increments and negative decrement updates. Let \(f_i \) be the difference of the estimates returned for \(i \) by the two instances.

Error is at most the sum of the errors in the two estimates so at most \(\epsilon \cdot \sum_{j=1}^{m} \left| f_j \right| \).

Count-Min Sketch [Cm05]

- \(\epsilon \cdot \frac{1}{\epsilon} \) counters
- \(t = \log \left(\frac{1}{\delta} \right) \) sets of counters
- Choose \(t \) hash functions \(h_1, \ldots, h_t : [n] \rightarrow [K] \) at random from a pairwise independent hash family.
- When processing update \((a_j, f_j)\):
 - For \(\ell = 1 \ldots t \)
 - \(C[\ell][h_\ell(a_j)] \leftarrow f_j \)
- On query output \(\hat{f}_i = \min_{1 \leq \ell \leq t} C[\ell][h_i] \)
In the transitive model, it is clear that \(f_i \) is always an overestimate of \(f_i \), since its counter's value is just the sum of the frequencies of all items that hash to it.

Claim: For any fixed \(i \in [n] \), \(0 \leq \hat{f}_i - f_i \leq e \cdot M \) with probability \(\geq 1 - \delta \).

Proof: We analyze the "excess" mean counter \(C[i] \) that \(\hat{f}_i \) hashes to. Let \(X_e = C[i] - f_i \) denote this excess. For each \(j \neq i \), let

\[
Y_{e,j} = \begin{cases}
1 & \text{if } h(e) = h(j), \\
0 & \text{otherwise}
\end{cases}
\]

Then \(X_e = \sum_{j \in [n] \setminus i} f_j \cdot Y_{e,j} \).

By pairwise independence of the hash family, \(\mathbb{E}[Y_{e,j}] = \frac{1}{K} \). Thus, by linearity of expectation,

\[
\mathbb{E}[X_e] = \sum_{j \in [n] \setminus i} \frac{f_j}{K} = \frac{M - f_i}{K}
\]

Since each \(f_j \geq 0 \), \(X_e \) is a non-negative random variable. Hence, we can apply Markov's inequality to conclude

\[
\Pr[X_e \geq e \cdot M] \leq \frac{1}{e \cdot K} \leq \frac{\delta}{2}.
\]

Since the hash functions are mutually independent,

\[
\Pr[\hat{f}_i - f_i \geq e \cdot M] = \Pr[X_e \geq e \cdot M \text{ for all } e \in [n]]
\]

\[
\leq \frac{2}{\delta} \sum_{e=1}^{\delta} \Pr[X_e \geq e \cdot M] \leq \frac{1}{\delta} \leq \delta.
\]

Note: To get a formal error guarantee, need to increase space usage from

\[
O\left(\frac{1}{\delta} \log(\frac{1}{\delta}) \left(\log m + \log n \right) \right)
\]

to

\[
O\left(\frac{1}{\delta} \cdot \log(\frac{1}{\delta}) \left(\log m \log n \right) \right).
\]
Count sketch [CLP04].

For any fixed \(i \in [n] \), one can derive an estimate \(\hat{f}_i \) of \(f_i \) such that with probability \(\geq \frac{3}{4} \), \(|\hat{f}_i - f_i| \leq \epsilon_i \|f\|_2 \).

The sketch uses space \(O(n^{1/2} \log(n) \cdot (\log \log(n))^{-2}) \).

Note: For any vector \(f \), \(\|f\|_2 \leq \|f\|_1 \), so it is in comparable to CardOMP.

It uses a factor \(\frac{1}{\epsilon} \) more space, but its error might not be smaller.

Algorithm:

Full sketch runs \(\log(\frac{i}{\epsilon}) \) copies of \(\hat{f}_i \).

The median estimate.

Analysis of Basic Estimator: Fix \(i \in [n] \) and let \(\hat{X} = \hat{f}_i \). For each \(j \neq i \), let \(Y_j = \hat{f}_j \) if \(h(j) = h(i) \), otherwise \(Y_j = 0 \).

Then \(\hat{X} = g(i) \sum_{j=1}^{n} f_j - g(j) \), \(Y_j = f_j + \sum_{j \in [n], j \neq i} f_j \cdot g(i) \cdot g(j) \).

Since \(g, h \) are independent, we have:

\[
\sum_{j=1}^{n} g(i) \cdot g(j) \cdot Y_j = \sum_{j=1}^{n} g(i) \cdot Y_j = 0 \text{ for } \sum_{j=1}^{n} g(j) = 0.
\]

So by linearity of expectation,

\[
\mathbb{E}[\hat{X}] = \hat{f}_i + \sum_{j \in [n], j \neq i} \mathbb{E}[g(i) \cdot g(j) \cdot Y_j] = \hat{f}_i + \sum_{j \in [n], j \neq i} \mathbb{E}[g(j) \cdot Y_j] = \hat{f}_i + \hat{f}_j,
\]

Claim: \(\mathbb{E}[\hat{X}] = \hat{f}_i \).
Similar to (*) we also have:

\[(*) \text{ For any } j \neq i, \quad \mathbb{E}[g(i) \cdot g(j) \cdot y_i \cdot y_j] = \mathbb{E}[g(i)] \mathbb{E}[g(j)] \cdot \mathbb{E}[y_i] \cdot \mathbb{E}[y_j] = 0. \]

In addition we have:

\[(***) \text{ For } y_i \quad \mathbb{E}[y_i^2] = \mathbb{E}[y_i] = \Pr[h(i) = h(i)] = \frac{1}{k}. \]
Claim 2: \(\text{Var}[X] \leq \frac{11f_{11}^2}{K} \).

Proof: \(\text{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \mathbb{E}[X^2] - f_c^2. \)

\[\mathbb{E}[X^2] = \mathbb{E} \left[\sum_{j \in \mathcal{E}_n \setminus \mathcal{E}_3} f_j \cdot g(i,j) \cdot y_j \right]^2 \]

By the distributive law

\[= \mathbb{E} \left[f_c^2 + \sum_{j \in \mathcal{E}_n \setminus \mathcal{E}_3} f_j \cdot g(i,j) \cdot y_j + \sum_{j \in \mathcal{E}_n \setminus \mathcal{E}_3} f_j \cdot g(i,j) \cdot y_j \right] \]

Linearity of expectation

\[= f_c^2 + f_c \cdot \sum_{j \in \mathcal{E}_n \setminus \mathcal{E}_3} \mathbb{E} \left[g(i,j) \cdot y_j \right] + \mathbb{E} \left[\sum_{j \in \mathcal{E}_n \setminus \mathcal{E}_3} f_j \cdot g(i,j) \cdot y_j \right] \]

By (\star)

\[= 0 \quad \text{by (\star)} \]

Thus

\[= f_c^2 + \mathbb{E} \left(\sum_{j \in \mathcal{E}_n \setminus \mathcal{E}_3} f_j^2 \cdot y_j^2 + \sum_{j \in \mathcal{E}_n \setminus \mathcal{E}_3} f_j \cdot g(i,j) \cdot y_j \right) \]

Linearity of expectation

\[= f_c^2 + \sum_{j \in \mathcal{E}_n \setminus \mathcal{E}_3} f_j^2 \cdot \mathbb{E}[y_j^2] + \sum_{j \in \mathcal{E}_n \setminus \mathcal{E}_3} f_j \cdot f_c \cdot \mathbb{E}[g(i,j) \cdot y_j] \]

By (\star\star)

\[= 0 \quad \text{by (\star\star)} \]
Hence $\text{Var}[X] = 4\mathbb{E}[X] - f_i^2 = \sum_{j \neq i} f_j^2 / k$.

By Chebyshev, $\Pr[|X - \mathbb{E}[X]| \geq 6 \cdot 11F_{1/2}^2] \leq \frac{1}{(\text{Var}[X])^2} = \frac{1}{\frac{1}{k^2}} \leq \frac{1}{3}$.

Since the basic estimator gives an estimate with error $\leq 6 \cdot 11F_{1/2}$ with probability $2/3$, the median of $O(\log(\frac{1}{\delta}))$ basic estimators satisfies the error bound $w.p. \geq 1-\delta$.

$\text{Var}[X] = \frac{1}{k}$.