Lecture 5
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Summary of Arithmetization

Transforming a Boolean formula @ of size § into an arithmetic

circuit computing an extension g of @.

Note: deg(g) < S, and g can be evaluated at any input, gate by
gate, in time 0(S).




Costs of #SAT Protocol Applied to g

® Let @ be a Boolean formula of size S over 1 variables, g the

extension obtained by arithmetizing .

Rounds

Communication

V Time

P Time

P sendsa degree S
polynomial in reach round,
V sends one field element

in each round

—
O(S-n)
field elements sent in
total.

0 (S ) time to process each
of the 11 messages of P
*0(S) time to evaluate

g(r)

O(S - n) time total

P evaluates g at
O(S . Zn) points

to determine each

message
—
0(S? -n- 2"

time in total.




Details of Prover’'s Computation
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* Round i=1,2,..., nn : P sends univariate polynomial s;(X;) claimed to equal:

H;(X;): = z z g(r, 12, o, Ti—1, Xiy biv1,biv2, o) bn)

b;€{0,1}  b,€{0,1}
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Recalling that g can be evaluated at any input in 0 (S) time, this means H; can be
evaluated at all inputs in |d] in time O (S 22n—i) time.
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* Round i=1,2,..., nn : P sends univariate polynomial s;(X;) claimed to equal:

H;(X;): = z z g(r, 12, o, Ti—1, Xiy biv1,biv2, o) bn)

b;€{0,1}  b,€{0,1}
H; has degree d = O(S) because g has degree O (S) in each of its 11 variables.

To specify any degree d polynomial it suffices to specify the polynomial’s evaluations at
inputs in d]: = {0,1,2, ..., d}.
Note that for each j € [d],

H(D:i= ) e ) 900 Te T ), bisabisz, -0 bo)

b;€{0,1}  b,€{0,1}

: —1 :
is a sum of 2™ evaluations of g.

Recalling that g can be evaluated at any input in 0 (S) time, this means H; can be
evaluated at all inputs in |d] in time O (S 22n—i) time.

Across all 1 rounds, this is O (2?21 522”‘i) =0 (SZ ZTL) time.

/




|P=PSPACE

o #SAT isa #P—complete problem.

® Hence, the protocol we just saw implies that every problem in #P

has an interactive proof with a polynomial time verifier.

® [t is not much harder to show that this in fact holds for every
problem in PSPACE [LFKN, Shamir].
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|P=PSPACE

o #SAT is a #P-complete problem.
® Hence, the protocol we just saw implies that every problem in #P

has an interactive proof with a polynomial time verifier.

® |t is not much harder to show that this in fact holds for every

problem in PSPACE [LFKN, Shamir].

e Butis this a practical result?
® No. The main reason: P’s runtime.

® When applying the protocols of [LFKN, Shamir] even to very simple

problems, the honest prover would require superpolynomial time.

e The #SAT prover took time at least 2™

This seems unavoidable for #SAT, since we don’t know how to even solve the

problem in less than 2™ time.

But we can hope to solve “easier”’ problems without turning those problems
P P g P
into #SAT instances.




Doubly-Efficient Interactive Proofs




Doubly-Efficient Interactive Proof

o A doubly—efficient interactive proof for a problem is one where:
® V runs in time linear in the input size.

® Pruns in polynomial time.




A Second Application of the Sum-Check

Protocol

A Doubly—Efficient Interactive Proof for

Counting Triangles




Counting Triangles

* Input: A € {0,1}'**" representing the adjacency matrix of a graph.
, 1
® Desired Output: P : Z(i,j,k)e[n]3 AijAjkAik .

* Fastest known algorithm runs in matrix-multiplication time, currently about
2.37
n .




Counting Triangles

* Input: A € {0,1}'**" representing the adjacency matrix of a graph.

1

® Desired Output: p Z(i,j,k)e[n]3 AijAjkAik :

® The Protocol:
View A as a function mapping {O,l}log nX{O,l}log Mto F.
Recall that A denotes the multilinear extension of A.

Define the polynomial g(X, Y,Z) = A(X, Y) A(Y, Z) A(X, Z)
Apply the sum-check protocol to g to compute:

2.

(a,b,c) €{0,1)3logn

g(a,b,c)




Counting Triangles

* Input: A € {0,1}'**" representing the adjacency matrix of a graph.
® Desired Output: % y Z(i,j,k)e[n]3 AijAjkAik :
® The Protocol:

® View A as a function mapping {0,1}10g nX{O,l}log Mto F.

® Recall that A denotes the multilinear extension of A.

® Detine the polynomial g(X, Y,Z) = A(X, Y) A(Y, Z) A(X, Z)

* Apply the sum-check protocol to g to compute:

z g(a,b,c)

(a,b,c) €{0,1}3l0gn
® Costs:
¢ Total communication is O (log TL) ,V runtime is O (nz), P runtime is O (TLB).

® V’s runtime dominated by evaluating:

\_ g(ry,12,13) = A(Tp r2) A(Tz; 13) A(T1; 13).




Third Application of the Sum-Check

Protocol

A Doubly—Efficient Interactive Proof for
Matrix Multiplication




[Thaler13]: Optimal IP For n x n MatMult

* Goal: Given n XN input matrices 4, B over field F, compute
C=A-B.

™
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* Goal: Given n XN input matrices 4, B over field F, compute
C=A-B.
* P simply determines the “right answer”, and then P does

0, (le) extra work to prove its correctness.

* Optimal runtime up to leading constant assuming no 0, (nz)
time algorithm for MatMult.

® V runs in linear time (which is also optimal).




[Thalerl3]: Optimal IP For n x n MatMult

* Goal: Given n XN input matrices 4, B over field F, compute

C =A-B.

e P simply determines the “richt answer”. and then P does
Pty g )

0, (le) extra work to prove its correctness.

* Optimal runtime up to leading constant assuming no 0, (nz)

time algorithm for MatMult.

® V runs in linear time (which is also optimal).

Problem Naive Additional P

Size MatMult time
Time

1024 x 1024 217 s 0.03s

2048 x 2048 18.23 s 013s

V Time Rounds
0.09s 11
0.30s 12

Protocol
Comm

264 bytes

288 bytes

™




Comparison to Freivalds’ Algorithm

e Recall that Freivalds in 1979 gave the following protocol for
MatMult. To check A - B = D:

® V picks random vector X.
® Acceptsif 4 - (Bx) = Dx.
e No extra work for P, 0(n?) time for V.




Comparison to Freivalds’ Algorithm

e Recall that Freivalds in 1979 gave the following protocol for
MatMult. To check A - B = D:

® V picks random vector X.
® Acceptsif 4 - (Bx) = Dx.
e No extra work for P, 0(n?) time for V.
® Our big win: veritying algorithms that invoke MatMult, but
aren 't really interested in matrices.

* E.g., Best-known subgraph-counting algorithms square the
adjacency matrix, but are only interested in a single number.

e Total communication for us is O (log n), Freivalds’ is Q(n?).




MatMult Protocol: Technical Detalls




Notation

* Given N XN input matrices 4, B over field F, interpret A
and B as functions mapping {O,l}log X {O,l}log "toF

Via A(il, rar ilogn,jl’ nnn ,jlog n) — Aij-
e Let C = A - B denote the true answer.

e Let A, B denote the multilinear extensions of the functions A

and B.




MatMult Protocol

® P sends a matrix D claimed to equal C =A-B.
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correct answer C as long as 5(1‘1, 1"2): C~(T1, Tz).




MatMult Protocol

® P sends a matrix D claimed to equal C =A-B.

o V evaluates D at a random point (r1,7;) € Flogn x Flogn

* By Schwartz-Zippel: it is safe for V to believe that D equals the
correct answer C as long as 5(1‘1, 1"2): C~(T1, Tz).

® Goal becomes: compute C~(T1, ry)
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® Goal: Compute C~(T1, ).
* For Boolean vectors (i, j) € {0’1}10g ", clearly:

C(l;]) = Zke{o,l}log n A(L, k)B(k'])




MatMult Protocol

* Goal: Compute C (11, 73).
® For Boolean vectors (i, j) € {0,1}1°8™ clearly:
C(L,J) = Lyeoyosn AL K)B(k, J)
e This implies the following polynomial identity:
C(iL,j) = 2. ke0,1)108 A(i, k)B(k,j).




MatMult Protocol

® Goal: Compute C~(1‘1, ry).
* For Boolean vectors (i, j) € {0,1}10g ", clearly:
C(l;]) — Zke{o,l}log n A(l; k)B(k'])
® This implies the following polynomial identity:
é(l,]) — Zke{O,l}log n A(l; k)g(k'])
® SoV applies sum-check protocol to compute
C(r1,72) = Lp,e(0,1) ~ Lbiog nef0,13 I (D1r - biogn),

where:

9(z):=A(ry, z) B(z,13).




Making V Fast

® At end of sum-check, V must evaluate

g(r3) = A(ry,13) B(rs, 12).
e Suffices to evaluate A(Tl, r3) and B (ra3,7ry).




Making V Fast

® At end of sum-check, V must evaluate

g(r3) = A(ry,13) B(rs, 12).
e Suffices to evaluate A(Tl, r3) and B (ra3,7ry).

* Recall that each evaluation can be computed in O (n?) time.




Making P Fast: A First Attempt
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e Suffices for P to specify s5;(0), s;(1), s;(2)
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Making P Fast: A First Attempt

* Recall: we're using sum-check to compute
Zble{o,l} Zblog n€{0,1} g(bl: e blog n)-
® Round i: P sends quadratic polynomial S; (X;) claimed to equal:
Zbi+1e{o,1} Zblog L€{0,1} 9 (73,1, > 13,i-1, Xis bix1, -+, Dlog n)
e Suffices for P to specify s5;(0), s;(1), s;(2)
* Thus: Enough for P to evaluate g at all points of the form
(13,1, +:73,i-1,{0,1,2}, b1, s biog ) Dig1, s Brogn € {0,1}108™
* This is O (57) points.

e Recall A and B can each be evaluated at any input in 0 (n?) time, and

hence so can g.

® So P can compute S; in 0 (% . le) — 0(n3/2i) time.
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Making P Fast: A First Attempt

e Recall: we're using sum-check to compute
Zble{o,l} Zblog n€{0,1} g(bl: e blog n)-
® Round i: P sends quadratic polynomial S; (X i) claimed to equal:

2ibi41€{01) * Dibiog (0,13 I (73,0 s 73,i-1, X3y Dy, o) Plog 1)
e Suffices for P to specify s5;(0), s;(1), s;(2)
* Thus: Enough for P to evaluate g at all points of the form

(73,0 ) T3,i-1, {0,1,2}, bi11, .-, blog n)t Dig1y s blogn = {O,l}logn L

® This is 0(%) points.

e Recall A and B can each be evaluated at any input in 0 (n?) time, and

hence so can g.

* Over all rounds, this is O (Zl Tl3/ Zi) = 0(713) total time.

/




Making P Fast: Second Attempt

* Recall: Enough to evaluate g at all points of the form:
z=(r31,..,73;-1,{0,1,2}, bi41, ..., biogn): bis1, -» Biogn € {0,1}108™
¢ Already showed: how to do this in 0 (n3 / Zi) time.

* Can we improve this to O (n?) time?




Making P Fast: Second Attempt

Recall: Enough to evaluate g at all points of the form:
z=(r31,..,73;-1,{0,1,2}, bi41, ..., biogn): bis1, -» Biogn € {0,1}108™
Already showed: how to do this in O(n3/2!) time.

Can we improve this to O (n?) time?

Key observation each entry A;; contributes to A(14, 2) for less than 3 tuples Z of

the above form.

® Similarly entry B;; contributes to B(z, 1) for less than 3 tuples Z of the above form.
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A Fourth Application of the Sum-Check

Protocol

A Better Doubly—EffiCient Interactive

Proof for Counting Triangles

* In our first IP for counting triangles, V’s runtime is 0 (n?), P’s
runtime was O (n3)
* We now give an IP for the same problem where P runs the fastest

known algorithm for counting triangles, and then does O (nz)

extra work to prove the answer is correct.

/




Counting Triangles

 Input: A € {0,1}""*", representing the adjacency matrix of a graph.

. 1
® Desired Output: P . Z(i,j,k)e[n]3 AijAjkAki

1
— % Z(i,j)e[n]Z(Az)ij ) Aij~




Counting Triangles

Input: A € {0,1}*", representing the adjacency matrix of a graph.
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1
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View A and A? as functions mapping {0’1}10g nX{O,l}lOg "to F.
Define the polynomial h(X,Y) = (AZ) (X,Y) /I(X ,Y).
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Input: A € {0,1}*", representing the adjacency matrix of a graph.

. 1
Desired Output: g ) Z(i,j,k)e[n]3 AijAjkAki

= % ' Z(i,j)E[n]Z(Az)if F Ay
View A and A? as functions mapping {0’1}10{; nX{O,l}lOg "to F.
Detine the polynomial h(X,Y) = (,TZS(X ,Y) /I(X ,Y).
The Protocol:
e Apply the sum-check protocol to h.




Counting Triangles

 Input: A € {0,1}""*", representing the adjacency matrix of a graph.

. 1
® Desired Output: P . Z(i,j,k)e[n]3 AijAjkAki

= % ' Z(i,j)E[n]Z(Az)if $Ajj
e View A and A% as functions mapping {0’1}10{; nX{O,l}lOg "to F.
® Define the polynomial h(X,Y) = (PS(X ,Y) A(X ,Y).
® The Protocol:

e Apply the sum-check protocol to h.
* At the end of the protocol, V needs to evaluate:

h(ry, 12)=(A2) (11, 12) A(r, 12).
e V can evaluate A(7y,73) on its own in 0(11?) time. V uses the MatMult
\_  protocol to force P to compute (A%) (1, 13) for her.




