Lecture Outline

1. The Power of Randomness
® Reed-Solomon Fingerprinting

e  Freivalds’ Protocol for Verifying Matrix Products
2. Definition of Interactive Proofs

3.  Technical Concepts: loW—degree extensions




The Power of Randomness: A

Demonstration




EQUALITY Testing
Alice Bob

a=(a..,a,) €{0,1}" b= (by,..,b,) €{0,1}"

Alice and Bob’s Goal: Determine whether @ = b, while

exchanging as few bits as possible.




Alice

EQUALITY Testing
Bob

a=(a..,a,) €{0,1}" b= (by,..,b,) €{0,1}"

Trivial solution: Alice sends @ to Bob, who checks whether @ = b.

Communication cost is 1.

/




EQUALITY Testing
Alice Bob

a=(a..,a,) €{0,1}" b= (by,..,b,) €{0,1}"

Fact: Trivial solution is optimal amongst deterministic protocols.

/




A Logarithmic Cost Randomized

Solution




4 ™
Randomized EQUALITY Testing Protocol

* Notation:
* Let F be any finite field with |F| = n®.
* Interpret each a;, b; as elements of F.

e Letp(x) =Y, a;x"and q(x) = X, b; x*.
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Randomized EQUALITY Testing Protocol

* Notation:
* Let F be any finite field with |F| = n®.
* Interpret each a;, b; as elements of F.

e Letp(x) =Y, a;x"and q(x) = X, b; x*.

* The Protocol:
* Alice picks a random 7 € F and sends (7, p(r)) to Bob.

* Bob outputs EQUAL if p(r) = q (7). Otherwise he
outputs NOT-EQUAL.

* Total communication: O (log |F|) = O(logn) bits.
N * Call p(7) the Reed-Solomon fingerprint of the vector @ at 1. Yy




4 ™
Correctness Analysis

* Claim 1:if @ = b, then Bob outputs EQUAL with probability 1.

* Claim 2: @ # b, then Bob outputs NOT-EQUAL with

1

probability at least 1-— — over the choice of v € F.
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Correctness Analysis

Claim 1:if @ = b, then Bob outputs EQUAL with probability 1.
* Proof: Since @ = b, p and q are the same polynomial, so

p(r) =q(r) forallr € F.

Claim 2: @ # b, then Bob outputs NOT-EQUAL with

1

probability at least 1-— —over the choice of 7 € F.




Correctness Analysis

™

Claim 2: @ # b, then Bob outputs NOT-EQUAL with probability at

1

least 1 — —over the choice of r € F .

n
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* Claim 2: @ # b, then Bob outputs NOT-EQUAL with probability at

1

least 1 — —over the choice of € F.

FACT: Let p # g be univariate polynomials of degree at most n.
Then p and q agree on at most n inputs Equivalently:

Prreplp(r) = ()] < 7
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Correctness Analysis

Claim 2: @ # b, then Bob outputs NOT-EQUAL with probability at

1
least 1 — —over the choice of € F.

FACT: Let p # g be univariate polynomials of degree at most n.
Then p and q agree on at most n inputs Equivalently:

Prreplp(r) = ()] < 7

If @ # b, then p and q are not the same polynomial. By FACT, the

probability Alice picks an 7 such that p(r) = q(r) is at most |lF| <

_<_
nZ — n’




Main Takeaways

1. Any two distinct low—degree polynomials differ almost

everywhere: it p # q then Pryer [p (T’) = q(?‘)] = %

where n bounds the degree of p and q.
* Corollary: If two low-degree polynomials agree at a
randomly chosen input, it is “safe” to believe they are the

same polynomial.

2. Interpreting inputs as low—degree polynomials is powertul.
* If two inputs differ at all, then once interpreted as
polynomials, they differ almost everywhere.




Freivalds’ Protocol for Verifying Matrix

Products

Demonstrating the Power of
Randomness in Verifiable Computing




e
Verifying Matrix Multiplication

* Inputis two matrices A, B € F XN Goal is to compute A * B.

* Fastest known algorithm runs in time about n%37,
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e  What if an untrusted prover P claims that the answer is a matrix C?

Can V verify that C= A - B in 0(n2) time?




e

Verifying Matrix Multiplication

Input is two matrices A, B € F XN Goal is to compute A * B.
Fastest known algorithm runs in time about n%37.
What if an untrusted prover P claims that the answer is a matrix C?

Can V verify that C= A - B in 0(n2) time?
Yes!




e
Verifying Matrix Multiplication
* The Protocol:

1. Vpicksarandom r € F and lets X = (1, re ..., r’).
2.V computes C + X and (AB) - X, accepting iff they are equal.
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Verifying Matrix Multiplication

* The Protocol:
1. Vpicksarandom r € F and lets X = (T,T‘z, n, T,
2.V computes C + X and (AB) - X, accepting iff they are equal.

* Runtime Analysis:

*  V’s runtime dominated by computing 3 matrix-vector products,
each of which takes 0(n?) time.

¢ C - X is one matrix-vector multiplication.
* (AB)-x=A"- (B - x) takes two matrix-vector

multiplications.




e
Correctness Analysis

* Claim 1: If C= A - B then V accepts with probability 1.
* Claim 2: If C # A - B, then V rejects with probability at least

- >1-1/
—— =1-1/n.
|F|
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Correctness Analysis

* Claim 1: If C= A - B then V accepts with probability 1.
* Claim 2: If C # A - B, then V rejects with probability at least
n
1 — m >1-1 / n.
*  Proof of Claim 2:
* Recall that x = (7, TZ, e, ).
e (C-x)i= }lzl CijTj is the Reed-Solomon fingerprint at r
of the ith row of C.
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Correctness Analysis

Claim 1: If C= A - B then V accepts with probability 1.
Claim 2: If C # A - B, then V rejects with probability at least

n
1-— >1-1/n

[F| —
Proof of Claim 2:
* Recall that x = (7, TZ, e, ).
e (C-x)i= }1=1 CijTj is the Reed-Solomon fingerprint at r
of the ith row of C.
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the ith row of AB.
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Correctness Analysis

* Claim 1: If C= A - B then V accepts with probability 1.
* Claim 2: If C # A - B, then V rejects with probability at least
n
1— m >1-1 / n.
*  Proof of Claim 2:
* Recall that x = (7, TZ, e, ).
e (C-x)i= }1=1 CijTj is the Reed-Solomon fingerprint at r
of the ith row of C.
*  Similarly, ((AB) * x); is the Reed-Solomon fingerprint at 7 of
the ith row of AB.
* Soif even one row of € does not equal the corresponding row

of AB, the fingerprints for that row will differ with probability

\_ atleast 1 — 1/n, causing V to reject. -




Interactive Proofs: Motivation and

Model
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Interactive Proofs

® Prover P and Verifier V.

® P solves problem, tellsV the answer.
® Then P and V have a conversation.

e P’s goal: convince V the answer is correct.

° Requirements:

o 1. Completeness: an honest P can convinceV

to accept.

® 7. Soundness:V will catch a lying P with high
probability.




Interactive Proofs

® Prover P and Verifier V.

® P solves problem, tellsV the answer.
® Then P and V have a conversation.

e P’s goal: convince V the answer is correct.

° Requirements:

o 1. Completeness: an honest P can convinceV

to accept.

® ). Soundness:V will catch a lying P with high
probability.
® This must hold even if P is computationally

unbounded and trying to trickV into accepting the
incorrect answer. /




Interactive Proof Techniques:

HEINEEHES
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Schwartz-Zippel Lemma

® Recall FACT: Let p # q be univariate polynomials of degree at

d
most d. Then PrrEF[p(r) — q(?")] = |F|’

e The SChwartZ—Zippel lemma is a multivariate

generalization:

® Let p # q be £-variate polynomials of total degree at most d.

Then PrreF{) [p(T) — q(T)] |:7l'|

® “Total degree refers to the maximum sum of degrees of all

variables in any term. E.g., x12x2 + X1X5 has total degree 3.




Low-Degree and Multilinear Extensions

* Definition [Extensions]. Given a function f: {0,1}£—> F,
a ¥-variate polynomial g over F is said to extend f if f(x) =
g(x) forall x € {O,l}f.

® Definition [Multilinear Extensions]. Any function
f: {0,1}€—> F has a unique multilinear extension (MLE),

denoted f :




Low-Degree and Multilinear Extensions

* Definition [Extensions]. Given a function f: {0,1}£—> F,
a ¥-variate polynomial g over F is said to extend f if f(x) =
g(x) forall x € {0,1}8.

® Definition [Multilinear Extensions]. Any function
f: {0,1}€—> F has a unique multilinear extension (MLE),

denoted f :

e Multilinear means the polynomial has degree at most 1 in each

variable.

e (1 —x9)(1 — x5 ) is multilinear, x12 X is not.
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f:F*—F
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Flxy,x) = (1 —x)(1—x5) +2(1 — x1)x,+ 8x1(1 — x,)+10x,x,

1 2 3 4 5 6
8 10 12 14 16 18
15 18 21 24 27 30
22 26 30 34 38 42
29 34 39 ||| 44 ||| 49 56
36 ||| 42 48 54 60 68

Can check:
o0 /(0,0)=1
f(0,1) =2
f(1,0) =8
f(1,1) =10

™




Another (non-multilinear) extension of f :
glxy, %) = —x2 + x1x,+8x; + x, + 1

1 2 3 4 5 6

8 10 12 14 16 18

Can check:
Bl tel[l1off|22]] 25| 28 || o@@ 9(0.0) =1
g(0,1) =2
16 | 20 Ul 24 [l 28 Il 32 Ul| 36 g(1,0) =8
g(1,1)=10

17 22 27 32 37 || 42

16 || 22 Nl 28 [I| 34 ||| 40 ||| 44




