
Justin Thaler
Georgetown University

COSC 544: Course Intro

Logistical Information
1. Instructor: Justin Thaler
2. Email: justin.thaler@georgetown.edu
3. Course webpage:

http://people.cs.georgetown.edu/jthaler/COSC544.html

mailto:justin.thaler@georgetown.edu
http://people.cs.georgetown.edu/jthaler/COSC544.html

• Different notions of mathematical proofs.
• And their applications in computer science and cryptography.

• Informally, a proof is anything that convinces someone that a
statement is true.

• A “proof system” is specified by a verification procedure.
• The procedure takes as input a statement and “proof ” of the

statement, and decides whether the statement is valid.
• That is, the verification procedure tells you what is a

convincing proof.

• We call ! " the Reed-Solomon fingerprint of the vector #.

What this course is about

• Different notions of mathematical proofs.
• And their applications in computer science and cryptography.

• Informally, a proof is anything that convinces someone that a
statement is true.

• A “proof system” is specified by a verification procedure.
• The procedure takes as input a statement and “proof ” of the

statement, and decides whether the statement is valid.
• The verification procedure tells you what is a convincing

proof.

• We call ! " the Reed-Solomon fingerprint of the vector #.

What this course is about

• Any true statement should have a convincing proof.
• This is called completeness of the proof system.

• No false statement should have a convincing proof.
• This is called soundness of the proof system.

• The verification procedure should be “efficient”.
• i.e., simple statements should have short proofs that can be

checked quickly.
• Proving should be efficient too.
• i.e., if a prover knows why a statement is true, it should not

require much work for the prover to convince the verifier of
its veracity.

What do we want out of a proof system?

• Any true statement should have a convincing proof.
• This is called completeness of the proof system.

• No false statement should have a convincing proof.
• This is called soundness of the proof system.

• The verification procedure should be “efficient”.
• i.e., simple statements should have short proofs that can be

checked quickly.
• Proving should be efficient too.
• i.e., if a prover knows why a statement is true, it should not

require much work for the prover to convince the verifier of
its veracity.

What do we want out of a proof system?

• Any true statement should have a convincing proof.
• This is called completeness of the proof system.

• No false statement should have a convincing proof.
• This is called soundness of the proof system.

• The verification procedure should be “efficient”.
• i.e., simple statements should have short proofs that can be

checked quickly.
• Proving should be efficient too.
• i.e., if a prover knows “why” a statement is true, it should not

require much work for the prover to generate a convincing
proof.

What do we want out of a proof system?

• Traditionally, a mathematical proof is something that can be
written down and checked step-by-step for correctness.
• Each step should either be trivial to verify, or else false.
• This has been the de facto notion of proof since roughly 600

BCE (developed by ancient Greek mathematicians).

Historical Context

• Traditionally, a mathematical proof is something that can be
written down and checked step-by-step for correctness.
• Each step should either be trivial to verify, or else false.
• This has been the de facto notion of proof since roughly 600

BCE (developed by ancient Greek mathematicians).
• In computer science, this traditional notion corresponds to

the complexity class NP.

Historical Context

• Since 1985, computer scientists have studied much more
general/exotic notions of proofs.
• This has transformed our notion of what it means to prove

something, and led to major advances in cryptography.

Historical Context

What Kinds of Non-Traditional
Notions of Proofs Will We Study?

• All notions in this course will be probabilistic.
• The verification procedure will make random choices.
• And there will be a very small probability of declaring a

“false” statement and proof to be valid.

What notions of proof systems will we study?

• All notions in this course will be probabilistic.
• The verification procedure will make random choices.
• And there will be a very small probability of declaring a

“false” statement and proof to be valid.

• Interactive proofs (IPs)
• Argument systems
• Zero-knowledge IPs and arguments
• Multi-prover interactive proofs (MIPs)
• Probabilistically checkable proofs (PCPs)
• etc.

What notions of proof systems will we study?

Cloud Provider Business/Agency/Scientist

Interactive Proofs (IPs)

Cloud Provider Business/Agency/Scientist

Data

Interactive Proofs (IPs)

Cloud Provider Business/Agency/Scientist

Data

Data
Summary

Interactive Proofs (IPs)

Cloud Provider Business/Agency/Scientist

Question

Data

Answer
Data
Summary

Interactive Proofs (IPs)

Cloud Provider Business/Agency/Scientist

Question

Data

Answer

Challenge

Response

Data
Summary

Interactive Proofs (IPs)

Cloud Provider Business/Agency/Scientist

Question

Data

Answer

Challenge

Response

Challenge

Response

Data
Summary

Interactive Proofs (IPs)

Cloud Provider Business/Agency/Scientist

Question

Data

Answer

Challenge

Response

Challenge

Response

Accept
or

Reject

Interactive Proofs (IPs)

Interactive Proofs
� Prover P and Verifier V.

� P solves problem, tells V the answer.
� Then P and V have a conversation.
� P’s goal: convince V the answer is correct.

� Requirements:
� 1. Completeness: an honest P can convince V

to accept.
� 2. Soundness: V will catch a lying P with high

probability.
This must hold even if P is computationally unbounded
and trying to trick V into accepting the incorrect
answer.

Interactive Proofs
� Prover P and Verifier V.

� P solves problem, tells V the answer.
� Then P and V have a conversation.
� P’s goal: convince V the answer is correct.

� Requirements:
� 1. Completeness: an honest P can convince V

to accept.
� 2. Soundness: V will catch a lying P with high

probability.
� This must hold even if P is computationally

unbounded and trying to trick V into accepting the
incorrect answer.

Argument Systems
� Same as IPs, except soundness holds only

against cheating provers that run in
polynomial time.
� Argument systems make use of cryptosystems.
� If P can “break” the cryptosystem, then P can

convince V of false statements. But breaking a
cryptosystem is assumed to require vast
computational resources (superpolynomial
time).

� IPs were introduced by [Goldwasser, Micali,
Rackoff 1985] and [Babai 1985].

� Argument systems were introduced by
[Brassard, Chaum, Crepeau 1988].

Argument Systems
� Same as IPs, except soundness holds only

against cheating provers that run in
polynomial time.
� Argument systems make use of cryptosystems.
� If P can “break” the cryptosystem, then P can

convince V of false statements. But breaking a
cryptosystem is assumed to require vast
computational resources (superpolynomial
time).

� IPs were introduced by [Goldwasser, Micali,
Rackoff 1985] and [Babai 1985].

� Argument systems were introduced by
[Brassard, Chaum, Crepeau 1988].

Argument Systems
� Same as IPs, except soundness holds only

against cheating provers that run in
polynomial time.
� Argument systems make use of cryptosystems.
� If P can “break” the cryptosystem, then P can

convince V of false statements. But breaking a
cryptosystem is assumed to require vast
computational resources (superpolynomial
time).

� IPs were introduced by [Goldwasser, Micali,
Rackoff 1985] and [Babai 1985].

� Argument systems were introduced by
[Brassard, Chaum, Crepeau 1988].

• These are proofs that reveal nothing to the verifier other than the validity
of the statement being proven.
• They have many applications in cryptography.

Zero-Knowledge Proofs and Arguments

• Example: authentication.
• Suppose Alice chooses a random password ! and publishes a hash

" = ℎ(!), where ℎ is a one-way hash function.
• ℎ is “easy to compute, but hard to invert”.
• For a random !, given only " = ℎ(!), it is hard to find a

preimage !’ of " under ℎ.
• Later, Alice wants to convince Bob that she is the same person who

published ".
• She can do this by proving to Bob that knows an !’ such that

ℎ !' = ".
• This convinces Bob that either Alice know ! to begin with, or else she

inverted ℎ, which is assumed to be beyond anyone’s capabilities.

Example Application: Authentication

• Example: authentication.
• Suppose Alice chooses a random password ! and publishes a hash

" = ℎ(!), where ℎ is a one-way hash function.
• ℎ is “easy to compute, but hard to invert”.
• For a random !, given only " = ℎ(!), it is hard to find a

preimage !’ of " under ℎ.
• Later, Alice wants to convince Bob that she is the same person who

published ".
• She can do this by proving to Bob that knows an !’ such that

ℎ !' = ".
• This convinces Bob that either Alice know ! to begin with, or else she

inverted ℎ, which is assumed to be beyond anyone’s capabilities.

Example Application: Authentication

• Example: authentication.
• Suppose Alice chooses a random password ! and publishes a hash

" = ℎ(!), where ℎ is a one-way hash function.
• ℎ is “easy to compute, but hard to invert”.
• For a random !, given only " = ℎ(!), it is hard to find a

preimage !’ of " under ℎ.
• Later, Alice wants to convince Bob that she is the same person who

published ".
• Alice can do this by proving to Bob that she knows an !’ such that

ℎ !' = ".
• This convinces Bob that either Alice know ! to begin with, or else she

inverted ℎ, which is assumed to be beyond anyone’s capabilities.

Example Application: Authentication

• How can Alice prove to Bob that she knows an !’ such that ℎ !# = %?
• Obvious approach: Alice can just send !’ to Bob.
• But this reveals !’ to Bob!
• From then on, Bob can impersonate Alice, as he also knows an !’ such

that ℎ !# = %.
• In order to prevent Bob from learning any information that might help

him compromise the password, it is essential that the proof reveal nothing
other than that Alice knows an !’ such that ℎ !# = %.

• This is exactly what a zero-knowledge proof guarantees.

Example Application: Authentication

• How can Alice prove to Bob that she knows an !’ such that ℎ !# = %?
• Obvious approach: Alice can just send !’ to Bob.
• But this reveals !’ to Bob!
• From then on, Bob can impersonate Alice, as he also knows an !’ such

that ℎ !# = %.
• In order to prevent Bob from learning any information that might help

him compromise the password, it is essential that the proof reveal nothing
other than that Alice knows an !’ such that ℎ !# = %.
• This is exactly what a zero-knowledge proof guarantees.

Example Application: Authentication

Multi-Prover Interactive Proofs (IPs)

Cloud Provider 1 Business/Agency/Scientist Cloud Provider 2

Multi-Prover Interactive Proofs (IPs)

Business/Agency/Scientist Cloud Provider 2Cloud Provider 1

DataData

Multi-Prover Interactive Proofs (IPs)

Business/Agency/Scientist Cloud Provider 2

Data
Data

Summary

Cloud Provider 1

Data

Multi-Prover Interactive Proofs (IPs)

Business/Agency/Scientist Cloud Provider 2

Data
Data

Summary

Cloud Provider 1

Data

Question

Answer

Challenge

Response

Challenge

Response

Question

Answer

Challenge

Response

Challenge

Response

Multi-Prover Interactive Proofs (IPs)

Business/Agency/Scientist Cloud Provider 2

Data

Cloud Provider 1

Data
Accept

or
Reject

Multi-Prover Interactive Proofs (IPs)

Business/Agency/Scientist Cloud Provider 2

Data

Cloud Provider 1

Data
Accept

or
Reject

Key assumption of the model: Cloud Provider 1 does
not inform Cloud Provider 2 of the challenges it

receives, and vice versa.

• A classic, static proof , but the verifier only looks at a few symbols of the
proof.Think of YES instances as “true statements” and NO instances as “false
statements”.
• Then a problem is in NP if:
• All true statements have proofs that can be efficiently verified

(completeness via an efficient verifier).
• And no false statements have convincing proofs (soundness holds).

Probabilistically Checkable Proofs (PCPs)

• Theorists showed in the 1980s and 1990s that IPs and
arguments can be vastly more efficient (asymptotically) than
traditional static proofs.
• i.e., far more complicated statements can be verified

efficiently using these exotic notions of proofs, compared
to static proofs.

• Yet these results were considered wildly impractical.
• Generating proofs for even very simple statements would

have taken trillions of years in practice.
• But the last decade has seen major improvements in the

costs of these exotic proof systems.
• They have seen deployment in commercial settings.

Context for this course

• Theorists showed in the 1980s and 1990s that IPs and
arguments can be vastly more efficient (asymptotically) than
traditional static proofs.
• i.e., far more complicated statements can be verified

efficiently using these exotic notions of proofs, compared
to static proofs.

• Yet these results were considered wildly impractical.
• Generating proofs for even very simple statements would

have taken trillions of years in practice.
• But the last decade has seen major improvements in the

costs of these exotic proof systems.
• They have seen deployment in commercial settings.

Context for this course

• Theorists showed in the 1980s and 1990s that IPs and
arguments can be vastly more efficient (asymptotically) than
traditional static proofs.
• i.e., far more complicated statements can be verified

efficiently using these exotic notions of proofs, compared
to static proofs.

• Yet these results were considered wildly impractical.
• Generating proofs for even very simple statements would

have taken trillions of years in practice.
• But the last decade has seen major improvements in the

costs of these exotic proof systems.
• They have seen deployment in commercial settings.

Context for this course

• Most useful in practice are zero-knowledge arguments.
• We are mainly studying IPs, MIPs, and PCPs because they are

“building blocks” used for designing zero-knowledge
arguments.

Context for this course

• It’s cool. It may change how you think about what it means to
prove something or be convinced that something is true.

• You’ll learn some of the most celebrated results and
techniques in computer science and cryptography.
• Cryptographic tools include:
• Collision-resistant hash functions.
• Commitment schemes.
• Homomorphic encryption.
• Pairing-based cryptography.

• You’ll be on the cutting edge of a major research area.
• Which may play a role in transforming basic societal

functions in the coming decades.
• E.g., asset transfer, identification, licensing, etc.

Why you should take this course

• It’s cool. It may change how you think about what it means to
prove something or be convinced that something is true.

• You’ll learn some of the most celebrated results and
techniques in computer science and cryptography.
• Cryptographic tools include:
• Collision-resistant hash functions.
• Commitment schemes.
• Homomorphic encryption.
• Pairing-based cryptography.

• You’ll be on the cutting edge of a major research area.
• Which may play a role in transforming basic societal

functions in the coming decades.
• E.g., asset transfer, identification, licensing, etc.

Why you should take this course

• It’s cool. It may change how you think about what it means to
prove something or be convinced that something is true.

• You’ll learn some of the most celebrated results and
techniques in computer science and cryptography.
• Cryptographic tools include:
• Collision-resistant hash functions.
• Commitment schemes.
• Homomorphic encryption.
• Pairing-based cryptography.

• You’ll be on the cutting edge of a major research area.
• Which may play a role in transforming basic societal

functions in the coming decades.
• E.g., asset transfer, identification, licensing, etc.

Why you should take this course

