
Justin Thaler, Harvard University
Joint work with:

Graham Cormode (AT&T Labs – Research),

Ke Yi (Hong Kong University of Science and Technology)

Verifying Computations with
Streaming Interactive Proofs

Outsourcing
  Many applications require outsourcing computation to

untrusted service providers.
 Main motivation: Commercial cloud computing services.
 Also, weak peripheral devices; fast but faulty co-processors.
 Volunteer Computing (SETI@home,World Community

Grid, etc.)

  User requires a guarantee that the cloud performed the
computation correctly.

  One solution: require cloud to prove correctness of answer.

Goals of Verifiable Computation
  Provide user with a correctness guarantee, without requiring

her to perform the requested computations herself.
  Ideally user will not even maintain a local copy of the data.
 User may have resorted to the cloud in the first place because

she has more data than she can store.

  Minimize the amount of extra bookkeeping the cloud has to
do to prove the integrity of the computation.

  Ideally our protocols will be secure against arbitrarily
malicious clouds, but sufficiently lightweight for use in more
benign settings.

Interactive Proofs
  Two Parties: Prover P and Verifier V.

  Think of P and powerful, V as weak. P solves a
problem, tells V the answer.
 Then P and V have a conversation.
  P’s goal: convince V the answer is correct.

  Requirements:
  1. Completeness: An honest P can convince V

she’s telling the truth.
  2. Soundness: V will catch a lying P with high

probability no matter what P says to try to
convince V (secure even if P is computationally
unbounded).

Comparison to Standard Database
Outsourcing Model
  There is a large body of work on authenticating queries on outsourced

databases e.g. [HIM02, GTTC03, NT05, YPPK08, PYP09, YLCHKS09, …]

  In this model, there are three parties:
1. A data owner who outsources work to:
2. An untrusted service provider, who answers queries from:
3. Clients.

Goal: enable clients to verify correctness of query results returned by the service
provider.
Many existing solutions rely on the data owner signing the data set (e.g. Merkle Trees).

So only secure against computationally bounded service providers.
And most require data owner to retain a copy of the data.

In comparison, the Interactive Proof model essentially views the data owner and
clients as a single entity.

Comparison to Standard Database
Outsourcing Model
  There is a large body of work on authenticating queries on outsourced

databases e.g. [HIM02, GTTC03, NT05, YPPK08, PYP09, YLCHKS09, …]

  In this model, there are three parties:
1. A data owner who outsources work to:
2. An untrusted service provider, who answers queries from:
3. Clients.

  Goal: enable clients to verify correctness of query results returned by service provider.
  Many existing solutions rely on the data owner signing the data set (e.g. Merkle Trees).

  So only secure against computationally bounded service providers.
  And most require data owner to retain a copy of the data.

  In comparison, the Interactive Proof model views the data owner and
clients as a single entity.

Interactive Proofs
  IPs have revolutionized complexity theory in the last 25 years.

  IP=PSPACE [Shamir 90].
  PCP Theorem e.g. [AS 98]. Hardness of approximation.
 Zero Knowledge Proofs.

  But IPs have had very little impact in real delegation scenarios.
 Why?
 Not due to lack of applications!

Interactive Proofs
  Old Answer: Most results on IPs dealt with hard

problems, needed P to be too powerful.
  But recent constructions focus on “easy” problems

(e.g. “Interactive Proofs for Muggles” [GKR08]).
 Allows V to run very quickly, so outsourcing is

useful even though problems are “easy”.
  P does not need “much” more time to prove

correctness than she does to solve the problem in
the first place!

Interactive Proofs
  Why does GKR not yield a practical protocol out

of the box?
  Problem 1: Naively, V has to retain the full input.
  Problem 2: P has to do a lot of extra bookkeeping

(cubic blowup in runtime).

  Main focus of this work is addressing Problem 1.
Can we allow V to be streaming?

  Follow-up work addresses Problem 2 in a general-
purpose manner [CMT12, TRMP12].

Streaming Interactive Proofs: The
Model

Data Streaming Model
  Stream: m elements from universe of size n

  e.g., S=<x1, x2, ... , xm> = 3,5,3,7,5,4,8,7,5,4,8,6,3,2, …

• Goal: Compute a function of stream, e.g., median, number of
distinct elements, frequency moments, heavy hitters.

• Challenge:
 (i) Limited working memory, i.e., sublinear(n,m).
 (ii) Sequential access to adversarially ordered data.
 (iii) Process each update quickly.

Slide derived from [McGregor 10]

Models
  Prior work [CCM09/CCMT12, CMT10] introduced a more

restrictive model for verifying streaming computations.
  One message (non-interactive) protocols: P and V both observe

stream. Afterward, P sends V an email with the answer, and a
proof attached.

  Our model: Allow multiple rounds of interaction, i.e. P and V
have a conversation after both observe stream.

Costs in Our Model

  Two main costs: words of communication h and V’s working
memory v.
 We refer to (h, v)-protocols.

  Other costs: running time, number of messages.

Comparison of Two Models
  Pros of multi-round model:

1.  Exponentially reduces space and communication cost. Often
(polylog n, polylog n) compared to (√n, √n).

2.  P often much faster than in single-round case.

  Cons of multi-round model:
1.  P must do significant computation after each message.
2.  More coordination needed; network latency might be an issue.

  Pros of single-message model:
1.  Space and communication still reasonable (< 1 MB).
2.  P can do all computation at once, just send an email with proof

attached.

Streaming Interactive Proof Protocols

A Two-Pronged Approach
  Ideal: General purpose protocol allowing to verify arbitrary

computation.
  Based on general-purpose “Interactive Proofs for Muggles”

construction [GKR08].

  Substantially improve on the GKR protocol for specific important
problems.
Reporting queries.

INDEX: What value is stored in memory location x of my database?
Range queries: List all my employees whose income falls in a given range.

Aggregation queries.
 Frequency Moments.
Inner Product
Distinct elements.
Range Sum.
Etc.

A Two-Pronged Approach
  Ideal: General purpose protocol allowing to verify arbitrary

computation.
  Based on general-purpose “Interactive Proofs for Muggles”

construction [GKR08].

  Substantially improve on the GKR protocol for specific important
problems.
  Reporting queries.

  INDEX: What value is stored in memory location x of my database?
  Range queries: List all employees whose income falls in a given range.

  Aggregation queries.
  Frequency Moments.
  Inner Product
  Distinct elements.
  Range Sum.
  Etc.

Prong 1: General-Purpose Result
  The GKR protocol can be modified to allow V to be streaming.

  Reason: GKR protocol (and several others) only requires V to store a
fingerprint of the data.

  This fingerprint can be computed in a single, light-weight streaming
pass over the input.

  Fingerprint serves as a "secret" that V can use to catch the cloud in a
lie.

  Fits cloud computing well: pass by V can occur while uploading
data to cloud.

  V never needs to store entirety of data!
  The fingerprint is a few KBs in size, even if the input contains

terabytes of data.

Prong 1: General-Purpose Result
  Theorem 1 ([GKR08] + previous slide):

(polylog n, polylog n) protocols for all problems in log-space
uniform NC.
 That is, any problem with an efficient parallel algorithm.
  E.g. Median, MST, Determinant.

  Theorem 2 ([Kilian92] + previous slide):
(polylog n, polylog n) computationally sound protocols for
all problems in NP.

Prong 2: Special-Purpose protocols
 Despite powerful generality, [GKR08] is not optimal

for many functions of high interest in streaming and
database processing.

 We give improved protocols for these problems.
 And argue that they are highly practical.

F2 protocol
  Result: (log n, log n)-protocol requiring log n rounds.

 Moreover, we make P run in O(n) time.

 [GKR 08] yields (log2 n, log2 n) protocol requiring log2
n rounds. P runs in Ω(n3) time.

[CCM09/CCMT12] shows that √n space or
communication is needed by any one-message protocol.
Exponential separation between one-message and multi-round

models.

F2 protocol
  Result: (log n, log n)-protocol requiring log n rounds.

 Moreover, we make P run in O(n) time.

  [GKR08] yields (log2 n, log2 n) protocol requiring
log2 n rounds. P runs in Ω(n3 log n) time.

  [CCM09/CCMT12] shows that √n space or
communication is needed by any one-message protocol.
  Exponential separation between one-message and multi-round

models.

F2 Experiments
  Implemented (√n, √n) one-message F2 protocol from

[CCM09] and our new (log n, log n) multi-round protocol.
 One-message space and communication both ~ 1 MB for n=10

billion.
 Multi-round space and communication always under 1 KB even

when handling GBs of data.

  V highly efficient in both cases (20-40 million updates
per second across all stream lengths).

  P much more efficient in multi-round case.

F2 Experiments
  P much more efficient in our multi-round protocol.

  Multi-round case: P processes 20 million updates per second
across all stream lengths.

  Single-round case:
1.  Naïve implementation of P requires Ω(n3/2) time; doesn’t

scale to large streams.
2.  Follow-up work [CMT12] brings P’s runtime down to

O(n log n) using sophisticated FFT techniques, achieving
250,000-750,000 updates per second experimentally.

F2 Experiments: P runtime

Multi-round P vs. Single-round P with and without FFT techniques

F2 Experiments: Space & Communication

!"
#

!"
$

!"
%

!"
&

!"
'

!"
(

!"
!"

!"
)

!"
#

!"
%

*+,-./0.12,3.14

5
6
7.
0

2,3.1891:8;;4+,<=7,8+1=+>1?8/@,+A12B=<.

1

1

C+.!D84+>E12B=<.

F4G7,!D84+>E12B=<.

C+.!D84+>E1:8;;

F4G7,!D84+>E1:8;;

Range-Query Protocol + Experiments
  Result: (k+log n, log n)-protocol requiring log n rounds,

where k is the number of items returned by the query.

 Moreover, we make P run in O(n) time.

  All experimental costs similar to those of F2 protocol.

Range-Query Protocol Ideas
  Standard idea: have V keep a Merkle tree, so that the hash of the

root is used as a “secret” to catch P in a lie.
  Though this would only be secure against computationally bounded provers.

  But V cannot compute the hash of the root without storing the entire
tree!

We use a different hashing scheme that is similar in outline to a Merkle
tree, but can be computed incrementally by V as the stream updates
arrive in arbitrary order.
To “cheat”, P would have to find collisions under this hash function.
 But P does not learn the hash function until she has already committed to an

answer.

Then the engineering challenge was to make P fast.

Range-Query Protocol Ideas
  Standard idea: have V keep a Merkle tree, so that the hash of the

root is used as a “secret” to catch P in a lie.
  Though this would only be secure against computationally bounded provers.

  But V cannot compute the hash of the root without storing the entire
tree!

  We use a different hashing scheme that is similar in outline to a Merkle
tree, but that can be computed incrementally by V as the stream updates
arrive in arbitrary order.
  To “cheat”, P would have to find collisions under this hash function.
  But P does not learn the hash function until she has already committed to an

answer.

  Remaining engineering challenge: make P fast.

Conclusions
  IPs (and their relatives) represent some of the most celebrated

results in complexity theory.

  They have the potential to mitigate trust issues in cloud
computing, but were wildly impractical until recently.

  We modify known constructions to work with streaming verifiers.

  And improve on known constructions for specific, important problems.
  Arguably obtaining the first practical interactive proof protocols.

Follow-up Work
  [CMT12] revisits the GKR protocol.

  Brings the blowup in P’s runtime down from cubic to logarithmic.
  Develops a full, working implementation of the GKR protocol.
  Demonstrates experimentally that V saves a lot of time and space (at least for

problems with small-depth circuits).
  The main remaining bottleneck is still P’s runtime (P takes 27 minutes for

256 x 256 matrix multiplication).

  [TRMP12] describes a parallelized implementation of the GKR
protocol that further reduces P’s and V’s runtimes by 40x-100x.

  Other recent general-purpose implementation work: [CRR11,
SMBW12, SVPBBW12].

Thank you!

Second Frequency Moment
  The second frequency moment of a stream is defined as follows:

  Let X be the frequency vector of the stream
 (Xi is number of occurrences of i in the stream)
  F2(X)=∑i Xi

2

  [CCM 09/CCMT 12] (√n, √n)-protocol for F2.
  Terabytes of data translate to a few MBs of space and communication.

  This is optimal. There is a lower bound that says for (h, v)-protocol for
F2, hv=Ω(n) lower bound.

  Notice (1, n) and (n, 1) protocols are trivial. What is non-obvious is how to trade
off between h and v.

F2 Protocol
  Recall: F2(X)=∑i Xi

2

  View universe [n] as [√n] x [√n].

0
Frequency “Square” X

2 4

0 3 3

0 2 0

0 2 4 0 3 3 0 2 0

Frequency Vector X

  First idea: Have P send the answer “in pieces”:
  F2(row 1). F2(row 2). And so on. Requires √n communication.

  V exactly tracks a row at random (denoted in yellow) so if P lies about
any piece, V has a chance of catching her. Requires space √n.

0

Frequency Square X

2 4

0 3 3

0 2 0

P sends

Slide derived from [McGregor 10]

20=22+42

18=32+32

4=22

  Problem: If P lies in only one place, V has small chance of catching her.

  We would like the following to hold: if P lies about even one piece,
she will have to lie about many.

  Solution: Have P commit (succinctly) to second frequency moment
of rows of an error-corrected encoding of the input.

  Need V to evaluate any row of the encoding in a streaming fashion.
Can do this for “low-degree extension” code. Note: this code is
systematic, meaning the first n symbols are just the input itself.

0

Error-corrected Encoding
of Frequency Square X

2 4

0 3 3

0 2 0

H sends

20=22+42

18=32+32

0 -1 -5

0 -6 -12

0 -13 -21

26=(-1)2+(-5)2

Input is
embedded in

encoding
(low-degree
extension)

These values
will all lie on
low-degree
polynomial s(X)

4=22

180=(-6)2+(-12)2

610=(-13)2+(-21)2

Multi-Round Protocol
  Replace “frequency square” with “frequency hypercube” i.e. view

universe [n] as [2]d where d=log n.

  V’s secret is now a single entry of the (encoded) frequency
hypercube, rather than an entire row of the frequency square.
 Requires space O(log n) rather than space O(√n).

  In Round 1, P sends the answer “in pieces”, where piece j
aggregates over all items of the form i=(j, i2, i3, …, id).
  Then V tells P the first coordinate of her secret index, and the

protocol iterates on the resulting subcube.

  Analysis: argue that if P sends a “wrong” polynomial in any round,
then P will have to send a wrong polynomial in all subsequent rounds.

