Verifying Computations with

Streaming Interactive Proofs

Justin Thaler, Harvard University
Joint work with:

Graham Cormode (AT&T Labs — Research),
KeYi (Hong Kong University of Science and Technology)

Outsourcing

o Many applications require outsourcing computation to

untrusted service providers.
Main motivation: Commercial cloud computing services.
Also, weak peripheral devices; fast but faulty co-processors.

Volunteer Computing (SETI(@home, World Community
Grid, etc.)

* User requires a guarantee that the cloud performed the

computation correctly.

® One solution: require cloud to prove correctness of answer.

Goals of Verifiable Computation

® Provide user with a correctness guarantee, without requiring

her to perform the requested computations herself.
° Ideally user will not even maintain a local copy of the data.

® User may have resorted to the cloud in the first place because

she has more data than she can store.

® Minimize the amount of extra bookkeeping the cloud has to

do to prove the integrity of the computation.

® Ideally our protocols will be secure against arbitrarﬂy

malicious clouds, but sufficiently lightweight for use in more

benign settings.

o

Interactive Proofs

¢ Two Parties: Prover P and Verifier V.

® Think of P and powertul,V as weak. P solves a
problem, tellsV the answer.
® Then P and V have a conversation.
® P’s goal: convince V the answer is correct.

® Requirements:
° 1. Completeness: An honest P can convince V
she’s telling the truth.
® 2. Soundness: V will catch a lying P with high

probability no matter what P says to try to
convince V (secure even it P is computationally

unbounded).

Comparison to Standard Database
Outsourcing Model

® Thereis a large body of work on authenticating queries on outsourced

databases e.g. [HIMO2, GTTCO03, NT05,YPPKOS, PYP09,YLCHKSO09, ...]

® In this model, there are three parties:
1. A data owner who outsources work to:

2. An untrusted service provider, who answers queries from:

3. Clients.

Comparison to Standard Database
Outsourcing Model

® Thereis a large body of work on authenticating queries on outsourced

databases e.g. [HIMO2, GTTCO03, NT05,YPPKOS, PYP09,YLCHKSO09, ...]

® In this model, there are three parties:
1. A data owner who outsources work to:

2. An untrusted service provider, who answers queries from:

3. Clients.

® @Goal: enable clients to Verify correctness of query results returned by service provider.
® Many existing solutions rely on the data owner signing the data set (e.g, Merkle Trees).
So only secure against computationally bounded service providers.

And most require data owner to retain a copy of the data.

® In comparison, the Interactive Proof model views the data owner and
clients as a single entity.

Interactive Proofs

® [Ps have revolutionized complexity theory in the last 25 years.
e [P=PSPACE [Shamir 90].
® PCP Theorem e.g. [AS 98]. Hardness of approximation.

® /ero Knowledge Proofs.

e But IPs have had very little impact in real delegation scenarios.
o Why?
® Not due to lack of applications!

Interactive Proofs

® Old Answer: Most results on IPs dealt with hard

problems, needed P to be too powertul.

® But recent constructions focus on “easy” problems
(e.g. “Interactive Proofs for Muggles” [GKROS]).

* AllowsV to run very quickly, so outsourcing is

useful even though problems are “easy”.

® P does not need “much” more time to prove

correctness than she does to solve the problem in

the first place!

Interactive Proofs

® Why does GKR not yield a practical protocol out
of the box?

® Problem 1: Naively, V has to retain the full input.
® Problem 2: P has to do a lot of extra bookkeeping

(cubic blowup in runtime).

® Main focus of this work is addressing Problem 1.

Can we allow V to be streaming?

* Follow-up work addresses Problem 2 in a general-

purpose manner [CMT12, TRMP12].

Streaming Interactive Proofs: The

Model

Data Streaming Model

® Stream: m elements from universe of size n
e, S=<x,, %, ..., %> = 3,5,3,7,5,4,8,7,5,4,8,6,3,2, ...

YTITHY T YT

* Goal: Compute a function of stream, e.g., median, number of

distinct elements, frequency moments, heavy hitters.

* Challenge:
(i) Limited working memory, i.e., sublinear(n,m).
(i) Sequential access to adversarially ordered data.

(iii) Process each update quickly.

Slide derived from [McGregor 10] /

Models

® Prior work [CCMO09/CCMT12, CMT10] introduced a more

restrictive model for Verifying streaming computations.

® One message (non-interactive) protocols: P and V both observe
stream. Afterward, P sendsV an email with the answer, and a

proof attached.

® Our model: Allow multiple rounds of interaction, i.e. P and V

have a conversation after both observe stream.

IAMERICA’S NEXTI I

Costs in Our Model

® Two main costs: words of communication A and V’s Working

memory V.

® We refer to (h, v)-protocols.

® Other costs: running time, number of messages.

Comparison of Two Models

® Pros of multi-round model:

1. Exponentially reduces space and communication cost. Often
(polylog n, polylog n) compared to (\/n, \/n)

2. P often much faster than in single—round case.

® Cons of multi-round model:
1. P mustdo significant computation qﬁer each message.

2. More coordination needed; network latency might be an issue.

® Pros of single-message model:
1. Space and communication still reasonable (< 1 MB).

2. P can do all computation at once, just send an email with proof
attached.

Streaming Interactive Proof Protocols

A Two-Pronged Approach

® Ideal: General purpose protocol allowing to Verify arbitrary
computation.

® Based on general—purpose “Interactive Proofs for Muggles”
construction [GKROS].

o Substantially improve on the GKR protocol for specific important
problems.

A Two-Pronged Approach

® Ideal: General purpose protocol allowing to Verify arbitrary
computation.

® Based on general—purpose “Interactive Proofs for Muggles”
construction [GKROS].

o Substantially improve on the GKR protocol for specific important
problems.

® Reporting queries.

INDEX: What value is stored in memory location x of my database?

Range queries: List all employees whose income falls in a given range.
® Aggregation queries.

Frequency Moments.

Inner Product

Distinct elements.

Range Sum.

Etc.

Prong 1: General-Purpose Result

* The GKR protocol can be modified to allow V to be streaming.

® Reason: GKR protocol (and several others) only requires V to store a
fingerprint of the data.

® This fingerprint can be computed in a single, light-weight streaming
pass over the input.

* Fingerprint serves as a "secret' thatV can use to catch the cloud in a
lie.
¢ Fits cloud computing well: pass byV can occur while uploading
data to cloud.

® V never needs to store entirety of data!

® The fingerprint is a few KBs in size, even if the input contains
terabytes of data.

Prong 1: General-Purpose Result

® Theorem 1 ([GKRO8] + previous slide):
(polylog n, polylog n) protocols for all problems in log-space

uniform NC.
® That is, any problem with an efticient parallel algorithm.

* E.g. Median, MST, Determinant.

® Theorem 2 ([Kilian92] + previous slide):
(polylog n, polylog n) computationally sound protocols for

all problems in NP,

Prong 2: Special-Purpose protocols

® Despite powertul generality, [GKRO8] is not optimal
for many functions of high interest in streaming and

database processing.

* We give improved protocols for these problems.

And argue that they are highly practical.

[, protocol

® Result: (log n, log n)-protocol requiring log n rounds.

® Moreover, we make P run in O(n) time.

[, protocol

® Result: (log n, log n)-protocol requiring log n rounds.
® Moreover, we make P run in O(n) time.

* [GKROS8] yields (log® n, log® n) protocol requiring

log” n rounds. P runs in Q (n? log n) time.

* [CCM09/CCMT12] shows that Vn space or
communication is needed by any one-message protocol.

e Exponential separation between one-message and multi-round

models.

F, Experiments

* Implemented (\/n, \/n) one-message F, protocol from
[CCMO9] and our new (log n, log n) multi-round protocol.

® One-message space and communication both ~ 1 MB for n=10

billion.

® Multi-round space and communication always under 1 KB even

when handling GBs of data.
® V highly efficient in both cases (20-40 million updates

per second across all stream lengths).

® P much more efficient in multi-round case.

F, Experiments

® P much more efficient in our multi-round protocol.

® Multi-round case: P processes 20 million updates per second
across all stream lengths.
® Single-round case:
Naive implementation of P requires $2 (n*/?) time; doesn’t
scale to large streams.
Follow-up work [CMT12] brings P’s runtime down to

O(nlog n) using sophisticated FFT techniques, achieving
250,000-750,000 updates per second experimentally.

F, Experiments: P runtime

_Time to create proof

%% One Round without FFT
3 | +—# One Round with FFT
107 f|«—w Multiround

10* 10> 10° 107 10® 10° 10%°
n

Multi-round P vs. Single—round P with and without FFT techniques

/

F, Experiments: Space & Communication

Size of Communication and Working Space

10° e
-©-0ne-Round: Space

- Multi-Round: Space
- 0ne—-Round: Comm
- Multi-Round: Comm

10° 10> 10° 10" 10° 10> 10"

Universe Size u

Range-Query Protocol + Experiments

® Result: (ktlog n, log n)-protocol requiring log n rounds,

where k is the number of items returned by the query.
® Moreover, we make P run in O(n) time.

o All experimental costs similar to those ot F, protocol.

Range-Query Protocol ldeas

* Standard idea: have V keep a Merkle tree, so that the hash of the
root is used as a “secret” to catch P in a lie.

° Though this would only be secure against computationally bounded provers.

® ButV cannot compute the hash of the root without storing the entire
tree!

Range-Query Protocol ldeas

* Standard idea: have V keep a Merkle tree, so that the hash of the
root is used as a “secret” to catch P in a lie.

° Though this would only be secure against computationally bounded provers.

® ButV cannot compute the hash of the root without storing the entire
tree!

® We use a different hashing scheme that is similar in outline to a Merkle
tree, but that can be computed incrementally by V as the stream updates
arrive in arbitrary order.

® To “cheat”, P would have to find collisions under this hash function.

e But P does not learn the hash function until she has already committed to an
answer.

® Remaining engineering challenge: make P fast.

Conclusions

® IPs (and their relatives) represent some of the most celebrated

results in complexity theory.

e They have the potential to mitigate trust issues in cloud

computing, but were wildly impractical until recently.
e We modify known constructions to work with streaming verifiers.

* And improve on known constructions for specific, important problems.

° Arguably obtaining the first practical interactive proof protocols.

Follow-up Work

® [CMT12] revisits the GKR protocol.
® Brings the blowup in P’s runtime down from cubic to logarithmic.
® Develops a full, working implementation of the GKR protocol.

® Demonstrates experimentally that V saves a lot of time and space (at least for
problems with small-depth circuits).
® The main remaining bottleneck is still P’s runtime (P takes 27 minutes for

256 x 256 matrix multiplication) :

® [TRMP12] describes a parallelized implementation of the GKR
protocol that further reduces P’s and V’s runtimes by 40x-100x.

® Other recent general-purpose implementation work: [CRR11,
SMBW 12, SVPBBW12].

Thank you!

Second Frequency Moment

® The second frequency moment of a stream is defined as follows:
® [et X be the frequency vector of the stream
(X, is number of occurrences of'i in the stream)

* F,(X)=2, X/

°* [CCM 09/CCMT 12] (\/n, \/n)—protocol for F,.

° Terabytes of data translate to a few MBs of space and communication.

® This is optimal. There is a lower bound that says for (h, v)-protocol for
F,, hv= 5 (n) lower bound.

® Notice (1,n) and (n, 1) protocols are trivial. What is non-obvious is how to trade
off between h and v.

I, Protocol
* Recall: F,(X)=2, X/

® View universe [n] as [\/n] X [\/n]

Frequency Vector X

-

Frequency “Square” X

¢ Firstidea: Have P send the answer “in pieces”:

F,(row 1).F,(row 2). And so on. Requires Vn communication.

® V exactly tracks a row at random (denoted in yellow) so if P lies about

any piece, V has a chance of catching her. Requires space Vn.

Frequency Square X
‘ 0 2 4
0 3 3
| 0 2 0

P sends
20=22+42

18=32+32

4=2?

Slide derived from [McGregor 10] /

Problem: If' P lies in only one place,V has small chance of catching her.

We would like the following to hold: if P lies about even one piece,

she will have to lie about many.

Solution: Have P commit (succinctly) to second frequency moment
of rows of an error-corrected encoding of the input.

Need V to evaluate any row of the encoding in a streaming fashion.
Can do this for “1ow—degree extension” code. Note: this code is
systematic, meaning the first n symbols are just the input itself.

These values
will all lie on

low—degree

polynomial s(X)
Error-corrected Encoding ‘
of Frequency Square X I sends
Input is 20=22+42
embedded in
encoding 18=32+32
(low-degree
extension) 4=)2
0l -11{]-5 26=(-1)>+(-5)
ol [S 180=(-6)2+(-12)?
| O -3 -1 610=(-13)2+(-21)’

Multi-Round Protocol

* Replace “frequency square” with “frequency hypercube” i.e. view
universe [n] as [2]¢ where d=log n.

® V’s secret is now a single entry of the (encoded) frequency
hypercube, rather than an entire row of the frequency square.

® Requires space O(log n) rather than space O(\/n).

* In Round 1, P sends the answer “in pieces”, where piece j
aggregates over all items of the form i=(j, i,, i3, ..., iy).

® ThenV tells P the first coordinate of her secret index, and the
protocol iterates on the resulting subcube.

® Analysis: argue that if P sends a “wrong” polynomial in any round,
then P will have to send a wrong polynomial in all subsequent rounds.

