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The Power of Randomness: A 
Demonstration



EQUALITY Testing

Alice and Bob’s Goal: Determine whether ! = #, while 
exchanging as few bits as possible. 

$%&'( )*+

! = ,-, … , ,0 ∈ {0, 1}0 # = (7-, … , 70) ∈ {0, 1}0



EQUALITY Testing

Trivial solution: Alice sends ! to Bob, who checks whether ! = #. 
Communication cost is $.

%&'() *+,

! = -., … , -1 ∈ {0, 1}1 # = (8., … , 81) ∈ {0, 1}1



EQUALITY Testing

! = #$, … , #' ∈ {0, 1}' - = (/$, … , /') ∈ {0, 1}'

Fact: Trivial solution is optimal amongst deterministic protocols.
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A Logarithmic Cost Randomized 
Solution 



Randomized EQUALITY Testing Protocol

• Notation: 
• Let ! be any finite field with |!| ≥ $%. 
• Interpret each &', (' as elements of !.
• Let ) * = ∑'-./ &' *' and 0 * = ∑'-./ (' *'.

• The Protocol:
• Alice picks a random r ∈ ! and sends (r, ) 5 ) to Bob.
• Bob outputs EQUAL if ) 5 = 0 5 . Otherwise he

outputs NOT-EQUAL.



Randomized EQUALITY Testing Protocol

• Notation: 
• Let ! be any finite field with |!| ≥ $%. 
• Interpret each &', (' as elements of !.
• Let ) * = ∑'-./ &' *' and 0 * = ∑'-./ (' *'.

• The Protocol:
• Alice picks a random 1 ∈ ! and sends (1, ) 1 ) to Bob.
• Bob outputs EQUAL if ) 1 = 0(1). Otherwise he

outputs NOT-EQUAL.



• Notation: 
• Let ! be any finite field with |!| ≥ $%. 
• Interpret each &', (' as elements of !.
• Let ) * = ∑'-./ &' *' and 0 * = ∑'-./ (' *'.

• The Protocol:
• Alice picks a random 1 ∈ ! and sends (1, ) 1 ) to Bob.
• Bob outputs EQUAL if ) 1 = 0(1). Otherwise he

outputs NOT-EQUAL.

• Total communication: 6 log ! = 6(log $) bits.
• We call ) 1 the Reed-Solomon fingerprint of the vector :. 

Randomized EQUALITY Testing Protocol



• Notation: 
• Let ! be any finite field with |!| ≥ $%. 
• Interpret each &', (' as elements of !.
• Let ) * = ∑'-./ &' *' and 0 * = ∑'-./ (' *'.

• The Protocol:
• Alice picks a random 1 ∈ ! and sends (1, ) 1 ) to Bob.
• Bob outputs EQUAL if ) 1 = 0(1). Otherwise he

outputs NOT-EQUAL.

• Total communication: 6 log ! = 6(log $) bits.
• Call ) 1 the Reed-Solomon fingerprint of the vector : at 1.

Randomized EQUALITY Testing Protocol



Correctness Analysis
• Claim 1: if ! = #, then Bob outputs EQUAL with probability 1.
• Proof: Since ! = #, $ and % are the same polynomial, so

$ & = % & for all & ∈ (. 

• Claim 2: ! ≠ #, then Bob outputs NOT-EQUAL with 
probability at least 1 − ,

- over the choice of & ∈ (.
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Correctness Analysis
• Claim 2: ! ≠ #, then Bob outputs NOT-EQUAL with probability at 

least 1 − &
' over the choice of ( ∈ *.

• The proof relies on the following crucial fact:
FACT: Let p≠q be univariate polynomials of degree at most 

n. Then p and q agree on at most n inputs. Equivalently:

Pr-∈* . ( = 0 ( ≤ 2
* .

• If ! ≠ #, . and 0 are not the same polynomial. By FACT, the 
probability Alice picks an ( such that . ( = 0 ( is at most '|*| ≤
'
'5 ≤

&
' .
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Correctness Analysis
• Claim 2: ! ≠ #, then Bob outputs NOT-EQUAL with probability at 

least 1 − &
' over the choice of ( ∈ *.

FACT: Let + ≠ , be univariate polynomials of degree at most -. 
Then + and , agree on at most - inputs. Equivalently:
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• If ! ≠ #, then + and , are not the same polynomial. By FACT, the 
probability Alice picks an ( such that + ( = , ( is at most '|*| ≤
'
'5 ≤
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' .



Main Takeaways 
1. Any two distinct low-degree polynomials differ almost 

everywhere: if ! ≠ " then Pr%∈' ! ( = " ( ≤ +
'

where , bounds the degree of ! and ".
• Corollary: If two low-degree polynomials agree at a 

randomly chosen input, it is “safe” to believe they are the 
same polynomial.

2. Interpreting inputs as low-degree polynomials is powerful.
• If two inputs differ at all, then once interpreted as 

polynomials, they differ almost everywhere.



Freivalds’ Protocol for Verifying Matrix 
Products

Demonstrating the Power of 
Randomness in Verifiable Computing



Verifying Matrix Multiplication
• Input is two matrices A, B ∈ %&×&. Goal is to compute A ) B.
• Fastest known algorithm runs in time about *+.,-.
• What if an untrusted prover P claims that the answer is a matrix .? 

Can V verify that .= A ) B in linear time?
• Yes! 

• The proof relies on the following crucial fact:

FACT: Any two distinct polynomials of degree at most n 
agree on at most n inputs.

• Proof of Claim 2: Since / ≠ 1, 2 and 3 are not the same 
polynomial. By FACT, 2 4 = 3 4 for at most * values of 4. So 

the probability Alice picks such an 4 is at most & ≤ & ≤ 7
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Verifying Matrix Multiplication
• The Protocol:

1. V picks a random ! ∈ # and lets $ = !, !', … , !) .
2. V computes + , $ and (AB) , $, accepting iff they are equal.

V runs in 1 2' time.
• V computes 3 matrix-vector products, each of which can be 

computed in 1 2' time.
• + , $ is one matrix-vector multiplication.
• (AB) , $= A , (B , $) takes two matrix-vector 

multiplications.



Verifying Matrix Multiplication
• The Protocol:

1. V picks a random ! ∈ # and lets $ = !, !', … , !) .
2. V computes + , $ and (AB) , $, accepting iff they are equal.

• Runtime Analysis:
• V’s runtime dominated by computing 3 matrix-vector products, 

each of which takes 1 2' time.
• + , $ is one matrix-vector multiplication.
• (AB) , $= A , (B , $) takes two matrix-vector 

multiplications.



Correctness Analysis

• Claim 1: If != A # B then V accepts with probability 1.
• Claim 2: If ! ≠ A # B, then V rejects with probability at least 

1 − (
) ≥ 1 − 1/(.

• Proof: 
• Recall that - = 1, 0, 01, … , 0345 .
• The 6th entry of ! # - is the Reed-Solomon fingerprint of the 

6th row of !.
• Similarly, the 6th entry of (89)- is the Reed-Solomon 

fingerprint of the 6th row of 89.
• So if even one row of ! does not equal the corresponding row 

of A # 9, the fingerprints for that row will differ with 
probability at least 1 − 1/(.
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Correctness Analysis

• Claim 1: If != A # B then V accepts with probability 1.
• Claim 2: If ! ≠ A # B, then V rejects with probability at least 

1 − (
) ≥ 1 − 1/(.

• Proof of Claim 2: 
• Recall that - = /, /1, … , /3 .
• (! # -)6= ∑89:3 !68/8 is the Reed-Solomon fingerprint at /

of the ;th row of !.
• Similarly, ((AB) # -)6 is the Reed-Solomon fingerprint at / of 

the ;th row of AB.
• So if even one row of ! does not equal the corresponding row 

of AB, the fingerprints for that row will differ with probability 
at least 1 − 1/(, causing V to reject.



Interactive Proofs: Motivation and 
Model



Cloud Provider Business/Agency/Scientist

Interactive Proofs
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Interactive Proofs
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Interactive Proofs
� Prover P and Verifier V.

� P solves problem, tells V the answer.
� Then P and V have a conversation.
� P’s goal: convince V the answer is correct.

� Requirements: 
� 1. Completeness: an honest P can convince V

to accept.
� 2. Soundness: V will catch a lying P with high 

probability. 
This must hold even if P is computationally unbounded 
and trying to trick V into accepting the incorrect 
answer.
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Interactive Proof Techniques: 
Preliminaries



Schwartz-Zippel Lemma
� Recall FACT: Let ! ≠ " be univariate polynomials of degree at 

most #. Then Pr&∈( ! ) = " ) ≤ ,
( .

The Schwartz-Zippel lemma is a multivariate generalization:
Let ! ≠ " be ℓ-variate polynomials of total degree at most #. Then 

Pr/∈(ℓ ! / = " / ≤ ,
( .

Total degree refers to the maximum sum of degrees of all variables 
in any term. E.g., 01202 + 0102 has total degree 3.
is not.
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Low-Degree and Multilinear Extensions
� Definition [Extensions]. Given a function !: {0,1}ℓ→ *, 

a ℓ-variate polynomial + over F is said to extend ! if ! , =
+(,) for all , ∈ {0,1}ℓ.

� Definition [Multilinear Extensions]. Any function 
!: {0,1}ℓ→ * has a unique multilinear extension (MLE),   
denoted 2!.
Multilinear means the polynomial has degree at most 1 in each 
variable.
(1 − ,4)(1 − ,5 ) is multilinear, ,4(,5)5 is not.
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!" #$, #& = (1 − #$)(1 − #&) + 2(1 − #$)#&+ 8#$(1 − #&)+10#$#&

Can	check:
!" 0, 0 = 1
!" 0, 1 = 2
!" 1, 0 = 8
!" 1, 1 = 10
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24 28

17 22

16 22

27 32

28 34

5 6

16 18

25 28
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40 44

Another (non-multilinear) extension of !: 
" #$, #& = −#$& + #$#&+8 #$ + #& + 1

Can	check:
" 0, 0 = 1
" 0, 1 = 2
" 1, 0 = 8
" 1, 1 = 10


