
Lecture 3



Recap of last lecture
1. Reed-Solomon Fingerprinting. 

� Lets Alice and Bob determine whether their input vectors are equal, 
using communication that is logarithmic in the length of the vectors. 

2. Freivalds’ Protocol for Verifying Matrix Products. 
� Lets a verifier check that a matrix C equals the product of two 

matrices A and B. 
� Runtime of the verifier is linear in the size of the matrices.
� Significantly faster than the best known algorithms for multiplying A 

and B). 

3. Schwartz-Zippel lemma: Let ! ≠ " be ℓ-variate polynomials of 

total degree at most $. Then Pr'∈)ℓ ! * = " * ≤ -
) .



Today
� Low-degree and multilinear extension polynomials. 
� Our first interactive proof: the sum-check protocol. 



Low-Degree and Multilinear Extensions
� Definition [Extensions]. Given a function !: {0,1}ℓ→ *, 

a ℓ-variate polynomial + over F is said to extend ! if ! , =
+(,) for all , ∈ {0,1}ℓ.

� Definition [Multilinear Extensions]. Any function 
!: {0,1}ℓ→ * has a unique multilinear extension (MLE),   
denoted 2!.
Multilinear means the polynomial has degree at most 1 in each 
variable.
(1 − ,4)(1 − ,5 ) is multilinear, ,4(,5)5 is not.



Low-Degree and Multilinear Extensions
� Definition [Extensions]. Given a function !: {0,1}ℓ→ *, 

a ℓ-variate polynomial + over F is said to extend ! if ! , =
+(,) for all , ∈ {0,1}ℓ.

� Definition [Multilinear Extensions]. Any function 
!: {0,1}ℓ→ * has a unique multilinear extension (MLE),   
denoted 2!.
� Multilinear means the polynomial has degree at most 1 in each 

variable.
� (1 − ,4)(1 − ,5 ) is multilinear, ,45,5 is not.



1 2

8 10

f : {0,1}2 → F



1 2

8 10

f :F2 → F~

3 4

12 14

15 18

22 26

21 24

30 34

29 34

36 42

39 44

48 54

5 6

16 18

27 30

38 42

49 56

60 68



1 2

8 10

3 4

12 14

15 18

22 26

21 24

30 34

29 34

36 42

39 44

48 54

5 6

16 18

27 30

38 42

49 56

60 68

!" #$, #& = (1 − #$)(1 − #&) + 2(1 − #$)#&+ 8#$(1 − #&)+10#$#&

Can	check:
!" 0, 0 = 1
!" 0, 1 = 2
!" 1, 0 = 8
!" 1, 1 = 10



1 2

8 10

3 4

12 14

13 16

16 20

19 22

24 28

17 22

16 22

27 32

28 34

5 6

16 18

25 28

32 36

37 42

40 44

Another (non-multilinear) extension of !: 
" #$, #& = −#$& + #$#&+8 #$ + #& + 1

Can	check:
" 0, 0 = 1
" 0, 1 = 2
" 1, 0 = 8
" 1, 1 = 10



Low-Degree and Multilinear Extensions
� Fact [VSBW13]: Given as input all 2ℓ evaluations of a function 
#: {0,1}ℓ→ +, for any point , ∈ +ℓ there is an .(2ℓ)-time 
algorithm for evaluating 1# , .

� Note:  If # is “structured”, there may extensions 3 for which 
3(,) can be evaluated much faster than .(2ℓ)-time.

Can view as error



Low-Degree and Multilinear Extensions
� Fact [VSBW13]: Given as input all 2ℓ evaluations of a function 
#: {0,1}ℓ→ +, for any point , ∈ +ℓ there is an .(2ℓ)-time 
algorithm for evaluating 1# , .

� Note:  If # is “structured”, there may extensions 3 for which 
3(,) can be evaluated much faster than .(2ℓ)-time.
� We will see an example later when covering arithmetization of 

Boolean formulae.
Can view as error



The Sum-Check Protocol [LFKN90]



Sum-Check Protocol [LFKN90]
� Input: V given oracle access to a ℓ-variate polynomial "

over field #.
� Goal: compute the quantity: 

$
%&∈{),+}

$
%-∈{),+}

… $
%ℓ∈{),+}

"(0+, … , 0ℓ).



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

V checks that !" = 4" 0 + 4" 1 .
V picks <" at random from = and sends <" to P. 
Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks 
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ).



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

V checks that !" = 4" 0 + 4" 1 .
V picks <" at random from = and sends <" to P. 
Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks 
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ). 

Costs one oracle query for V.



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

V checks that !" = 4" 0 + 4" 1 .
V picks <" at random from = and sends <" to P. 
Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks 
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ). 

Costs one oracle query for V.



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

� V checks that !" = 4" 0 + 4" 1 .
V picks <" at random from = and sends <" to P. 
Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks 
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ). 

Costs one oracle query for V.



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

� V checks that !" = 4" 0 + 4" 1 .
� If this check passes, it is safe for V to believe that !" is the correct answer, so long  

as V believes that 4"= 6".
� How to check this? Just check that 4" and 6" agree at a random point <"!
Note: V can compute 4"(<") directly from P’s first message, but not 6"(<").

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ>" <ℓ>" = /(<", … , <ℓ>", 0) + /(<", … , <ℓ>", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ>", 5ℓ). V checks 
that 4ℓ>"(<ℓ>") = 4ℓ 0 + 4ℓ 1 .
V picks at random, checks that /( ). 



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

� V checks that !" = 4" 0 + 4" 1 .
� If this check passes, it is safe for V to believe that !" is the correct answer, so long  

as V believes that 4"= 6".
� How to check this? Just check that 4" and 6" agree at a random point <"!
� V can compute 4"(<") directly from P’s first message, but not 6"(<").

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ>" <ℓ>" = /(<", … , <ℓ>", 0) + /(<", … , <ℓ>", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ>", 5ℓ). V checks 
that 4ℓ>"(<ℓ>") = 4ℓ 0 + 4ℓ 1 .
V picks at random, checks that /( ). 



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

� V checks that !" = 4" 0 + 4" 1 .
� V picks <" at random from = and sends <" to P. 
� Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks 
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ). 

Costs one oracle query for V.



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

� V checks that !" = 4" 0 + 4" 1 .
� V picks <" at random from = and sends <" to P. 
� Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
Final round: Meant to check the claim that;

4ℓ?" <ℓ?" = /(<", … , <ℓ?", 0) + /(<", … , <ℓ?", 1)
P sends univariate polynomial 4ℓ(5ℓ) claimed to equal /(<", … , <ℓ?", 5ℓ). V checks 
that 4ℓ?"(<ℓ?") = 4ℓ 0 + 4ℓ 1 .
V picks <ℓ at random, checks that 4ℓ <ℓ = /(<", … , <ℓ). 

Costs one oracle query for V.



� Start: P sends claimed answer !". The protocol must check that:

!" = $
%&∈{),"}

$
%,∈{),"}

… $
%ℓ∈{),"}

/(1", … , 1ℓ).

� Round 1: P sends univariate polynomial 4"(5") claimed to equal: 

6" 5" := $
%,∈{),"}

… $
%ℓ∈ ),"

/(5", 18, … , 1ℓ)

� V checks that !" = 4" 0 + 4" 1 .
� V picks <" at random from = and sends <" to P. 
� Round 2: They recursively check that 4" <" = 6" <" .

i.e., that 4" <" = ∑%,∈{),"} …∑%ℓ∈ )," /(<", 18, … , 1ℓ).
� Round ℓ (Final round): P sends univariate polynomial 4ℓ(5ℓ) claimed to equal 

6ℓ ∶= /(<", … , <ℓ@", 5ℓ). 
� V checks that 4ℓ@"(<ℓ@") = 4ℓ 0 + 4ℓ 1 .
� V picks <ℓ at random, and needs to check that 4ℓ <ℓ = /(<", … , <ℓ). 

� No need for more rounds. V can perform this check with one oracle query.



Analysis of the Sum-Check Protocol



Completeness and Soundness
� Completeness holds by design: If P sends the prescribed 

messages, then all of V’s checks will pass.
Soundness: If !" ≠ ∑ %&,…,%ℓ ∈ +," ℓ ,(.", … , .ℓ), then V 

rejects with probability at least 1- ℓ01|3| , where 4 is the total 

degree of ,.
Proof is by induction on the number of variables ℓ.



Completeness and Soundness
� Completeness holds by design: If P sends the prescribed 

messages, then all of V’s checks will pass.
� Soundness: If P does not send the prescribed messages, 

then V rejects with probability at least 1- ℓ"#|%| , where ' is 

the maximum degree of ( in any variable.
� Proof is by induction on the number of variables ℓ.



Completeness and Soundness
� Completeness holds by design: If P sends the prescribed 

messages, then all of V’s checks will pass.
� Soundness: If P does not send the prescribed messages, 

then V rejects with probability at least 1- ℓ"#|%| , where ' is 

the maximum degree of ( in any variable.
� Proof is by induction on the number of variables ℓ.

� Base case: ℓ = 1. In this case, P sends a single message ,- .-
claimed to equal ( .- . V picks /- at random, checks that 
,- /- = ((/-).

� By Fact, if ,- ≠ (, then Pr56∈%[,- /- = ((/-)] ≤ #
|%|.



Soundness: Inductive Case
� Inductive case: ℓ > 1.

� Recall: P’s first message %& '& is claimed to equal                   
(& '& ≔ ∑+,∈{/,&} …∑+ℓ∈ /,& 3('&, 56, … , 5ℓ).

� Then V picks a random 8& and sends 8& to P.  They (recursively) invoke sum-
check to confirm that %& 8& = (& 8& .

By Fact, if %& ≠ (&, then Pr=>∈?[%& 8& ≠ ((8&)] ≥ 1 −
D

|?|
.

If %& 8& ≠ ( 8& , P is left to prove a false claim in the recursive call.
The recursive call applies sum-check to 3 8&, '6, … , 'ℓ , which is ℓ-1 variate.
By induction, P fails to convince V in the recursive call with probability at least 

1 −
D(ℓF&)

|?|
.

So if %& ≠ (&, the probability V rejects is at least:

1 − Pr=>∈?[%& 8& = ((8&)] − Pr[V accepts|%& 8& ≠ ((8&)]

≥ 1 −
D

|?|
−

D ℓF&

?
≥ 1 −

Dℓ

?
.



Soundness: Inductive Case
� Inductive case: ℓ > 1.

� Recall: P’s first message %& '& is claimed to equal                   
(& '& ≔ ∑+,∈{/,&} …∑+ℓ∈ /,& 3('&, 56, … , 5ℓ).

� Then V picks a random 8& and sends 8& to P.  They (recursively) invoke sum-
check to confirm that %& 8& = (& 8& .

� By Fact, if %& ≠ (&, then Pr=>∈?[%& 8& = ((8&)] ≤
C

|?|
.

If %& 8& ≠ ( 8& , P is left to prove a false claim in the recursive call.
The recursive call applies sum-check to 3 8&, '6, … , 'ℓ , which is ℓ-1 variate.
By induction, P fails to convince V in the recursive call with probability at least 

1 −
C(ℓF&)

|?|
.

So if %& ≠ (&, the probability V rejects is at least:

1 − Pr=>∈?[%& 8& = ((8&)] − Pr[V accepts|%& 8& ≠ ((8&)]

≥ 1 −
C

|?|
−

C ℓF&

?
≥ 1 −

Cℓ

?
.



Soundness: Inductive Case
� Inductive case: ℓ > 1.

� Recall: P’s first message %& '& is claimed to equal                   
(& '& ≔ ∑+,∈{/,&} …∑+ℓ∈ /,& 3('&, 56, … , 5ℓ).

� Then V picks a random 8& and sends 8& to P.  They (recursively) invoke sum-
check to confirm that %& 8& = (& 8& .

� By Fact, if %& ≠ (&, then Pr=>∈?[%& 8& = ((8&)] ≤
C

|?|
.

� If %& 8& ≠ ( 8& , P is left to prove a false claim in the recursive call.
The recursive call applies sum-check to 3 8&, '6, … , 'ℓ , which is ℓ-1 variate.
By induction, P fails to convince V in the recursive call with probability at least 

1 −
C(ℓF&)

|?|
.

So if %& ≠ (&, the probability V rejects is at least:

1 − Pr=>∈?[%& 8& = ((8&)] − Pr[V accepts|%& 8& ≠ ((8&)]

≥ 1 −
C

|?|
−

C ℓF&

?
≥ 1 −

Cℓ

?
.



Soundness: Inductive Case
� Inductive case: ℓ > 1.

� Recall: P’s first message %& '& is claimed to equal                   
(& '& ≔ ∑+,∈{/,&} …∑+ℓ∈ /,& 3('&, 56, … , 5ℓ).

� Then V picks a random 8& and sends 8& to P.  They (recursively) invoke sum-
check to confirm that %& 8& = (& 8& .

� By Fact, if %& ≠ (&, then Pr=>∈?[%& 8& = ((8&)] ≤
C

|?|
.

� If %& 8& ≠ ( 8& , P is left to prove a false claim in the recursive call.
� The recursive call applies sum-check to 3 8&, '6, … , 'ℓ , which is ℓ-1 variate.
� By induction, P fails to convince V in the recursive call with probability at least 

1 −
C(ℓF&)

|?|
.

So if %& ≠ (&, the probability V rejects is at least:

1 − Pr=>∈?[%& 8& = ((8&)] − Pr[V accepts|%& 8& ≠ ((8&)]

≥ 1 −
C

|?|
−

C ℓF&

?
≥ 1 −

Cℓ

?
.



Soundness: Inductive Case
� Inductive case: ℓ > 1.

� Recall: P’s first message %& '& is claimed to equal                   
(& '& ≔ ∑+,∈{/,&} …∑+ℓ∈ /,& 3('&, 56, … , 5ℓ).

� Then V picks a random 8& and sends 8& to P.  They (recursively) invoke sum-
check to confirm that %& 8& = (& 8& .

� By Fact, if %& ≠ (&, then Pr=>∈?[%& 8& = ((8&)] ≤
C

|?|
.

� If %& 8& ≠ ( 8& , P is left to prove a false claim in the recursive call.
� The recursive call applies sum-check to 3 8&, '6, … , 'ℓ , which is ℓ-1 variate.
� By induction, P fails to convince V in the recursive call with probability at least 

1 −
C(ℓF&)

|?|
.

� Summary: if %& ≠ (&, the probability V accepts is at most:

Pr=>∈?[%& 8& = ((8&)] + Pr=,,…,=ℓ∈?[V accepts|%& 8& ≠ ((8&)]

≤
C

|?|
+

C ℓF&

?
≤

Cℓ

?
.



Costs of the Sum-Check Protocol
� Total communication is ! "ℓ field elements. 

� P sends ℓ messages, each a univariate polynomial of degree at 
most ".V sends ℓ − 1 messages, each consisting of one field 
elements.

V’s runtime is:
! "' + [*+,- .-/0+.-" *1 -'2302*- 4 2* 15- 61+5*] .

P’s runtime is at most:
! " 8 2: 8 [*+,- .-/0+.-" *1 -'2302*- 4 2* 15- 61+5*] .



Costs of the Sum-Check Protocol
� Total communication is ! "ℓ field elements. 

� P sends ℓ messages, each a univariate polynomial of degree at 
most ".V sends ℓ − 1 messages, each consisting of one field 
elements.

� V’s runtime is:
! "ℓ + [)*+, -,./*-," )0 ,123/2), 4 2) 05, 60*5)] .

P’s runtime is at most:
! " 8 2: 8 [)*+, -,./*-," )0 ,123/2), 4 2) 05, 60*5)] .



Costs of the Sum-Check Protocol
� Total communication is ! "ℓ field elements. 

� P sends ℓ messages, each a univariate polynomial of degree at 
most ".V sends ℓ − 1 messages, each consisting of one field 
elements.

� V’s runtime is:
! "ℓ + [)*+, -,./*-," )0 ,123/2), 4 2) 05, 60*5)] .

� P’s runtime is at most:
! " 8 2ℓ 8 [)*+, -,./*-," )0 ,123/2), 4 2) 05, 60*5)] .


