Lecture 3

Recap of last lecture

- 1. Reed-Solomon Fingerprinting.
 - Lets Alice and Bob determine whether their input vectors are equal, using communication that is logarithmic in the length of the vectors.
- 2. Freivalds' Protocol for Verifying Matrix Products.
 - Lets a verifier **check** that a matrix C equals the product of two matrices A and B.
 - Runtime of the verifier is linear in the size of the matrices.
 - Significantly faster than the best known algorithms for multiplying A and B).
- 3. Schwartz-Zippel lemma: Let $p \neq q$ be ℓ -variate polynomials of total degree at most d. Then $\Pr_{r \in F^{\ell}}[p(r) = q(r)] \leq \frac{d}{|F|}$.

Today

- Low-degree and multilinear extension polynomials.
- Our first interactive proof: the sum-check protocol.

Low-Degree and Multilinear Extensions

- Definition [Extensions]. Given a function f: {0,1}^ℓ → F, a ℓ-variate polynomial g over F is said to extend f if f(x) = g(x) for all x ∈ {0,1}^ℓ.
- Definition [Multilinear Extensions]. Any function $f: \{0,1\}^{\ell} \rightarrow F$ has a unique multilinear extension (MLE), denoted \tilde{f} .

Low-Degree and Multilinear Extensions

- Definition [Extensions]. Given a function $f: \{0,1\}^{\ell} \to F$, a ℓ -variate polynomial g over F is said to extend f if f(x) = g(x) for all $x \in \{0,1\}^{\ell}$.
- Definition [Multilinear Extensions]. Any function $f: \{0,1\}^{\ell} \to F$ has a unique multilinear extension (MLE), denoted \tilde{f} .
 - Multilinear means the polynomial has degree at most 1 in each variable.
 - $(1 x_1)(1 x_2)$ is multilinear, $x_1^2 x_2$ is not.

 $f:\{0,1\}^2 \to \mathbf{F}$

 $\tilde{f}(x_1, x_2) = (1 - x_1)(1 - x_2) + 2(1 - x_1)x_2 + 8x_1(1 - x_2) + 10x_1x_2$

Low-Degree and Multilinear Extensions

- Fact [VSBW13]: Given as input all 2^ℓ evaluations of a function f: {0,1}^ℓ→ F, for any point r ∈ F^ℓ there is an O(2^ℓ)-time algorithm for evaluating f̃(r).
- Note: If f is "structured", there may extensions g for which g(r) can be evaluated **much** faster than $O(2^{\ell})$ -time.

Low-Degree and Multilinear Extensions

- Fact [VSBW13]: Given as input all 2^{ℓ} evaluations of a function $f: \{0,1\}^{\ell} \to F$, for any point $r \in F^{\ell}$ there is an $O(2^{\ell})$ -time algorithm for evaluating $\tilde{f}(r)$.
- Note: If f is "structured", there may extensions g for which g(r) can be evaluated **much** faster than $O(2^{\ell})$ -time.
 - We will see an example later when covering arithmetization of Boolean formulae.

The Sum-Check Protocol [LFKN90]

Sum-Check Protocol [LFKN90]

- Input: V given oracle access to a ℓ -variate polynomial g over field F.
- Goal: compute the quantity:

$$\sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$\sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

• **Round 1**: P sends **univariate** polynomial $S_1(X_1)$ claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

• V checks that $C_1 = s_1(0) + s_1(1)$.

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

• **Round 1**: P sends **univariate** polynomial $S_1(X_1)$ claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

• V checks that $C_1 = s_1(0) + s_1(1)$.

- If this check passes, it is safe for V to believe that C_1 is the correct answer, so long as V believes that $s_1 = H_1$.
- How to check this? Just check that s_1 and H_1 agree at a random point r_1 !

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

• **Round 1**: P sends **univariate** polynomial $S_1(X_1)$ claimed to equal:

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

• V checks that $C_1 = s_1(0) + s_1(1)$.

- If this check passes, it is safe for V to believe that C_1 is the correct answer, so long as V believes that $s_1 = H_1$.
- How to check this? Just check that s_1 and H_1 agree at a random point r_1 !
- V can compute $S_1(r_1)$ directly from P's first message, but not $H_1(r_1)$.

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

- V checks that $C_1 = s_1(0) + s_1(1)$.
- V picks r_1 at random from F and sends r_1 to P.
- **Round 2**: They recursively check that $s_1(r_1) = H_1(r_1)$.

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

- V checks that $C_1 = s_1(0) + s_1(1)$.
- V picks r_1 at random from F and sends r_1 to P.
- Round 2: They recursively check that $s_1(r_1) = H_1(r_1)$. i.e., that $s_1(r_1) = \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(r_1, b_2, \dots, b_\ell)$.

$$C_1 = \sum_{b_1 \in \{0,1\}} \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(b_1, \dots, b_\ell).$$

$$H_1(X_1) := \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell)$$

- V checks that $C_1 = s_1(0) + s_1(1)$.
- V picks r_1 at random from F and sends r_1 to P.
- Round 2: They recursively check that $s_1(r_1) = H_1(r_1)$. i.e., that $s_1(r_1) = \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(r_1, b_2, \dots, b_\ell)$.
- Round ℓ (Final round): P sends univariate polynomial $S_{\ell}(X_{\ell})$ claimed to equal $H_{\ell} := g(r_1, ..., r_{\ell-1}, X_{\ell}).$
- V checks that $s_{\ell-1}(r_{\ell-1}) = s_{\ell}(0) + s_{\ell}(1)$.
- V picks r_{ℓ} at random, and needs to check that $s_{\ell}(r_{\ell}) = g(r_1, ..., r_{\ell})$.
 - No need for more rounds. V can perform this check with one oracle query.

Analysis of the Sum-Check Protocol

Completeness and Soundness

• Completeness holds by design: If **P** sends the prescribed messages, then all of **V**'s checks will pass.

Completeness and Soundness

- Completeness holds by design: If **P** sends the prescribed messages, then all of **V**'s checks will pass.
- Soundness: If P does not send the prescribed messages, then V rejects with probability at least $1 - \frac{\ell \cdot d}{|F|}$, where d is the maximum degree of g in any variable.
- Proof is by induction on the number of variables ℓ .

Completeness and Soundness

- Completeness holds by design: If P sends the prescribed messages, then all of V's checks will pass.
- Soundness: If P does not send the prescribed messages, then V rejects with probability at least $1 - \frac{\ell \cdot d}{|F|}$, where d is the maximum degree of g in any variable.
- Proof is by induction on the number of variables ℓ .
 - Base case: $\ell = 1$. In this case, P sends a single message $S_1(X_1)$ claimed to equal $g(X_1)$. V picks r_1 at random, checks that $s_1(r_1) = g(r_1)$.

• By Fact, if $s_1 \neq g$, then $\Pr_{r_1 \in F}[s_1(r_1) = g(r_1)] \leq \frac{d}{|F|}$.

- Inductive case: $\ell > 1$.
 - Recall: P's first message $S_1(X_1)$ is claimed to equal

$$H_1(X_1) \coloneqq \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell).$$

• Then V picks a random r_1 and sends r_1 to P. They (recursively) invoke sumcheck to confirm that $s_1(r_1) = H_1(r_1)$.

- Inductive case: $\ell > 1$.
 - Recall: P's first message $S_1(X_1)$ is claimed to equal $H_1(X_1) \coloneqq \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell).$
 - Then V picks a random r_1 and sends r_1 to P. They (recursively) invoke sumcheck to confirm that $s_1(r_1) = H_1(r_1)$.
- By **Fact**, if $s_1 \neq H_1$, then $\Pr_{r_1 \in F}[s_1(r_1) = H(r_1)] \leq \frac{d}{|F|}$.

- Inductive case: $\ell > 1$.
 - Recall: P's first message $S_1(X_1)$ is claimed to equal $H_1(X_1) \coloneqq \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell).$
 - Then V picks a random r_1 and sends r_1 to P. They (recursively) invoke sumcheck to confirm that $s_1(r_1) = H_1(r_1)$.
- By Fact, if $s_1 \neq H_1$, then $\Pr_{r_1 \in F}[s_1(r_1) = H(r_1)] \leq \frac{d}{|F|}$.
- If $s_1(r_1) \neq H(r_1)$, **P** is left to prove a false claim in the recursive call.

- Inductive case: $\ell > 1$.
 - Recall: P's first message $S_1(X_1)$ is claimed to equal $H_1(X_1) \coloneqq \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell).$
 - Then V picks a random r_1 and sends r_1 to P. They (recursively) invoke sumcheck to confirm that $s_1(r_1) = H_1(r_1)$.
- By Fact, if $s_1 \neq H_1$, then $\Pr_{r_1 \in F}[s_1(r_1) = H(r_1)] \leq \frac{d}{|F|}$.
- If $s_1(r_1) \neq H(r_1)$, **P** is left to prove a false claim in the recursive call.
 - The recursive call applies sum-check to $g(r_1, X_2, ..., X_\ell)$, which is ℓ -1 variate.
 - By induction, P fails to convince V in the recursive call with probability at least $1 \frac{d(\ell-1)}{|F|}$.

- Inductive case: $\ell > 1$.
 - Recall: P's first message $S_1(X_1)$ is claimed to equal $H_1(X_1) \coloneqq \sum_{b_2 \in \{0,1\}} \dots \sum_{b_\ell \in \{0,1\}} g(X_1, b_2, \dots, b_\ell).$
 - Then V picks a random r_1 and sends r_1 to P. They (recursively) invoke sumcheck to confirm that $s_1(r_1) = H_1(r_1)$.
- By Fact, if $s_1 \neq H_1$, then $\Pr_{r_1 \in F}[s_1(r_1) = H(r_1)] \leq \frac{d}{|F|}$.
- If $s_1(r_1) \neq H(r_1)$, **P** is left to prove a false claim in the recursive call.
 - The recursive call applies sum-check to $g(r_1, X_2, ..., X_\ell)$, which is ℓ -1 variate.
 - By induction, P fails to convince V in the recursive call with probability at least $1 \frac{d(\ell-1)}{|F|}$.
- **Summary:** if $S_1 \neq H_1$, the probability V accepts is at most:

$$\Pr_{r_1 \in F}[s_1(r_1) = H(r_1)] + \Pr_{r_2, \dots, r_\ell \in F}[\operatorname{Vaccepts}|s_1(r_1) \neq H(r_1)]$$
$$\leq \frac{d}{|F|} + \frac{d(\ell - 1)}{|F|} \leq \frac{d\ell}{|F|}.$$

Costs of the Sum-Check Protocol

- Total communication is $O(d\ell)$ field elements.
 - P sends ℓ messages, each a univariate polynomial of degree at most d. V sends $\ell 1$ messages, each consisting of one field elements.

Costs of the Sum-Check Protocol

- Total communication is $O(d\ell)$ field elements.
 - P sends ℓ messages, each a univariate polynomial of degree at most d. V sends $\ell 1$ messages, each consisting of one field elements.
- V's runtime is:

 $O(d\ell + [time required to evaluate g at one point]).$

Costs of the Sum-Check Protocol

- Total communication is $O(d\ell)$ field elements.
 - P sends ℓ messages, each a univariate polynomial of degree at most d. V sends $\ell 1$ messages, each consisting of one field elements.
- V's runtime is:

 $O(d\ell + [time required to evaluate g at one point]).$

• P's runtime is at most:

 $O(d \cdot 2^{\ell} \cdot [time required to evaluate g at one point]).$