Lecture 6
Recap

• Two lectures ago: Our first application of the sum-check protocol.
 • An IP for #SAT with a polynomial-time verifier.
 • P ran in time exponential in the input size.
 • But the fastest known algorithm for this problem requires exponential time.
 • So can’t really hope for a faster prover for this problem.

• Last lecture we saw some doubly-efficient IPs.
 • V runs in linear time.
 • P runs in polynomial time.
 • In fact, we achieved “super-efficiency”.
 • meaning P ran the fastest known algorithm for the problem, and then did a low-order amount of additional work to prove correctness.
 • Counting triangles, matrix multiplication.
Today: A General-Purpose Doubly-Efficient Interactive Proof
General-Purpose Interactive Proof and Argument Implementations

• Start with a computer program written in high-level programming language (C, Java, etc.)

• Step 1: Turn the program into an equivalent model amenable to probabilistic checking.
 • Typically some type of arithmetic circuit.
 • Called the Front End of the system.

• Step 2: Run an interactive proof or argument on the circuit.
 • Called the Back End of the system.
The GKR Protocol: Overview

Front End

P and V run interactive proof or argument system (back end) on circuit
Sources of Prover Overhead in VC Systems

<table>
<thead>
<tr>
<th>Source of Overhead</th>
<th>(P) Overhead vs. Native (Crude Estimate)</th>
<th>Slowdown Depends On...</th>
</tr>
</thead>
</table>
| Front End | (ratio of circuit size to number of machine steps of original program) \(1x-10,000x\) | • How amenable is the high-level computer program is to representation via circuits?
• What type of circuits can the back-end handle? |
| Back-End | (ratio of \(P \) time to evaluating circuit gate-by-gate) \(10x-1,000x\) | • Varies by back-end and computation structure (e.g., data parallel?) |
The GKR Protocol

A General-Purpose Doubly-Efficient Interactive Proof
The GKR Protocol: Overview

Layer 1

Layer 2

Layer 3

Layer 4

F_2 circuit
The GKR Protocol: Overview

Layer 1

Layer 2

Layer 3

Layer 4

P starts the conversation with an answer (output).

F₂ circuit
The GKR Protocol: Overview

Layer 1

Layer 2

Layer 3 V sends series of challenges. P responds with info about next circuit level.

Layer 4 a₁ a₂ a₃ a₄

F₂ circuit
The GKR Protocol: Overview

Challenges continue, layer by layer down to the input.
The GKR Protocol: Overview

Layer 1

Layer 2

Layer 3

Layer 4

Finally, P says something about the (multilinear extension of the) input.
Notation

• Assume layers i and $i + 1$ of C have S gates each.
 • Assign each gate a binary label ($\log S$ bits).
• Let $W_i(\alpha) : \{0,1\}^{\log S} \rightarrow F$ output the value of gate α at layer i.
Notation

• Assume layers i and $i + 1$ of C have S gates each.
 • Assign each gate a binary label ($\log S$ bits).
• Let $W_i(a): \{0,1\}^{\log S} \rightarrow F$ output the value of gate a at layer i.
• Let $\text{add}_i(a, b, c): \{0,1\}^{3 \log S} \rightarrow F$ output 1 iff
 $(b, c) = (\text{in}_1(a), \text{in}_2(a))$ and gate a at layer i is an addition gate.
Notation

• Assume layers i and $i + 1$ of C have S gates each.
 • Assign each gate a binary label ($\log S$ bits).
• Let $W_i(a): \{0,1\}^{\log S} \rightarrow F$ output the value of gate a at layer i.
• Let $\text{add}_i(a, b, c): \{0,1\}^{3 \log S} \rightarrow F$ output 1 iff
 $(b, c) = (\text{in}_1(a), \text{in}_2(a))$ and gate a at layer i is an addition gate.
• Let $\text{mult}_i(a, b, c): \{0,1\}^{3 \log S} \rightarrow F$ output 1 iff
 $(b, c) = (\text{in}_1(a), \text{in}_2(a))$ and gate a at layer i is a multiplication gate.
The GKR Protocol: Overview

Layer 1

Layer 2

Layer 3

Layer 4

F_2 circuit

add_2(0, (0, 0), (0, 1)) = 1
add_2(1, (1, 0), (1, 1)) = 1
The GKR Protocol: Overview

Layer 1

Layer 2

Layer 3

Layer 4

F₂ circuit

\[
\text{mult}_3((0,0), (0, 0), (0, 0)) = 1 \\
\text{mult}_3((0,1), (0, 1), (0, 1)) = 1 \\
\text{mult}_3((1,0), (1, 0), (1, 0)) = 1 \\
\text{mult}_3((1,1), (1, 1), (1, 1)) = 1
\]
GKR Protocol: Goal of Iteration i

• Iteration i starts with a claim from P about $\tilde{W}_i(r_1)$ for a random point $r_1 \in F^{\log S}$.

• Goal: Reduce this to a claim about $\tilde{W}_{i+1}(r_2)$ for a random point $r_2 \in F^{\log S}$.

• Observation: $W_i(a) =$

$$\sum_{b,c \in \{0,1\}^{\log S}} \left[\text{add}_i(a, b, c)(W_{i+1}(b) + W_{i+1}(c)) + \text{mult}_i(a, b, c)(W_{i+1}(b) \cdot W_{i+1}(c)) \right]$$

• Hence, the following equality holds as formal polynomials:

$$\tilde{W}_i(a) =$$

$$\sum_{b,c \in \{0,1\}^{\log S}} \left[\text{add}_i(a, b, c)(\tilde{W}_{i+1}(b) + \tilde{W}_{i+1}(c)) + \text{mult}_i(a, b, c)(\tilde{W}_{i+1}(b) \cdot \tilde{W}_{i+1}(c)) \right]$$
GKR Protocol: Goal of Iteration i

• So V applies sum-check protocol to compute

• $\tilde{W}_i(r_1) = \sum_{b,c \in \{0,1\}^\log s} g(b, c)$, where:

\[
g(b, c) = \text{add}_i(r_1, b, c)(\tilde{W}_{i+1}(b) + \tilde{W}_{i+1}(c)) + \text{mult}_i(r_1, b, c)(\tilde{W}_{i+1}(b) \cdot \tilde{W}_{i+1}(c))
\]
GKR Protocol: Goal of Iteration i

- So V applies sum-check protocol to compute
- $\tilde{W}_i(r_1) = \sum_{b, c \in \{0, 1\}^{\log s}} g(b, c)$, where:

$$g(b, c) = \tilde{a}_{di}(r_1, b, c)(\tilde{W}_{i+1}(b) + \tilde{W}_{i+1}(c))$$
$$+ \tilde{m}_{ult}(r_1, b, c)(\tilde{W}_{i+1}(b) \cdot \tilde{W}_{i+1}(c))$$

- At end of sum-check protocol, V must evaluate $g(r_2, r_3)$.
GKR Protocol: Goal of Iteration i

- So V applies sum-check protocol to compute
- $\tilde{W}_i(r_1) = \sum_{b,c \in \{0,1\}^\text{log } s} g(b, c)$, where:
 \[
 g(b, c) = \text{add}_i(r_1, b, c)(\tilde{W}_{i+1}(b) + \tilde{W}_{i+1}(c)) \\
 + \text{mult}_i(r_1, b, c)(\tilde{W}_{i+1}(b) \cdot \tilde{W}_{i+1}(c))
 \]
- At end of sum-check protocol, V must evaluate $g(r_2, r_3)$.
- Let us assume V can compute $\text{add}_i(r_1, r_2, r_3)$ and $\text{mult}_i(r_1, r_2, r_3)$ unaided in time $\text{polylog}(n)$.
- Then V only needs to know $\tilde{W}_{i+1}(r_2)$ and $\tilde{W}_{i+1}(r_3)$ to complete this check.
GKR Protocol: Goal of Iteration i

- So V applies sum-check protocol to compute
- $\widetilde{W}_i(r_1) = \sum_{b,c \in \{0,1\}^\log s} g(b, c)$, where:
 $$g(b, c) = \text{add}_i(r_1, b, c)(\widetilde{W}_{i+1}(b) + \widetilde{W}_{i+1}(c))$$
 $$+ \text{mult}_i(r_1, b, c)(\widetilde{W}_{i+1}(b) \cdot \widetilde{W}_{i+1}(c))$$
- At end of sum-check protocol, V must evaluate $g(r_2, r_3)$.
- Let us assume V can compute $\text{add}_i(r_1, r_2, r_3)$ and $\text{mult}_i(r_1, r_2, r_3)$ unaided in time $\text{polylog}(n)$.
- Then V only needs to know $\widetilde{W}_{i+1}(r_2)$ and $\widetilde{W}_{i+1}(r_3)$ to complete this check.
- Iteration $i + 1$ is devoted to computing these values.
Remaining Issue: Reducing to Verification of a Single Point

• There is one remaining problem: we don’t want to have to separately verify both $\tilde{W}_{i+1}(r_2)$ and $\tilde{W}_{i+1}(r_3)$ in iteration $i + 1$.

• Solution: Reduce verifying both of the above values to verifying $\tilde{W}_{i+1}(r_4)$ for a single point r_4.
Remaining Issue: Reducing to Verification of a Single Point

• There is one remaining problem: we don’t want to have to separately verify both $\tilde{W}_{i+1}(r_2)$ and $\tilde{W}_{i+1}(r_3)$ in iteration $i + 1$.

• Solution: Reduce verifying both of the above values to verifying $\tilde{W}_{i+1}(r_4)$ for a single point $r_4 \in F^{\log S}$.

\[\tilde{W}_{i+1} \]
Remaining Issue: Reducing to Verification of a Single Point

• There is one remaining problem: we don’t want to have to separately verify both \(\tilde{W}_{i+1}(r_2) \) and \(\tilde{W}_{i+1}(r_3) \) in iteration \(i + 1 \).

• Solution: Reduce verifying both of the above values to verifying \(\tilde{W}_{i+1}(r_4) \) for a single point \(r_4 \in F^{\log S} \).
Remaining Issue: Reducing to Verification of a Single Point

• There is one remaining problem: we don’t want to have to separately verify both $\tilde{W}_{i+1}(r_2)$ and $\tilde{W}_{i+1}(r_3)$ in iteration $i+1$.

• Solution: Reduce verifying both of the above values to verifying $\tilde{W}_{i+1}(r_4)$ for a single point $r_4 \in F^{\log S}$.

\begin{itemize}
 \item Challenge line λ
 \item Extended Hypercube $F^{\log S}$
 \item Boolean Hypercube $\{0,1\}^{\log S}$
\end{itemize}
Remaining Issue: Reducing to Verification of a Single Point

- There is one remaining problem: we don’t want to have to separately verify both \(\tilde{W}_{i+1}(r_2) \) and \(\tilde{W}_{i+1}(r_3) \) in iteration \(i + 1 \).
- Solution: Reduce verifying both of the above values to verifying

\[\tilde{W}_{i+1}(r_4) \]

for a single point \(r_4 \in F^{\log S} \).
Costs of the GKR protocol

• \(V \) time is \(O(n + D \log S) \) where \(n \) is input size, \(D \) is circuit depth, and \(S \) is circuit size.
 • Assumes \(V \) can compute \(\text{add}_i(r_1, r_2, r_3) \) and \(\text{mult}_i(r_1, r_2, r_3) \) unaided in time \(\text{polylog}(n) \)
• Communication cost is \(O(D \log S) \).
Costs of the GKR protocol

- \(V \) time is \(O(n + D \log S) \) where \(n \) is input size, \(D \) is circuit depth, and \(S \) is circuit size.
 - Assumes \(V \) can compute \(\text{add}_i(r_1, r_2, r_3) \) and \(\text{mult}_i(r_1, r_2, r_3) \) unaided in time \(\text{polylog}(n) \)

- Communication cost is \(O(D \log S) \).

- \(P \) time is \(O(S) \).
 - A naïve implementation of \(P \) takes \(\Omega(S^3) \) time, where \(S \) is circuit size.
 - A sequence of works has brought this down to \(O(S) \), for arbitrary circuits
 [CMT12, Thaler13, WJBSTWW17, XZZPS19]
GKR Prover Runtime: Details

Recall: Core of the GKR protocol is applying sum-check to compute \(\sum_{b,c \in \{0,1\}^{\log s}} g(b,c) \) where

\[
g(b,c) = \widetilde{\text{add}}_i(r_1, b, c)(\tilde{W}_{i+1}(b) + \tilde{W}_{i+1}(c))
+ \widetilde{\text{mult}}_i(r_1, b, c)(\tilde{W}_{i+1}(b) \cdot \tilde{W}_{i+1}(c))
\]
Recall: Core of the GKR protocol is applying sum-check to compute
\[\sum_{b,c \in \{0,1\}^{\log S}} g(b,c) \]
where
\[g(b,c) = \text{add}_i(r_1, b, c)(\widetilde{W}_{i+1}(b) + \widetilde{W}_{i+1}(c)) \\
+ \text{mult}_i(r_1, b, c)(\widetilde{W}_{i+1}(b) \cdot \widetilde{W}_{i+1}(c)) \]

- A naïve implementation of P takes \(\Omega(S^3) \) time, where \(S \) is circuit size.
 - Same idea as prover implementation for \#SAT protocol.
 - i.e., P evaluates \(g \) in each round of sum-check at all \(O(S^2/2^i) \) necessary points \(z \), taking \(O(S) \) time per point.
GKR Prover Runtime: Details

Recall: Core of the GKR protocol is applying sum-check to compute $\sum_{b,c \in \{0,1\}^{\log S}} g(b,c)$ where

$$g(b,c) = \overline{\text{add}_i(r_1, b, c)}(\overline{W_{i+1}(b)} + \overline{W_{i+1}(c)}) + \overline{\text{mult}_i(r_1, b, c)}(\overline{W_{i+1}(b)} \cdot \overline{W_{i+1}(c)})$$

- A naïve implementation of P takes $\Omega(S^3)$ time, where S is circuit size.
 - Same idea as prover implementation for #SAT protocol.
 - i.e., P evaluates g in each round of sum-check at all $O(S^2/2^i)$ necessary points z, taking $O(S)$ time per point.
- [CMT12]: P time is $O(S \log S)$.
 - Exploit structure in multilinear extensions $\overline{\text{add}_i}$ and $\overline{\text{mult}_i}$. Ensures that each gate of C contributes to $g(z)$ for $O(1)$ relevant points z in each round.
GKR Prover Runtime: Details

Recall: Core of the GKR protocol is applying sum-check to compute \(\sum_{b,c \in \{0,1\}^{\log S}} g(b,c) \) where

\[
g(b,c) = \tilde{\text{add}}_i(r_1, b, c)(\tilde{W}_{i+1}(b) + \tilde{W}_{i+1}(c)) \\
+ \tilde{\text{mult}}_i(r_1, b, c)(\tilde{W}_{i+1}(b) \cdot \tilde{W}_{i+1}(c))
\]

- A naïve implementation of \(P \) takes \(\Omega(S^3) \) time, where \(S \) is circuit size.
 - Same idea as prover implementation for #SAT protocol.
 - i.e., \(P \) evaluates \(g \) in each round of sum-check at all \(O(S^2/2^i) \) necessary points \(z \), taking \(O(S) \) time per point.

- [CMT12]: \(P \) time is \(O(S \log S) \).
 - Exploit structure in multilinear extensions \(\tilde{\text{add}}_i \) and \(\tilde{\text{mult}}_i \). Ensures that each gate of \(C \) contributes to \(g(z) \) for \(O(1) \) relevant points \(z \) in each round.

- All subsequent works seek to bring “Approach 3” to bear on the GKR protocol, letting \(P \) reuse work across rounds.
GKR Prover Runtime: Details

• [Thaler13]:
 1. $\text{P time } O(S)$ for circuits with “nice” wiring patterns.
 2. $\text{P time } O(S \log S')$ for data parallel circuits
 i.e., that apply the same subcomputation (of size S')
 independently to different pieces of data
GKR Prover Runtime: Details

• [Thaler13]:
 1. P time $O(S)$ for circuits with “nice” wiring patterns.
 2. P time $O(S \log S')$ for data parallel circuits
 i.e., that apply the same subcomputation (of size S')
 independently to different pieces of data

• [WJBSTWW17] improved the data parallel time to
 $O(S + S' \log S')$.
GKR Prover Runtime: Details

• [Thaler13]:
 1. \mathcal{P} time $O(S)$ for circuits with “nice” wiring patterns.
 2. \mathcal{P} time $O(S \log S')$ for data parallel circuits
 i.e., that apply the same subcomputation (of size S')
 independently to different pieces of data

• [WJBSTWW17] improved the data parallel time to
 $O(S + S' \log S')$.

• [ZGKPP18] extends to data parallel computations
 where each subcomputation may not be the same.
GKR Prover Runtime: Details

• [Thaler13]:
 1. \mathcal{P} time $O(S)$ for circuits with “nice” wiring patterns.
 2. \mathcal{P} time $O(S \log S')$ for data parallel circuits
 i.e., that apply the same subcomputation (of size S') independently to different pieces of data

• [WJBSTWW17] improved the data parallel time to $O(S + S' \log S')$.

• [ZGKPP18] extends to data parallel computations where each subcomputation may not be the same.

• [XZZPS19] achieved $O(S)$ time for general circuits.
Rumination on Generality Vs. Efficiency
Generality vs. Efficiency

• The GKR protocol for circuit evaluation has now been rendered optimally efficient for P (up to constant factors).

• Any computation can be represented as a circuit evaluation (or satisfiability) problem.
 • But this can introduce tremendous overheads.
 • The GKR protocol forces the prover to compute the output in a prescribed manner, which may be far from optimal (gate-by-gate evaluation of a circuit).

• To achieve scalability, the gold standard is really super-efficiency.
 • i.e., P computed the right answer directly using the fastest known algorithm, and did a low-order amount of extra work to prove correctness