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Recap: #SAT Problem
� Let ! be a Boolean formula of size " over # variables. 
� Goal: Compute ∑%∈{(,*}, !(.).                     

Protocol: 

Let 0 be an extension polynomial of !.
Apply the sum-check protocol to compute ∑%∈{(,*}, 0 . ..

Note: in final round of sum-check, V needs to compute 0(2) for 
some randomly chosen 2 in 34.
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Arithmetization
� Key question: how to construct the extension polynomial !?
� Answer: Arithmetize "

� i.e., replace " with an arithmetic circuit computing extension !
� Go gate-by-gate through ", replacing each gate with the gate’s 

multilinear extension.
� #$% & è 1 − &
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Figure 2: An arithmetic circuit y computing a polynomial
extension g of f over a finite field F.

P can be computed in space poly(c(n)), as x 2 L if and only if this acceptance probability is larger 1/3 for
some P . Eliding some details, this acceptance probability for any prover strategy P can be computed by
enumerating over every possible setting of the verifier’s random coins and computing the fraction of settings
that lead the verifier to accept.

The more challenging direction is to show that PSPACE ✓ IP. The #SAT protocol of Lund et al.
[LFKN92] described above already contains the main ideas necessary to prove this. Shamir [Sha92] ex-
tended the #SAT protocol to solve the PSPACE-complete language TQBF, and Shen [She92] gave a simpler
proof (the cost of Shamir’s and Shen’s protocols are similar to those of the #SAT protocol described above).
We do not cover Shamir or Shen’s extensions here, since Lecture 2 will provide a different and quantitatively
stronger proof that PSPACE ✓ IP.

Open Problem: On The Power of the Prover, or Are Sum-Check Techniques Really Necessary to Solve
Languages in coNP? The prover in the protocol for the PSPACE-complete problem TQBF can itself be
implemented in PSPACE. Similarly, the prover in the #P-complete problem #SAT protocol can itself be
implemented via polynomially many calls to a function in #P. However, there is no known interactive for
the coNP-complete language ¯3SAT in which the prover need not solve #P-complete problems. Is there
a protocol for ¯3SAT with a prover that can be implemented in, say, PNP? Under plausible complexity
assumptions, PNP is powerful enough to approximate the number of satisfying assignments to a factor of
1±1/poly(n),4, but is not believed to be powerful enough to exactly count them, as can be done in #P.

1.7 A Second Application of Sum-Check: An Optimal Interactive Proof for Matrix Multi-
plication

This section describes a highly optimized IP protocol for matrix multiplication (MATMULT) from [Tha13].
While this MATMULT protocol is of interest in its own right, it is included here for didactic reasons: it
displays, in a clean and unencumbered setting, all of the algorithmic insights that are exploited later in this
survey to give more general IP and MIP protocols.

4See e.g. http://mathoverflow.net/questions/2218/characterize-pnp
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Transforming a Boolean formula ! of size " into an arithmetic 
circuit computing an extension # of !.

Note: deg # ≤ ", and # can be evaluated at any input, gate by 
gate, in time ) " .

Summary of Arithmetization



Costs of #SAT Protocol Applied to !
� Let " be a Boolean formula of size # over $ variables, ! the 

extension obtained by arithmetizing ".
Rounds Communication V Time P Time

$ P sends a degree #
polynomial in reach round, 
V sends one field element 

in each round

& # ' $
field elements sent in 

total.

•& # time to process each 
of the $ messages of P
•& # time to evaluate 
!())

& # ' $ time total

P evaluates ! at 
& # ' 2, points 
to determine each 

message 

& #- ' $ ' 2,
time in total.

⇒ ⇒⇒



Details of Prover’s Computation



� Round i=1,2,…, n : P sends univariate polynomial "#(%#) claimed to equal: 

'# %# : = *
+,∈{/,1}

… *
+4∈ /,1

5(61, 67, … , 6#81, %#, 9#:1,9#:7, … , 9;)

'# has degree < = = > because 5 has degree= > in each of its ? variables.
To specify any degree < polynomial it suffices to specify the polynomial’s evaluations at 
inputs in < := {0, 1, 2,… , <}.
Note that for each j ∈ < ,

'# D : = *
+,∈{/,1}

… *
+4∈ /,1

5(61, 67, … , 6#81, D, 9#:1,9#:7, … , 9;)

is a sum of 2;8# evaluations of 5.
Recalling that 5 can be evaluated at any input in = > time, this means '# can be 
evaluated at all inputs in < in time = >72;8# time.

Across all n rounds, this is = ∑#G1; >72;8# = = >72; time.
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IP=PSPACE
� #SAT is a #P-complete problem. 

� Hence, the protocol we just saw implies that every problem in #P 
has an interactive proof with a polynomial time verifier.

� It is not much harder to show that this in fact holds for every 
problem in PSPACE [LFKN, Shamir].

But is this a practical result? 
No. The main reason: P’s runtime.
When applying the protocols of [LFKN, Shamir] even to very simple 
problems, the honest prover would require superpolynomial time. 
The #SAT prover took time at least 2". 

This is unavoidable for #SAT, since we don’t know how to even solve the 
problem in less than 2" time.
But we can hope to solve “easier” problems without turning those problems into 
#SAT instances. 
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Doubly-Efficient Interactive Proofs



Doubly-Efficient Interactive Proof
� A doubly-efficient interactive proof for a problem is one where:

� V runs in time linear in the input size.
� P runs in polynomial time.



A Second Application of the Sum-Check 
Protocol

A Doubly-Efficient Interactive Proof for 
Counting Triangles



Counting Triangles
� Input: ! ∈ {0,1}(×(, representing the adjacency matrix of a graph.

� Desired Output: *
+
, ∑ .,/,0 ∈[(]3 !./!/0!.0 .V

� Fastest known algorithm runs in matrix-multiplication time, currently about 
56.78. as a function mapping 0,1 9:; (× 0,1 9:; ( to <.
Recall that =! denotes the multilinear extension of !.
Define the polynomial > ?, @, A = =!(?, @) =!(@, Z) =!(?, Z)
Apply the sum-check protocol to > to compute:

E
(F,G,H) ∈{I,*}3JKL M

>(N, O, P)

Costs: 
Total communication is Q(log 5), V runtime is Q 56 , P runtime is Q 57 .
V’s runtime dominated by evaluating:

> U*, U6, U7 = =!(U*, U6) =!(U6, U7) =!(U*, U7).
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8 R*, RP, RQ = 7!(R*, RP) 7!(RP, RQ) 7!(R*, RQ).
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Third Application of the Sum-Check 
Protocol

A Doubly-Efficient Interactive Proof for 
Matrix Multiplication



[Thaler13]: Optimal IP For n x n MatMult
� Goal: Given !×! input matrices #, % over field &, compute 
' = # ) %.
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� P simply determines the “right answer”, and then P does 
*(!,) extra work to prove its correctness.

� Optimal runtime up to leading constant assuming no *(!,)
time algorithm for MatMult.

� V runs in linear time (which is also optimal).



[Thaler13]: Optimal IP For n x n MatMult
� Goal: Given !×! input matrices #, % over field &, compute 
' = # ) %.

� P simply determines the “right answer”, and then P does 
*(!,) extra work to prove its correctness.

� Optimal runtime up to leading constant assuming no *(!,)
time algorithm for MatMult.

� V runs in linear time (which is also optimal).

Problem 
Size

Naïve 
MatMult

Time

Additional P
time

V Time Rounds Protocol  
Comm

1024 x 1024 2.17 s 0.03 s 0.09 s 11 264 bytes

2048 x 2048 18.23 s 0.13 s 0.30 s 12 288 bytes



Comparison to Freivalds’ Algorithm
� Recall that Freivalds in 1979 gave the following protocol for 

MatMult. To check ! " # = %:
� V picks random vector &.
� Accepts if ! " #& = %&.
� No extra work for P, '()*) time for V.

Our big win: verifying algorithms that invoke MatMult, but 
aren’t really interested in matrices.

E.g. Best-known graph diameter algorithms square the adjacency 
matrix, but are only interested in a single number.
Total communication for us is O(log2 n), Freivalds’ is Ω(n2).

Next talk gives non-interactive protocols for more complicated 
linear-algebraic problems.
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� V picks random vector &.
� Accepts if ! " #& = %&.
� No extra work for P, '()*) time for V.

� Our big win: verifying algorithms that invoke MatMult, but 
aren’t really interested in matrices.
� E.g., Best-known subgraph-counting algorithms square the 

adjacency matrix, but are only interested in a single number.
� Total communication for us is '(log )), Freivalds’ is Ω )* .
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MatMult Protocol: Technical Details



Notation
� Given !×! input matrices #, % over field &, interpret #

and % as functions mapping {0,1}*+, - × {0,1}*+, - to &
via # ./, … , .*+, -, 1/, … , 1*+, - = #34.

� Let 6 = # 7 % denote the true answer.

� Let 8#, 9% denote the multilinear extensions of the functions #
and %.



MatMult Protocol
� P sends a matrix ! claimed to equal " = $ % &.
V evaluates '! at a random point (), (+ ∈ -./0 1 ×-./0 1.
By Schwartz-Zippel: it is safe for V to believe that ! equals the 
correct answer " as long as '! (), (+ = 4" (), (+ .
Goal becomes: compute 4" (), (+
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MatMult Protocol
� Goal: Compute !" #$, #& . 
For Boolean vectors ', ( ∈ {0,1}./0 1, clearly:

" ', ( = ∑4∈{5,6}789 : ; ', 4 <(4, ()
This implies the following polynomial identity:

!" ', ( = ∑4∈{5,6}789 : !; ', 4 ?<(4, ().
So V applies sum-check protocol to compute

!" #$, #& = ∑@A∈{5,6} …∑@789 :∈{5,6} C(D6, … , D./0 1), 
where:

C E := !; #$, E !; E, #& .
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Making V Fast
� At end of sum-check, V must evaluate

! "# = %& "', "# )* "#, "+ .
� Suffices to evaluate %& "', "# and )* "#, "+ .
� Recall that each evaluation can be computed in ,(./) time.



Making P Fast: A First Attempt
� Recall: we’re using sum-check to compute 
∑"#∈{&,(} …∑"+,- .∈{&,(} /(1(, … , 1234 5). 

� Round 7: P sends quadratic polynomial 89(:9) claimed to equal: 
∑";<#∈{&,(} …∑"+,- .∈{&,(} /(=>,(, … , =>,9?(, :9, 19@(, … , 1234 5)
� Suffices for P to specify 89 0 , 89(1), 89(2)
Thus: Enough to evaluate / at all points of the form 

(=>,(, … , =>,9?(, 0,1,2 , 19@(, … , 1234 5): 19@(, … , 1234 5 ∈ {0,1}234 5 ?9

This is E(5F;) points.

Recall GH and IJcan each be evaluated at any input in E KF time, and hence 
so can /.

So P can compute 89 in E 5
F; L K

F = E K>/29 time. 
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Making P Fast: Second Attempt
� Recall: Enough to evaluate ! at all points of the form: 
" = (%&,(, … , %&,*+(, 0,1,2 , /*0(, … , /123 4): /*0(, … , /123 4 ∈ {0,1}

123 4 +*

� Already showed: how to do this in : ;&/2* time. 
� Can we improve this to : ;= time? 

Key observation each entry >*? contributes to @> AB, " for less than 3 tuples " of the 
above form.

Similarly entry C*? contributes to DC ", AE for less than 3 tuples " of the above form.

Recall: @> AB, " = ∑
(*,?)∈ G,( H IJK L > M, N O @P(*,?) AB, " , where

@P(*,?) AB, " = @P* AB @P? " = @P* AB OQ

RS(

ℓ

(NRUR + (1 − NR)(1 − UR)).

Recall that for Y ≥ M + 1, the Y’th entry of " is /R ∈{0,1}. 

If /R ≠ NR, then @P? " = 0, so @P(*,?) AB, " = 0.
i.e., > M, N only contributes to @> AB, " if N*0(, … , N123 4 = (/*0(, … , /123 4)
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A Fourth Application of the Sum-Check 
Protocol

A Better Doubly-Efficient Interactive 
Proof for Counting Triangles

• In our first IP for counting triangles, V’s runtime is ! "# , P’s 
runtime was ! "% .

• We now give an IP for the same problem where P runs the fastest 
known algorithm for counting triangles, and then does ! "#
extra work to prove the answer is correct.



Counting Triangles
� Input: ! ∈ {0,1}(×(, representing the adjacency matrix of a graph.

� Desired Output: *+ , ∑ .,/,0 ∈ ( 1 !./!/0!0.
= *

+ , ∑ .,/ ∈ ( 3(!5)./ , !./.

View ! and !5 as functions mapping 0,1 789 (× 0,1 789 ( to :.
Define the polynomial ℎ =, > = ?(!5)(=, >) @!(=, Y).
The Protocol:

Apply the sum-check protocol to ℎ.
At the end of the protocol, V needs to evaluate:

ℎ B*, B5 =?(!5)(B*, B5) @!(B*, B5).
V  can evaluate @! B*, B5 on its own in C D5 time. Use the MatMult
protocol to compute ?(!5)(B*, B5). 
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